Speaker: Justin Allman, USNA
Date and time: Thursday, October 11, 4–5 pm
Location: Phillips 110
Abstract: The Durfee's square identity is an effective way to iteratively count partitions going back to at least Cauchy. In this talk we show how this identity is related to representations of a certain quiver, namely an orientation of the Dynkin diagram. Furthermore, we show that identities among quantum dilogarithm series, with a rich history in their own right, can encode infinitely many of these Durfee's-square-type identities simultaneously. Finally, we discuss how these identities generalize to entire families of quivers.