Battery Research


Licht Group Battery, Fuel Cell Energy Storage Research

New multiple electron storage processes

In the field of energy storage for devices ranging from EVs to consumer electronics and peak power storage, we’re pioneering the study of new multiple electron (per molecule) storage processes, to learn to create batteries and fuel cells with greater storage capacity than gasoline.

Molten Air is a new class of rechargeable batteries we’ve recently introduced.

  • Licht, Cui, Stuart, Wang, Lau, “Molten Air Batteries – A new, highest energy class of rechargeable batteries,” Energy & Environmental Science, 6, 3646-3657 (2013).
  • Cui, Licht, “A Low Temperature Iron Molten Air Battery,” J. Mat. Chem. A, 2, 10577-10580 (2014).
  • Liu, Li, Cui, Liu, Hau, Guo, Xu, Licht, “Critical Advances for the Iron Molten Air Battery” J. Mat Chem. A, 3, 21039 (2015). Click here to access article
  • Cui, Xiang, Liu, Xin, Liu, Licht, “A novel rechargeable zinc-air battery with molten salt electrolyte,” J. Power Sources, B 342, 435 (2017).
  • Cui, Xiang, Liu, Hongyu Xin, Liu, Licht, “A long cycle life, high coulombic efficiency iron molten air battery,” Sustainable Energy & Fuels, 1, 474 & back cover (2017).
  • Cui, Xin, Liu, Liu, Hao, Guo, Licht, “Improved cycle iron molten air battery performance using a robust fin air electrode,” J. Electrochem. Soc., 165, A88 (2017). Click here to access article

 

 

VB2/air batteries and fuel cells

  • Lefler, Stuart, Parkey, Licht, “Higher capacity, improved conductive matrix VB2/air batteries,” J. Electrochem. Soc., 163, A781 (2016). Click here to access article
  • Stuart, Lefler, Rhodes, Licht, “High energy capacity TiB2/VB2… air batteries,” J. Electrochem. Soc., 162, A432 (2015). Click here to access article
  • Stuart, Hohendel, Li, Xiao, Parkey, Rhodes, Licht, “The net discharge … VB2/Air battery” J. Electrochem. Soc., 162, A192 (2015). Click here to access article
  • Rhodes, Stuart, Lopez, Li, Waje, Mullings, Lau, Licht, “Evaluation of properties and performance of nanoscopic materials in vanadium diboride/air batteries,” Journal of Power Sources, 239, 244-252 (2013).
  • Stuart, Lopez, Lau, Li, Waje, Mullings, Rhodes, Licht, “Fabrication of VB2 / Air cells for Electrochemical Testing,” Journal of Visualized Experiments, (78), e50593, doi:10.3791/50593 (2013).
  • Licht, Hettige, Lau, Cubeta, Wu, Stuart, Wang,”Nano-VB2 synthesis from elemental V&B: nano- VB2 anode/air batt.,” Electrochem. & Solid State Lett., 15, A12 (2012).
  • Licht, Ghosh, Wang, Jiang, Asercion Harry Bergmann, “Nanoparticle facilitated charge transfer and voltage of a high capacity VB2 anode,” Electrochem. & Solid State Lett., 14, A83-A85 (2011).
  • Licht, “Improved Vanadium Boride-Air Multiple Electron High Capacity Battery,” US patent  & PCT intl. application, PCT/US11/47237, filed Aug. 10, 2011.
  • Licht, Yu, Wang, Wu, “The Super-Iron Boride Battery,” J. Electrochem. Soc., 155,  A297-303 (2008).
  • Licht, Wu, Yu, Wang, “Renewable Highest Capacity VB2/Air Energy Storage,”  Chemical Communication, 2008, 3257-3259 (2008) .
  • Yu, Licht, “High capacity alkaline super-iron boride battery.” Electrochmica Acta, 52, 8138-8143 (2007).
  • Licht, Yu, Qu, “Novel Alkaline Redox Couple: Chemistry of  the Fe(6+)/B(2-) Super-iron Boride Battery,” Chemical Communication, 2007, 2753-2755 (2007).

 

Our Super-iron batteries utilize a new Fe(VI) cathode and store 6 fold higher charge than conventional cathodes

  • Licht, Wang, Ghosh, “Energetic Iron(VI) Chemistry: The Super-Iron Battery,” Science, 285,  1039-1042 5592-5612 (1999).
  • Zhu, Wang, Wang, Liu, Wu, Licht, “The adoption and mechanism of KIO4 for redox-equilibrated stabilization of FeO42− as an equalizer in water,” Ionics, 22, 1967 (2016). Click here to access article
  • Farmand, Licht Ramaker, “Studying the Reversibility of Multi-electron Charge Transfer in Fe(VI) Cathodes Utilizing X-ray abs. Spectroscopy,” J. Phys. Chem. C,117, 19875(2013).
  • Farmand, Jiang, Wang , Ghosh, Ramaker, Licht,
  • “Super-iron nanoparticles with facile cathodic …,” Electroch. Comm., 13, 909 (2011).
  • Licht, “A High Capacity Li-ion Cathode: The Fe(III/VI) Super-iron Cathode,”  Energies, 3, 960-972 (2010).
  • Licht, Yu, in Ferrates Synthesis, Properties and Applications in Water and Wastewater Treatment, V. Sharma, Ed., ACS Symp. V. 985 (2008); three chapters: 55 page Chapter: “Recent Advances in Fe(VI) Charge Storage & Super-iron Batteries,”
    28 page Chapter: “Fe(VI) Water Purification and Remediation,” and 45 page Chapter: “Recent Advances in Fe(VI) Synthesis”.
  • Licht, Wang, Gourdin, “Enhancement of Reversible Nonaqueous Fe(III/VI) Cathodic Charge Transfer,” J. Phys. Chem. C, 113, 9884 (2009).
  • Yu, Licht, “Advances in Fe(VI) charge storage: Part I. Primary alkaline super-iron batteries “171, 966 (2007).
  • Yu, Licht, “Adv. in Fe(VI) charge storage: Part II. Reversible nonaqueous super-iron batteries”171, 1010 (2007).
  • Licht, Yu, Wang,  “Stabilized Alkaline Fe(VI) Charge Transfer: Zirconia Coating Stabilized,” J. Electrochem. Soc. 155, A1-7 (2008).
  • Yu, Licht, “High capacity alkaline super-iron boride battery,” Electrochimca Acta, 52, 8138 (2007).
  • Kiltypin, Licht, Nowik, Tek-Vered, Aurbach, et al. “The Study of Various super irons in Li salt …,” J.  Electrochem. Soc., 153, A32 (2006).
  • Licht, DeAlwis, “… Alkaline Charge Transfer in Fe(III/VI):… Reversible Super-iron thin film Cathodes,” J. Phys. Chem. B, 110, 12394 (2006).
  • Licht, Yu, Zheng “Cathodic Chemistry of High Performance Zr Coated Materials” Chemical Communications, 4341 (2006).
  • Licht, Yang, Wang, “Synthesis and analysis of Ag2FeO4 … Super-iron cathodes,” Electrochemistry Comm., 7, 933 (2005).
  • Kiltypin, Licht, Tel-Vered, Naschitz, Aurbach, ” The Study of K2FeO4 … for rechargeable lithium batteries,” J.  Power Soc., 146, 723 (2005).
  • Licht, Naschitz, Rozen, Halperin, “Cathodic … Analysis of Cs2FeO4, K2FeO4 & … Alkali Super-irons,” J. Electroch. Soc., 151, A1147 (2004).
  • Licht, Tel-Vered, Halperin, “Towards Efficient Electrochemical Synthesis of  Fe(VI) ferrate,” J. Electrochem. Soc. , 151, A31-39 (2004).
  • Licht, Tel-Vered,  “Rechargeable Fe(III/VI) Super-Iron Cathodes,” Chemical Communications, 628-629 (2004).
  • Licht, Tel-Vered, Halperin, “Direct electrochemical preparation of solid Fe(VI) …, ” Electrochemistry Comm., 5, 933 (2003).
  • Ghosh, Wen, Mukerjee, Naschitz, Licht, et al. “The Reversible Behavior of K2Fe(VI)O4 …,” Electrochem. Solid State Lett., 6, A209 (2003).
  • Licht, Naschitz, Gosh, “Silver Mediation of Fe(VI) Charge Transfer,” J. Phys . Chem., B, 106, 5947-5955 (2002).
  • Licht, Naschitz, Wang, Rapid Chemical Synthesis of the Barium Super-Iron Compound, BaFe(VI)O4,” J. Power Sources, 109, 67 (2002).
  • Licht, Ghosh, “High Power BaFe(VI)O4/MnO2 Composite Cathode Alkaline Super-Iron Batteries” J. Power Sources, 109, 465 (2002).
  • Licht, Ghosh, Naschitz, Halperin, Halperin, “Fe(VI) Catalyzed Mn Redox” J. Phys . Chem., B, 105, 11933 (2001).
  • Licht, Naschitz, Halperin, Lin,, Lin, Chen, Ghosh, Liu “Analysis of FeVI) compounds & Super-Iron Fe(VI) Bat. Cathodes,  FTIR,
  • XRD, UV/Vis, ICP, Electroch. & Chem. Characterization,” J. Power Sources, 101/2, 167-176 (2001).
  • Licht, Naschitz, Ghosh, Lin, Lui “SrFeO4: Synthesis,) … Strontium Super-iron battery,” Electrochemistry Comm., 3, 340 (2001).
  • Licht, Wang, “Non Aqueous Iron(VI) Chemistry: The Lithium Super-Iron Battery,” Electrochem. Solid State Lett., 3, 209-212 (2000).
  • Licht, Wang, Li, Ghosh, Tel-Vered “Enhanced Fe(VI) Conductance & Charge Transfer” Electrochemistry Comm., 2, 535 (2000).
  • Licht, Wang, Xu, Li, Naschitz, “Solid phase modifiers of the Fe(VI) cathode,” Electrochemistry Comm., 1, 527-531 (1999).

 

Aluminum/Sulfur batteries

  • Peramunage, Licht, “A Novel Solid Sulfur Cathode for Aqueous Batteries,” Science,  261,  1029-1032 (1993).
  • Licht,”An Energetic Medium For Electrochemical Storage Utilizing The  High  Aqueous Solubility of Potassium Sulfide,”  Journal of the Electrochemical Society,  134,  2137-2141 (1987).
  • Licht,. Jeitler,  Jin H. Hwang, “Aluminum Anodic Behavior in Aqueous Sulfur Electrolytes,”J. of Phy. Chem., 101, 4959-4965 (1997).
  • Licht, “Aluminum Sulfur Battery Discharge in the High Current Domain.” J. of the Electrochem. Soc., 144,  L133-L136 (1997).
  • Licht, Hwang,. Light, Dillon, “The Low Current Domain of the Aluminum Sulfur Battery,” ibid, 144,  948-955 (1997).
  • Licht, “The Reduction of Non-traditional Aluminum Salts,” Light Metals, 216-226 (1995).
  • Licht, Peramunage, “A Novel Aqueous Aluminum/Sulfur Battery,”Journal of the Electrochemical Society, 140,  L4-L6 (1993).
  • Peramunage, Dillon, Licht, “Investigation of a Novel Aqueous Aluminum/Sulfur Battery” J. of Power Sour., 45/3, 311-323 (1993).

 

Non-aqueous Aluminum batteries

  • Licht, Levitin,  Yarnitzky, Tel-Vered,  “The Organic Phase for Aluminum Batteries,” Electrochem. and Sol. State Let., 2,  262-264 (1999).
  • Levitin, Yarnitzky, Licht, “Fluorinated Graphites as Energetic Cathodes” Electrochem. and Sol. State Let., 5, A160-164 (2002).
  • Licht, Levitin, Tel-Vered, Yarnitzky, “The Effect of Water on the Anodic Dissolution of Al…,”  Electrochem. Comm., 2,  329-333 (2000).
  • Vered, Levitin, Licht, “Solution Activators of Al. Electrochemisty in Organic Media,” J. of the Electrochem. Soc., 147, 496-501 (2000).

 

Al/Hydrogen Peroxide batteries

  • Marsh, Licht, “A Novel Aqueous Dual Channel Aluminum Hydrogen Peroxide Battery” J. of the Electrochem. Soc., 141, L61-L63, 1994.

 

Al/Nickel batteries

  • Licht, Myung, “A High Energy and Power Novel Aluminum Nickel Battery,” J. of the Electrochem. Soc., 142, L179-L182 (1995).

 

Al/Permanganate fuel cell

  • Licht ”A Novel Aqueous Aluminum/Permanganate Fuel Cell,”  Electrochemistry Communications, 1,  33-36 (1999).
  • Licht, “Novel Aluminum Batteries: Step Towards Derivation Of Superbatteries,”Colloids and Surfaces A, 134,  241-248 (1998).
  • Licht, Peramunage, Myung, “Ultrahigh Specific Power Electrochemistry Exemplified by Al/MnO4-and Cd/AgO Redox Chemistry,” Journal of Physical Chemistry,  102,  6780-6786 (1998).

 

Li-ion batteries

  • Licht, Douglas, Ren, Carter, Lefler, Pint, “Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes,” ACS Central Science, 2, 162 (2016). Click here to access article

Zn/Periodate batteries

  • Licht, Yu, “An Alkaline Periodate Cathode and Its Unusual Solubility Behavior in KOH,” Electrochem. & Sol. State Let., 10, A36-39 (2007).

 

Zn/Sulfur fuel cells

  • Bendikov, Licht, Yarnitzky, “Energetics of a Zinc-Sulfur Fuel Cell,” Journal of Physical Chemistry, B, 106,  2989-2995 (2002).