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Abstract
The phase field method is playing an increasingly important role in understanding and 
predicting morphological evolution in materials and biological systems. Here, we develop 
a new analytical approach based on the bifurcation analysis to explore the mathematical 
solution structure of phase field models. Revealing such solution structures not only is 
of great mathematical interest but also may provide guidance to experimentally or com-
putationally uncover new morphological evolution phenomena in materials undergoing 
electronic and structural phase transitions. To elucidate the idea, we apply this analytical 
approach to three representative phase field equations: the Allen-Cahn equation, the Cahn-
Hilliard equation, and the Allen-Cahn-Ohta-Kawasaki system. The solution structures of 
these three phase field equations are also verified numerically by the homotopy continua-
tion method.
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1 Introduction

The phase field approach is an important modeling tool for modeling interfacial evolution 
problems in materials science and biological systems. It is rooted in the diffuse-interface 
description of interfaces for fluid interfaces proposed by van der Waals more than a cen-
tury ago [64, 69]. The early applications of the diffuse-interface to superconducting phase 
transitions and the compositional clustering and ordering in alloys led to the establishment 
of well-known time-dependent Ginzburg-Landau (TDGL) equations [32, 68], the Cahn-
Hilliard (CH) [10, 11], and Allen-Cahn equations [9] which form the basis for the evo-
lution equations in the phase field method. The term  “phase field” was coined in early 
applications of diffuse-interface description to solidification and dendrite growth [6, 8, 
27, 49, 50]. The generalization of the phase field to include both physical and artificial 
fields to distinguish different phases has led to wide-spread applications of the phase field 
method to modeling morphological and microstructure evolution in a wide variety of pro-
cesses beyond solidification in materials science [14, 16, 67], biology [78], fluid, and solid 
mechanics [2, 7], etc.

In the phase field method, one introduces a labeling function, called the phase field, 
� which for a two-phase system, is assigned a value (say, –1) for one phase, and another 
value (say, +1) for the other. In the interfacial region, the phase field labeling function � 
rapidly but smoothly transitions from –1 to 1. Meanwhile, the interface is tracked by a level 
set, typically the 0-level set, during the morphological evolution. The main advantage of 
the phase field approach is that it can predict the evolution of arbitrary morphologies and 
complex microstructures without explicitly tracking interfaces, and thereby easily handle 
topological changes of interfaces.

Since the phase field method involves the numerical solutions to systems of partial 
differential equations in time and space, there have been extensive efforts in developing 
numerical methods for solving the phase field equations. For example, several classic 
methods, such as explicit/implicit Euler methods, Crank-Nicolson and its variant, linear 
multistep methods, and Runge-Kutta methods, have been considered for the time discre-
tization (see for example [1, 15, 25, 52, 66] and the references cited therein). For the spatial 
discretization, methods, such as finite difference, finite element, discontinuous Galerkin, 
and spectral approximation, are typical examples (see the recent review article [23] and 
the references cited therein for more detailed discussion). Some stabilized schemes have 
recently been developed based on the inheriting the energy dissipation law and phase field 
gradient flow dynamics, including the convex splitting [26], linearly implicit stabilized 
schemes [71, 72], exponential integrator [21, 24], invariant energy quadratization [75], and 
scalar auxiliary variable schemes [65].

However, there are very limited studies to reveal the solution structure of phase field 
models which is critical to understanding the models from a mathematical point of view 
and to exploring the possible formation of novel morphological patterns. Solution struc-
tures of nonlinear differential equations have been well-studied by exploring bifurcations 
[62] and multiple solutions [4]. Existing theories and numerical methods have contributed 
to a better understanding of these solution structures and the relationship between solu-
tions and parameters [34]. For example, the Crandall-Rabinowitz theorem has been used to 
theoretically study the bifurcations of nonlinear differential equations such as free bound-
ary problems [28–30, 76, 77]. Numerically, the homotopy continuation method [45, 54] 
has been successfully employed to study parametric problems such as the bifurcation [62] 
and the structural stability [63]. Recently, several numerical methods have been developed 
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based on homotopy continuation methods for computing multiple solutions, steady states, 
and bifurcation points of nonlinear PDEs [38, 40]. These numerical methods have been 
also applied to hyperbolic conservation laws [41], physical systems [42, 43], and some 
more complex free boundary problems arising from biology [36, 37].

In this paper, we develop an analytical framework to study the solution structure of 
phase field models and apply it to three well-known phase field equations. In particular, we 
study the solution structure of the Allen-Cahn equation in Sect. 3 and that of Cahn-Hillard 
equation in Sect. 4. Finally in Sect. 5, we discuss the solution structure of the Allen-Cahn-
Ohta-Kawazaki (ACOK) system which is used to model the morphology of diblock copol-
ymer systems.

2  Bifurcation Analysis and Homotopy Tracking

The goal of this paper is to compute a global bifurcation diagram for various PDE models. 
Our approach combines analytical and numerical methods. First, we analyze the bifurca-
tions of various phase field models from the trivial steady states by the Crandall-Rabinow-
itz theorem, then we numerically compute the global bifurcation diagram via homotopy 
tracking. Generally speaking, we consider the following nonlinear operator:

where F(⋅,�) is a Cp map, p ⩾ 1 from a real Banach space X to another real Banach space 
Y, and � ∈ ℝ is a parameter. The bifurcation of x with respect to the parameter � can be 
verified theoretically by the Crandall-Rabinowitz theorem [22].

Theorem 1 (Crandall-Rabinowitz theorem, [22]) Let X, Y be real Banach spaces and F(⋅, ⋅) 
be a Cp map of a neighborhood (0,�0) in X ×ℝ into Y. Denote by DxF  and D�xF  the first- 
and second-order Fréchet derivatives, respectively. Assume the following four conditions 
hold: 

 (I) F(0,�) = 0 for all � in a neighborhood of �0,
 (II) Ker DxF(0,�0) is a one-dimensional (1D) space, spanned by x0,
 (III) ImDxF(0,�0) = Y1 has codimension 1,
 (IV) D�xF(0,�0)x0 ∉ Y1.

Then (0,�0) is a bifurcation point of the equation F(x,�) = 0 in the following sense: in a 
neighborhood of (0,�0) , the set of solutions F(x,�) = 0 consists of two Cp−2 smooth curves, 
Γ1 and Γ2 , which intersect only at the point (0,�0) ; Γ1 is the curve (0,�) , and Γ2 can be 
parameterized as 

Although the bifurcation theory can help in some special cases, the in-depth study of 
solution structures often requires numerical methods to derive bifurcation diagrams of 
nonlinear systems. Generally speaking, the nonlinear operator F  is approximated by Fh 
numerically (h refers to the mesh size of numerical discretization). Then the numerical 
solution xh is computed by solving the following discretized nonlinear system:

F(x,�) = 0,

Γ2∶(x(�),�(�)), |�| is small, (x(0),�(0)) = (0,�0), x
�(0) = x0.
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where Fh ∶ ℝn ×ℝ → ℝn and xh is the variable vector that depends on the parameter � , 
i.e., xh = xh(�) . Suppose we have a solution at the starting point, namely, xh(�0) = x0 , vari-
ous homotopy tracking algorithms can be used to compute the solution path [35, 45, 47], 
xh(�) . If �xF

h(xh,�) is nonsingular, the solution path xh(�) is smooth and unique. How-
ever, when �xF

h(xh,�) becomes singular, the solution path hits the singularity and different 
types of bifurcations are formed [44].

More specifically, the homotopy tracking algorithm consists of a predictor step and a 
corrector step to solve the parametric problem. The predictor is to compute the solution at 
�1 = �0 + Δ� by setting

which, at the first order, yields an Euler predictor,

Then we apply the Newton corrector to refine the solution with an initial guess 
x̃h = x0 + Δxh:

and repeat x̃h = x̃h + Δxh until (̃xh,�1) is on the path, namely, Fh (̃xh,�1) = 0.

3  Bifurcation Analysis of Allen‑Cahn Equation

In this and the following sections, we will consider two classical phase field equations: the 
Allen-Cahn equation and the CH equation. As a mathematical convention, we take � = ±1 
in two distinct phases, respectively. This is in contrast to the ACOK equation in Sect. 5, in 
which we rather take � = 0 or 1 in the two phases from physical perspective.

We consider the Allen-Cahn equation

Here � = [−1, 1]d, d = 1, 2, 3 , and 0 < 𝜖 ≪ 1 is a parameter to control the width of the 
interface. � is a phase field labeling function which equals ±1 in two distinct phases. The 
function W(�) =

1

4
(�2 − 1)2 is a double well potential which enforces the phase field func-

tion � to be equal to 1 inside the interface and −1 outside the interface. The Allen-Cahn 
equation (2) can be viewed as the L2 gradient flow dynamics for the Ginzburg-Landau free 
energy functional

In the 1D case, the Ginzburg-Landau free energy reduces to

(1)F
h(xh,�) = �,

F
h(x0 + Δxh,�0 + Δ�) = 0,

�xF
h(x0,�0)Δx

h = −��F
h(x0,�0)Δ�.

�xF
h (̃xh,�1)Δx

h = −Fh (̃xh,�1),

(2)
𝜕𝜙

𝜕t
(�, t) = 𝜖Δ𝜙(�, t) −

1

𝜖
W �(𝜙(�, t)), � ∈ 𝛺, t > 0.

(3)E(�) = ∫�

(
�

2
|∇�|2 + 1

�
W(�)

)
d�.

(4)∫
1

−1

(
�

2
(�x)

2 +
1

4�

(
�2 − 1

)2 )
dx,
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and the associated Euler-Lagrange equation (steady-state Allen-Cahn equation) becomes

3.1  Bifurcation Analysis

It is easy to verify that � ≡ �0 = −1, 0, 1 are three trivial solutions of the steady-state sys-
tem (5). Besides these trivial solutions, we are more interested in non-trivial steady states, 
which can bifurcate from the zero trivial steady state. More specifically, we consider the 
following shifted system from �0:

We can verify that � = 0 is always a solution to the system (6).
Next, we consider the following Banach space:

with the Hölder norm

where l ⩾ 0 is an integer, 0 < 𝛼 < 1 , and

Taking

in the Crandall-Rabinowitz theorem (Theorem 1), and defining an operator F  as

where � is the bifurcation parameter, we know that F(⋅, �) maps X into Y.
Since � = 0 is always a solution to the system (6), F(0, �) = 0 for every � , and condition 

(I) of the Crandall-Rabinowitz theorem (Theorem  1) is satisfied. To verify other condi-
tions, we need to compute the Fréchet derivative of the operator F  , which is given in the 
following lemma.

Lemma 1 The Fréchet derivative D�F(�, �) of the operator F  is given by

(5)

⎧
⎪⎨⎪⎩

− 𝜖𝜙
xx
+

1

𝜖
(𝜙3 − 𝜙) = 0, −1 < x < 1,

𝜙
x
(−1) = 𝜙

x
(1) = 0.

(6)

⎧⎪⎨⎪⎩

− 𝜙xx +
1

𝜖2
[(𝜙 + 𝜙0)

3 − (𝜙 + 𝜙0)] = 0, −1 < x < 1,

𝜙x(−1) = 𝜙x(1) = 0.

(7)Xl+� = {�(x) ∈ Cl+�[−1, 1],�x(−1) = �x(1) = 0}

‖u‖Xl+� = ‖u‖Cl([−1,1]) +max���=l �D
�u�C� ([−1,1]),

|u|C� ([−1,1]) = sup
x≠y∈(−1,1)

|u(x) − u(y)|
|x − y|� .

(8)X = Xl+2+� and Y = Xl+�

(9)F(�, �) = −�xx +
1

�2
[(� + �0)

3 − (� + �0)],
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Proof By taking �, � ∈ X , we have

Therefore,

as ‖�‖X → 0 . Hence, D�F(�, �) is the Fréchet derivative of F  . 

Given (10), we have by taking � = 0 that

For condition (II) of the Crandall-Rabinowitz theorem, we need to analyze the structure 
of Ker

(
D�F(0, �)

)
 which is given by D�F(0, �)[�] = 0 , � ∈ X . By (11), it is equivalent to 

solve the following system:

This system can be solved using an eigenfunction ansatz, i.e.,

where L is to be determined. By taking the derivative, we have

The two boundary conditions, �x(1) = 0 and �x(−1) = 0 , yield that either an = 0 or bn = 0 . 
If an = 0 , then Ln =

π

2
+ (n − 1)π , hence

if bn = 0 , then Ln = nπ , and we have

(10)D�F(�, �)[�] = −�xx +
1

�2
[3(� + �0)

2� − �].

F(� + �, �) − F(�, �) − D�F(�, �)[�]

=
1

�2
[(� + �0 + �)3 − (� + �0 + �) − (� + �0)

3 + (� + �0) − 3(� + �0)
2� + �]

=
1

�2
�2[� + 3(� + �0)].

‖F(� + �, �) − F(�, �) − D�F(�, �)�‖Y
‖�‖X =

‖ 1

�2
�2[� + 3(� + �0)]‖Y

‖�‖X
⩽

1

�2

‖�‖2
X
‖� + 3(� + �0)‖Y

‖�‖X → 0,

(11)D�F(0, �)[�] = −�xx +
1

�2
(3�2

0
� − �).

(12)

⎧⎪⎨⎪⎩

− �xx +
1

�2
(3�2

0
� − �) = 0,

�x(−1) = �x(1) = 0.

(13)�(x) = a0 +

∞∑
n=1

an cos(Lnx) +

∞∑
n=1

bn sin(Lnx),

(14)�x(x) = −

∞∑
n=1

anLn sin(Lnx) +

∞∑
n=1

bnLn cos(Lnx).

(15)�(x) = a0 +

∞∑
n=0

bn sin
((

π

2
+ nπ

)
x
)
;
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Next, we will determine the bifurcations with respect to � by solving (12) with different 
trivial solutions �0.

3.1.1  Bifurcations Around �0 = 0

Theorem 2 For each integer n ⩾ 0 , �(1)
n

=
1

π∕2+nπ
 , (0, �(1)

n
) is a bifurcation point to the sys-

tem (6) such that there is a bifurcation solution (�n(x, s), �n(s)) with

Proof We need to verify the four conditions of the Crandall-Rabinowitz theorem at 
(0, �(1)

n
) . In this case, we use the Fourier expansion of �(x) in (15). When �0 = 0 , it follows 

from (11) that

If � = �(1)
n

=
1

π∕2+nπ
 , the term with sin

(
(
π

2
+ nπ)x

)
 disappears while all the other terms 

remain. Hence, we have

It follows from the above two equations that

and

which indicate that dim
(
KerD�F

(
0, �(1)

n

))
= 1 and codim

(
ImD�F

(
0, �(1)

n

))
= 1 . Finally, 

by differentiating (11) with respect to � , substituting into �0 = 0 , and applying the operator 
on sin

(
(
π

2
+ nπ)x

)
 , we obtain

Therefore, all four conditions of the Crandall-Rabinowitz theorem are satisfied, and the 
proof is completed.

(16)�(x) = a0 +

∞∑
n=1

an cos(nπx) =

∞∑
n=0

an cos(nπx).

𝜖n(s) = 𝜖(1)
n

+ s,𝜙n(x, s) = s sin
((

π

2
+ nπ

)
x
)
+ O(s2), where |s| ≪ 1.

D�F(0, �)[�(x)] = −
a0

�2
+

∞∑
n≠0

bn

[(
π

2
+ nπ

)2

−
1

�2

]
sin

((
π

2
+ nπ

)
x
)
.

D�F
(
0, �(1)

n

)[
bn sin

((
π

2
+ nπ

)
x
)]

= bn

[(
π

2
+ nπ

)2

−
(
�(1)
n

)−2]
sin

((
π

2
+ nπ

)
x
)
= 0,

D�F(0, �
(1)
n
)[�(x)] = −

a0

�2
+

∞∑
k=0
k≠n

bk

[(
π

2
+ kπ

)2

−
(
�(1)
n

)−2]
sin

((
π

2
+ kπ

)
x
)
.

Im D�F
(
0, �(1)

n

)
= span

{
1, sin

(
π

2
x
)
,⋯ , sin

((
π

2
+ (n − 1)

)
x
)
, sin

((
π

2
+ (n + 1)

)
x
)
,⋯

}
,

Ker D�F
(
0, �(1)

n

)
= span

{
sin

((
π

2
+ nπ

)
x
)}

,

D��F
(
0, �(1)

n

)[
sin

((
π

2
+ nπ

)
x
)]

= 2
(
�(1)
n

)−3
sin

((
π

2
+ nπ

)
x
)

∉ ImD�F
(
0, �(1)

n

)
.
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In the similar manner, using the solution expression (16), we obtain the following result.

Theorem 3 For each integer n ⩾ 1 and �(2)
n

=
1

nπ
 , (0, �(2)

n

) is a bifurcation point to the sys-
tem (6) such that there is a bifurcation solution (�n(x, s), �n(s)) with

3.1.2  No Bifurcations Around �0 = ±1

When �0 = ±1 , we derive from (11) that D�F(0, �)[�] = −�xx +
2

�2
� . Letting it be equal to 

0, we have

We multiply both sides with � and integrate them over [−1, 1] . From integration by parts, 
one can obtain

which yields � ≡ 0 in this case. Therefore, there are no bifurcation solutions around the 
constant solutions � ≡ �0 = ±1 . Alternatively, one can also use the Crandall-Rabinowitz 
theorem to show that there are no bifurcation solutions. To this end, we substitute the solu-
tion expression (16) into D�F(0, �)[�] to obtain

The coefficients [(nπ)2 + 2

�2
] are always positive, so it is impossible to make any term of 

cos(nπx) varnish. Therefore, we cannot find any value of � to meet the four conditions 
of the Crandall-Rabinowitz theorem. The same conclusion holds if we use the solution 
expression (15). Hence, it also proves that there are no bifurcation points around the con-
stant solutions � ≡ �0 = ±1.

3.2  Bifurcation Diagram

Guided by Theorems 2 and 3, we consider the bifurcation points along the trivial solution 
branch � = 0 . First, we discretize the Allen-Cahn equation (5) using the finite difference 
method, namely,

where h = 2∕N , N is the number of grid points, and �i is the numerical approximation of 
�(−1 + hi) . Moreover, we introduce two ghost points to ensure the boundary condition, 
namely, �−1 = �1,�N+1 = �N . By setting N = 200 , we compute the bifurcation diagram of 
the 1D Allen-Cahn equation via the homotopy tracking and show the results in Fig. 1 for 

𝜖n(s) = 𝜖(2)
n

+ s,𝜙n(x, s) = s cos(nπx) + O(s2), where |s| ≪ 1.

−�xx +
2

�2
� = 0.

∫
1

−1

(|�x|2 + |�|2)dx = 0,

D�F(0, �)[�(x)] =
2a0

�2
+

∞∑
n=1

an

[
(nπ)2 +

2

�2

]
cos(nπx).

(17)−
�i+1 + �i−1 − 2�i

h2
+

1

�
(�3

i
− �i) = 0, 0 ⩽ i ⩽ N,
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n ⩽ 10 . Note that the bifurcation points of the two eigenfunctions in (15) and (16) alternate 
in the diagram.

For any given � , multiple solutions can be computed from the bifurcation diagram. For 
instance, we have 12 non-trivial solutions for � = 0.1 shown in Fig. 2.

4  CH Equation

Next, we consider the CH equation:

(18)

⎧⎪⎨⎪⎩

��

�t
(�, t) = Δ�(�, t),

�(�, t) = −�Δ�(�, t) +
1

�
W �(�(�, t)),

Fig. 1  The bifurcation diagram of the 1D Allen-Cahn equation v.s. � for n ⩽ 10

Fig. 2  The 12 non-trivial solutions of the 1D Allen-Cahn equation for � = 0.1
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where � is the chemical potential of the system. CH equations arise as a phenomenological 
model for isothermal phase separation and can be viewed as the H−1 gradient flow dynam-
ics of the Ginzburg-Landau free energy (3). The 1D steady state system of the CH equation 
reads

For simplicity, we only consider the case where �(x) ≡ �0 is a constant.
We start with finding trivial steady states � ≡ �0 for the system (19). The trivial steady 

state satisfies

If − 2

3
√
3
< 𝜇0𝜖

2 <
2

3
√
3
 , then (20) admits 3 real solutions. When �0 = 0 , the middle solution 

is �0 = 0 ; in addition, in the case where there are 3 real solutions, the middle solution takes 
an approximation form as

when |𝜇0𝜖
2| ≪ 1.

The bifurcation analysis for the CH equation is similar to that for the Allen-Cahn 
equation in the last section. To begin with, we shift the solution to (19) by letting 
�̃ = � − �0(�0, �) . After dropping the ̃ notation, we obtain the new system as

Similar as in the last section, we set two Banach spaces in the Crandall-Rabinowitz theo-
rem as X = Xl+2+� and Y = Xl+� , where the space Xl+� is defined in (7). In addition, we 
define the following operator:

By Lemma 1, it is easy to compute the Fréchet derivative of F̃(�, �),

Noticing that D�F̃(�, �)[�] takes the same form as D�F(�, �)[�] , the bifurcation analysis is 
along similar lines. Since � = 0 is always a solution to (22), we substitute � = 0 in (24) to 
obtain

(19)

⎧
⎪⎪⎨⎪⎪⎩

�
xx
= 0,

− �
xx
+

1

�2
(�3 − �) = �(x),

�
x
(−1) = �

x
(1) = 0.

(20)�3
0
− �0 = �0�

2.

(21)�0 = �0(�0, �) = 0 − �0�
2 + O(�2

0
�4),

(22)

⎧⎪⎨⎪⎩

− �xx +
1

�2
[(� + �0(�0, �))

3 − (� + �0(�0, �))] = �0,

�x(−1) = �x(1) = 0.

(23)F̃(�, �) = −�xx +
1

�2
[(� + �0(�0, �))

3 − (� + �0(�0, �))] − �0.

(24)D�F̃(�, �)[�] = −�xx +
1

�2
[3(� + �0(�0, �))

2� − �].
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If �(x) takes the form of (15), we have

The term of sin
(
(
π

2
+ nπ)x

)
 becomes zero if and only if

hence we require 3𝜙0(𝜇0, 𝜖)
2 − 1 < 0 . Combining with (20), we know that when 

−
2

3
√
3
< 𝜇0𝜖

2 <
2

3
√
3
 , the middle solution satisfies the condition 3𝜙0(𝜇0, 𝜖)

2 − 1 < 0 . There-
fore, all the non-trivial solutions bifurcate from the middle solution when 
−

2

3
√
3
< 𝜇0𝜖

2 <
2

3
√
3
 , and in the following analysis, we use �0(�0, �) to exclusively repre-

sent the middle solution.
To further locate the bifurcation points, we need to solve � from (26), and it is equivalent to 

solve Hn(�0, �) = 0 , where

For an integer n ⩾ 0 , we denote the solution by � = �n . First, we consider the case when 
�0 = 0 , in which the middle solution �0(0, �) = 0 . Substituting it into (27), we derive the 
solution to Hn(0, �) = 0 is

When �0 ≠ 0 and |𝜇0| ≪ 1 , we have the approximation of �0(�0, �) in (21). It yields from 
combining (21) and (27) that

Differentiating with respect to �2
0
 , we get

when � ≠ 0 . Therefore, it follows from the implicit function theorem that, for each nonzero 
�0 with |𝜇0| ≪ 1 , there exists a unique solution to Hn(�0, �) = 0 ; more specifically, the 
solution is �n = �0

n
+ O(�2

0
) , which is close to �0

n
.

Similar to the proof of Theorem  2, we can apply the Crandall-Rabinowitz theorem to 
derive the following theorems for the system (19):

(25)D�F̃(0, �)[�] = −�xx +
1

�2
[3�0(�0, �)

2� − �].

D�F̃(0, �)[�] =
3�0(�0, �)

2 − 1

�2
a0

+

∞∑
n=0

bn

[(
π

2
+ nπ

)2

+
3�0(�0, �)

2 − 1

�2

]
sin

((
π

2
+ nπ

)
x
)
.

(26)
(
π

2
+ nπ

)2

+
3�0(�0, �)

2 − 1

�2
= 0,

(27)Hn(�0, �) =
(
π

2
+ nπ

)2

−
1

�2
+

3�0(�0, �)
2

�2
.

� = �0
n
=

1

π∕2 + nπ
.

(28)Hn(�0, �) =
(
π

2
+ nπ

)2

−
1

�2
+ 3�2

0
�2 + O(�3

0
�4).

�Hn

�(�2
0
)
(0, �) = 3�2 ≠ 0,
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Theorem 4 For a fixed �0 with |𝜇0| ≪ 1 , and each integer n ⩾ 0 , let �(1)
n

=
1

π∕2+nπ
+ O(�2

0
) . 

Then 
(
�0(�0, �

(1)
n
), �(1)

n

)
 is a bifurcation point to the system (19), where �0(�0, �

(1)
n
) denotes 

the middle solution of the equation (20). In addition, the bifurcation solution (�n(x, s), �n(s)) 
can be represented by

Theorem  5 For a fixed �0 with |𝜇0| ≪ 1 , and each integer n ⩾ 1 , let �(2)
n

=
1

nπ
+ O

(
�2
0

)
 . 

Then 
(
�0(�0, �

(2)
n
), �(2)

n

)
 is a bifurcation point to the system (19), where �0(�0, �

(2)
n
) denotes 

the middle solution of the equation (20). In addition, the bifurcation solution (�n(x, s), �n(s)) 
can be represented by

5  Binary System with Long‑Range Interaction

In this section, we will apply the bifurcation analysis to some block copolymer system. 
Performing the bifurcation analysis on such a system is challenging due to the nonlocal 
feature introduced by the long-range interaction terms. We will begin with a brief intro-
duction on the background of block copolymer systems.

Block copolymers are chain molecules made by several different segment species. 
It is called diblock copolymer system when it contains two species, say A and B; it is 
called the triblock copolymer system when it is made by three species, say A, B, and C. 
Generally we can have a block copolymer system with N species. Due to the chemical 
incompatibility, different species tend to be phase-separated. However, different species 
are connected by covalent chemical bonds, leading to the microphase separation.

Block copolymers provide simple and easily controlled materials for the study of 
self-assembly. The mean field theory, which is associated with a free energy function, 
has proven practically useful in understanding and predicting pattern morphology [3, 
19]. Ohta and Kawasaki proposed a model in [56], which now we refer to the Ohta-
Kawasaki (OK) model, to study the phase separation of diblock copolymers. Several 
years later, Nakazawa and Ohta further proposed the Nakazawa-Ohta (NO) model [55] 
to explore the pattern formation of the triblock copolymer system. In general, a mean 
field model of a block copolymer system with N + 1 species {Ai}

N+1
i=1

 with long-range 
interactions can be formulated as [18]

𝜖n(s) = 𝜖(1)
n

+ s,𝜙n(x, s) = 𝜙0(𝜇0, 𝜖
(1)
n
) + s sin

((
π

2
+ nπ

)
x
)
+ O(s2), where |s| ≪ 1.

𝜖n(s) = 𝜖(2)
n

+ s,𝜙n(x, s) = 𝜙0(𝜇0, 𝜖
(2)
n
) + s cos(nπx) + O(s2), where |s| ≪ 1.

(29)

E
N[�1,⋯ ,�

N
]

=∫�

{
�

2

N∑
i,j=1

i⩽j

∇�
i
⋅ ∇�

j
+

1

2�

[
N∑
i=1

W(�
i
) +W

(
1 −

N∑
i=1

�
i

)]}
dx

+

N∑
i,j=1

�
ij

2 ∫�

[
(−Δ)−

1

2

(
�
i
− �

i

)
(−Δ)−

1

2

(
�
j
− �

j

)]
dx.
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Here 0 < 𝜖 ≪ 1 is an interface parameter, 𝛺 = [−1, 1]d ⊂ ℝd, d = 1, 2, 3 , is the spatial 
domain. The function

is a double-well potential with two local minima at 0 and 1. Taking the sum of W(⋅) for all 
species, we introduce a potential function WN:

which has N local minima at (1, 0,⋯ , 0), (0, 1, 0,⋯ , 0),⋯ , (0,⋯ , 0, 1) . The first integral 
in (29) accounts for the interfacial free energy between different species which is oscilla-
tion-inhibiting, therefore it favors large domains with minimal common area between spe-
cies. The parameter �ij , assuming to be symmetric �ij = �ji , represents the strength of the 
long-range repulsive interaction between the i- and j-th species. The parameter �i , defined 
as

represents the volume constraint for each species �i . The second term in (29) is oscillation-
forcing and therefore favors micro-domains of a smaller size.

Note that when taking N = 1 (respectively, N = 2 ), the system (29) reduces to the 
binary OK system (respectively, the ternary NO system). In this work, we will focus on 
the OK system, the binary system with a long-range interaction induced by (−Δ)−1:

with a volume constraint

Here � measures the strength of the long-range repulsive force between bubbles. Figure 3 
shows the schematic of the �-effect on the pattern of bubble assembly. The larger the value 
of � is, the more bubbles are formed at equilibrium.

To handle the volume constraint (33), we introduce a penalty term to change (32) 
into an unconstrained free energy function:

(30)W(�) = 18(�2 − �)2

(31)WN(�1,⋯ ,�N) =
1

2

[
N∑
i=1

W(�i) +W

(
1 −

N∑
i=1

�i

)]
,

�i =
1

|�| ∫�

�i dx, i = 1,⋯ ,N

(32)EOK[�] = ∫�

[
�

2
|∇�|2 + 1

�
W(�)

]
dx +

�

2 ∫�

|||(−Δ)
−

1

2 (� − �)
|||
2

dx

(33)∫�

� dx = �|�|.

Fig. 3  The schematic of �-effect 
on solution patterns. Given a 
fixed relative volume � , the 
larger the long-range repulsive 
strength � is, the more bub-
bles the OK system displays at 
equilibrium
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with M ≫ 1 being the penalty constant for the volume constraint. Since we are interested 
in the pattern formation at equilibrium for the OK system, the L2 gradient flow dynamics 
for (34) is considered, leading us to the ACOK (pACOK) equation for the time evolution 
of �(x, t):

with a given initial condition �(x, t = 0) = �0(x) , and no flux boundary condition on �� . 
The pACOK dynamics (44) satisfies the energy dissipative law

There has been extensive work in the past decades to study the OK model from both theo-
retical and numerical perspectives. In [57, 58], the characterization of 1D global minimiz-
ers for the OK system is established, and similar analysis is also applied to the system 
with (I − �2Δ)−1 type long-range interaction. Choski [20] conducted asymptotic analysis 
for the global minimizers of the OK model. Some variants of the OK model are recently 
developed. For instance, Chan et al. [13] replaced the standard diffusion in the OK model 
by a fractional diffusion, and the Γ-convergence and the existence of the global minimizers 
were proved. Recently there are also some work on the L2 and H−1 gradient flow dynam-
ics for the OK model. Joo et al. [48] studied the global well-posedness of the L2 gradient 
flow dynamics for both OK and NO systems using the De Giorgi’s minimizing movement 
scheme in which the volume constraints are handled via either the Lagrange multiplier 
or the penalty method. In [70], the authors provided numerical evidences that pACOK 
dynamics displays hexagonal bubble assembly. More importantly, as the first time, they 
numerically found that the NO model forms a hexagonal double-bubble pattern at equi-
librium when solving the penalized L2 gradient flow for the NO model. Recently efforts 
have been made to design numerical schemes for the L2 gradient flow dynamics of OK 
model, such as first order operator-splitting energy stable methods [72] and maximum prin-
ciple preserving methods [73]. Furthermore, in [18], higher-order energy stable schemes 
were designed to simulate the penalized L2 gradient flow for OK/NO models. Additionally, 
H−1 gradient flow dynamics has also been considered recently. For instance, [5] studied an 
implicit midpoint spectral approximation for the equilibrium of OK model. [17] adopted 
the IEQ method to study the diblock copolymer model. Plus, theoretical studies of NO 
model is also attracting much attention in the past years. Ren and Wei studied a family 
of local minimizers with lamellar structure for the NO system in [59], then they investi-
gated the double bubble patterns of the triblock copolymer system in [60, 61]. However, 
the characterization of the (global) minimizers of the NO system is still unclear. The global 
minimizers were only found in the 1D case for a degenerate case in [31] in which the long-
range interaction parameters [�ij] were of some special form. A first attempt towards a 

(34)

EpOK[�] =∫�

[
�

2
|∇�|2 + 1

�
W(�)

]
dx +

�

2 ∫�

|||(−Δ)
−

1

2 (� − �)
|||
2

dx

+
M

2

(
∫�

� dx − �|�|
)2

(35)

��

�t
= −

�EpOK[�]

��
=�Δ� −

1

�
W �(�) − �(−Δ)−1(� − �)

−M

(
∫�

� dx − �|�|
)

d

dt
EpOK[�] = −‖�t‖2L2 ⩽ 0.
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systematic characterization of the global minimizers in non-degenerate case was conducted 
recently in [74].

5.1  Steady‑State System and Bifurcation Analysis

To perform the bifurcation analysis to the pACOK system (35), some modification is needed. 
More specifically, we will add a term (−Δ)−1(𝜙 − �̄�) in the equation in replace of the terms 
involving the prefactor � . Then we consider the following steady-state system of (35):

To solve this system, we introduce u as

and impose the same Nenumann boundary condition for u. Therefore, the system for u is

We can solve u from (38) using the fundamental solution G(x, y) of Δu = 0 . To this end, 
we apply Green’s second identity

In 1D, G(x, y) = 1

2
|x − y| . In addition, if we take � = [−1, 1] , then �� = {−1, 1} , and

Substituting this result back into (39), we have

The solution u to the system (38) is unique up to a constant addition. We assume u is of 
zero mean, ∫

�
u(x) dx = 0 . Then

(36)

⎧⎪⎨⎪⎩

�Δ� −
1

�
W �(�) − �(−Δ)−1

�
� −

1

��� ∫�

� dx

�
= 0 in �,

��

�n
= 0 on ��.

(37)u = (−Δ)−1
(
� −

1

|�| ∫�

� dx

)
,

(38)

⎧⎪⎨⎪⎩

Δu =
1

��� ��

� dx − � ≜ f (x) in �,

�u

�n
= 0 on ��.

(39)

u(x) = ∫�

G(x, y)f (y) dy + ∫��

[
u(y)

�G(x, y)

�ny
− G(x, y)

�u(y)

�ny

]
dSy

= ∫�

G(x, y)f (y) dy + ∫��

u(y)
�G(x, y)

�ny
dSy.

�G(x, y)

�ny

||||y=1 =
�(

1

2
(y − x))

�y
⋅ 1 =

1

2
,
�G(x, y)

�ny

||||y=−1 =
�(

1

2
(x − y))

�y
⋅ (−1) =

1

2
.

(40)u(x) = ∫�

G(x, y)f (y) dy +
1

2 ∫��

u(y) dSy.

(41)∫��

u(y) dSy = −
2

|�| ∫� ∫�

G(x, y)f (y) dy dx.
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Together with (39) and (40), the solution u to the system (38) with zero mean is

where H(x) = ∫
�
G(x, y) dy −

2

|�| ∫� ∫
�
G(x, y) dy dx.

Substituting (37) and (42) into the system (36), it yields an equivalent system:

We will analyze the bifurcation solutions based on the above system.
We first consider the trivial steady-state solutions. If � ≡ C , where C is a constant, 

then f (x) = 0 in (38), and hence u(x) = 0 . Therefore, the trivial steady-state solutions to 
(43) (or equivalently (36)) are

Similar as in (6), we first need to shift the solution by −�0 ( �0 = 0, 1,
1

2
 ) to apply the Cran-

dall-Rabinowitz theorem (Theorem 1) on any trivial steady states. As a result, we obtain 
the following system:

Notice that in deriving the above system, we made use of the fact that u(x) = 0 if � = �0 is 
a constant, hence,

After being shifted, � = 0 is always a solution to the system (45) when �0 = 0, 1, or 1
2
.

(42)

u(x) = ∫�

G(x, y)f (y) dy −
2

|�| ∫� ∫�

G(x, y)f (y) dy dx

= ∫�

G(x, y)
(

1

|�| ∫�

� dx − �(y)
)
dy −

2

|�| ∫� ∫�

G(x, y)
(
∫�

� dx − �(y)
)
dy dx

=
(

1

|�| ∫�

� dx
)
H(x) + ∫�

G(x, y)�(y) dy −
2

|�| ∫� ∫�

G(x, y)�(y) dy dx,

(43)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�Δ� −
1

�
W �(�) − �

�
1

��� ∫�

� dx
�
H(x) + � ∫�

G(x, y)�(y) dy

−
2�

��� ∫� ∫�

G(x, y)�(y) dy dx = 0 in �,

��

�n
= 0 on ��.

(44)W �(�0) =0 ⇒ �0 = 1,�0 =
1

2
, and �0 = 0.

(45)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�Δ� −
1

�
W �(� + �0) − �

�
1

��� ∫�

� dx
�
H(x) + � ∫�

G(x, y)�(y) dy

−
2�

��� ∫� ∫�

G(x, y)�(y) dy dx = 0 in �,

��

�n
= 0 on ��.

(46)
(

1

|�| ∫�

�0 dx
)
H(x) + ∫�

G(x, y)�0 dy −
2

|�| ∫� ∫�

G(x, y)�0 dy dx = 0.
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Next, we shall use the Crandall-Rabinowitz theorem to find bifurcation points on the 
solution branches of constant steady-state solutions. To this end, we define the follow-
ing operator:

In this case, � is viewed as the bifurcation parameter. Since G involves at most second-order 
derivatives of � , G(⋅, �) maps X into Y, where the spaces X and Y are defined in (8). As in 
Lemma 1, we need to compute the Fréchet derivative of G.

Lemma 2 The Fréchet derivative D�G(�, �) of the operator G is given by

Proof Let �, � ∈ X . Since the operator G1 which is defined as 

is a linear operator with respect to � , we have G1(� + �, �) = G1(�, �) + G1(�, �) . It follows 
from the mean value theorem that

where � ∈ (� + �0,� + � + �0) . Combining with (48), we have

Therefore, we find that

as ‖�‖X → 0 , which leads to the Fréchet derivative in (48).

Based on Lemma 2 and (48), we have

(47)
G(�, �) = �Δ� −

1

�
W �(� + �0) −

�H(x)

|�| ∫�

� dx + � ∫�

G(x, y)�(y) dy

−
2�

|�| ∫� ∫�

G(x, y)�(y) dy dx.

(48)
D�G(�, �)[�] = �Δ� −

1

�
W ��(� + �0)� −

�H(x)

|�| ∫�

� dx + � ∫�

G(x, y)�(y) dy

−
2�

|�| ∫� ∫�

G(x, y)�(y) dy dx.

G1(�, �) ≜ �Δ� −
�H(x)

|�| ��

� dx + � ��

G(x, y)�(y) dy −
2�

|�| �� ��

G(x, y)�(y) dy dx

G(� + �, �) − G(�, �) =
[
G1(� + �, �) −

1

�
W �(� + � + �0)

]
−
[
G1(�, �) −

1

�
W �(� + �0)

]

= G1(�, �) −
1

�

[
W �(� + � + �0) −W �(� + �0)

]

= G1(�, �) −
1

�

[
W ��(� + �0)� +W ���(�)�2

]
,

G(� + �, �) − G(�, �) − D�G(�, �)[�] = −
1

�
W ���(�)�2.

‖G(� + �, �) − G(�, �) − D�G(�, �)[�]‖Y
‖�‖X =

1

�

‖W ���(�)�2‖Y
‖�‖X ⩽

C

�

‖�‖2
X

‖�‖X → 0,
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where W ��(�0) = 36(6�2
0
− 6�0 + 1) . In what follows, we shall consider the bifurcations 

according to different values of �0.

5.1.1  Bifurcations Around �0 =
1

2

When �0 =
1

2
 , W ��(�0) = −18 , it follows that

Recall that � = [−1, 1] . Hence, if � ∈ X is in the kernel of D�G(0, �) , it is equivalent to

Like in the previous analysis, we once again use the ansatz (13) to derive two solution 
expressions, (15) and (16). Substituting each term of (15) into (50) leads to

where we use (46) to cancel the last three terms; in addition, recalling that G(x, y) = 1

2
|x − y| 

in 1D, we have

where

(49)
D�G(0, �)[�] = �Δ� −

1

�
W ��(�0)� −

�H(x)

|�| ∫�

� dx + � ∫�

G(x, y)�(y) dy

−
2�

|�| ∫� ∫�

G(x, y)�(y) dy dx,

(50)
D�G(0, �)[�] = �Δ� +

18

�
� −

�H(x)

|�| ∫�

� dx + � ∫�

G(x, y)�(y) dy

−
2�

|�| ∫� ∫�

G(x, y)�(y) dy dx.

⎧⎪⎨⎪⎩

��xx +
18

�
� −

�H(x)

2 ∫
1

−1

�(x) dx + � ∫
1

−1

G(x, y)�(y) dy − � ∫
1

−1 ∫
1

−1

G(x, y)�(y) dy dx = 0,

�x(−1) = �x(1) = 0.

(51)D�G(0, �)[a0] =
18

�
a0,

D�G(0, �)
[
bn sin

((
π

2
+ nπ

)
x
)]

=

[
−�

(
π

2
+ nπ

)2

+
18

�

]
bn sin

((
π

2
+ nπ

)
x
)
−

�H(x)bn

2 ∫
1

−1

sin
((

π

2
+ nπ

)
x
)
dx

+ �bn ∫
1

−1

1

2
|x − y| sin

((
π

2
+ nπ

)
y
)
dy − �bn ∫

1

−1 ∫
1

−1

1

2
|x − y| sin

((
π

2
+ nπ

)
y
)
dy dx,

∫
1

−1

|x − y| sin
((

π

2
+ nπ

)
y
)
dy

= ∫
x

−1

(x − y) sin
((

π

2
+ nπ

)
y
)
dy + ∫

1

x

(y − x) sin
((

π

2
+ nπ

)
y
)
dy

= −
2

(
π

2
+ nπ)2

sin
((

π

2
+ nπ

)
x
)
+

2 cos
( π

2
+ nπ

)
π

2
+ nπ

x

= −
2

(
π

2
+ nπ)2

sin
((

π

2
+ nπ

)
x
)
+ 0 = −

2

(
π

2
+ nπ)2

sin
((

π

2
+ nπ

)
x
)
.
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The last equality holds since n is an integer, then cos
(

π

2
+ nπ

)
= 0 . Integrating one more 

time leads to

Hence,

Combining the above equation with (51), we obtain

If −�( π
2
+ nπ)2 +

18

�
−

�

(
π

2
+nπ)2

= 0 , which is equivalent to � = −�(
π

2
+ nπ)4 +

18

�
(
π

2
+ nπ)2 , 

then the term of sin
(
(
π

2
+ nπ)x

)
 disappears while all the other terms remain. Therefore, we 

have the following bifurcation theorem for the system (45):

Theorem 6 For each integer n ⩾ 0 , � (1)
n

= −�(
π

2
+ nπ)4 +

18

�
(
π

2
+ nπ)2 , 

(
0, � (1)

n

)
 is a bifurca-

tion point to the system (45) such that there is a bifurcation solution (�n(x, s), �n(s)) with

Proof We need to verify the four conditions in the Crandall-Rabinowitz theorem at the 
point (0, � (1)

n
) . To begin with, the first condition is naturally satisfied, since � = 0 is always 

a solution to (45). When � = � (1)
n

= −�(
π

2
+ nπ)4 +

18

�
(
π

2
+ nπ)2 , it follows from (53) that

and

which imply that dim(KerD�G(0, �
(1)
n
)) = 1 and codim(ImD�G(0, �

(1)
n
)) = 1 . Hence, the 

codimensional space and the non-tangential space meet the requirements of the Crandall-
Rabinowitz theorem. To complete the proof, it remains to show the last condition. Differ-
entiating (49) with respect to � and applying on sin

(
(
π

2
+ nπ)x

)
 , we have

∫
1

−1 ∫
1

−1

|x − y| sin
((

π

2
+ nπ

)
y
)
dy dx = −

2

(
π

2
+ nπ)2 ∫

1

−1

sin
((

π

2
+ nπ

)
x
)
dx = 0.

(52)
D�G(0, �)

[
bn sin

((
π

2
+ nπ

)
x
)]

=
[
− �

(
π

2
+ nπ

)2

+
18

�
−

�

(
π

2
+ nπ)2

]
bn

⋅ sin
((

π

2
+ nπ

)
x
)
.

(53)
D�G(0, �)[�] =

18a0

�
+

∞∑
n=0

[
− �

(
π

2
+ nπ

)2

+
18

�
−

�

(
π

2
+ nπ)2

]
bn

⋅ sin
((

π

2
+ nπ

)
x
)
.

𝛾n(0) = 𝛾 (1)
n
,𝜙n(x, s) = s sin

((
π

2
+ nπ

)
x
)
+ o(s), where|s| ≪ 1.

ImD�G(0, �
(1)
n
) =span

{
1, sin

(
π

2
x
)
, sin

(
3π

2
x
)
,⋯ ,

sin
((

π

2
+ (n − 1)

)
x
)
, sin

((
π

2
+ (n + 1)

)
x
)
,⋯

}
,

KerD�G(0, �
(1)
n
) = span

{
sin

((
π

2
+ nπ

)
x
)}

,
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All conditions of the Crandall-Rabinowitz theorem are satisfied, hence the results in Theo-
rem 6 are direct consequences of Theorem 1. 

Since the solutions to the original model (44) are shifted, we have the following bifurca-
tion theorem for the original model:

Theorem 7 For each integer n ⩾ 0 , � (1)
n

= −�(
π

2
+ nπ)4 +

18

�
(
π

2
+ nπ)2 , 

(
1

2
, � (1)

n

)
 is a bifur-

cation point to the system (44) such that there is a bifurcation solution (�n(x, s), �n(s)) with

Similarly, considering the solution (16), we have

then we obtain the bifurcation theorem for cosine modes:

Theorem  8 For each integer n ⩾ 1 , � (2)
n

= −�(nπ)4 +
18

�
(nπ)2 , 

(
1

2
, � (2)

n

)
 is a bifurcation 

point to the system (44) such that there is a bifurcation solution (�n(x, s), �n(s)) with

5.1.2  No Bifurcations Around �0 = 0, 1

When �0 = 0 or 1, we have W ��(�0) = 36 , and (49) becomes

Substituting solution (15), it follows that

(54)
D��G(0, �

(1)
n
)
[
sin

((
π

2
+ nπ

)
x
)]

= −
1

(
π

2
+ nπ)2

⋅ sin
((

π

2
+ nπ

)
x
)
∉ ImD�G(0, �

(1)
n
).

𝛾n(0) = 𝛾 (1)
n
,𝜙n(x, s) =

1

2
+ s sin

((
π

2
+ nπ

)
x
)
+ o(s), where |s| ≪ 1.

(55)

D�G(0, �)[�] = D�G(0, �)

[
∞∑
n=0

an cos(nπx)

]

=
18a0

�
+

∞∑
n=1

[
− �(nπ)2 +

18

�
−

�

(nπ)2

]
an cos(nπx),

𝛾n(0) = 𝛾 (2)
n
,𝜙n(x, s) =

1

2
+ s cos(nπx) + o(s), where |s| ≪ 1.

D�G(0, �)[�] = �Δ� −
36

�
� −

�H(x)

|�| ∫�

� dx + � ∫�

G(x, y)�(y) dy

−
2�

|�| ∫� ∫�

G(x, y)�(y) dy dx.

D�G(0, �)[�] = −
36a0

�
+

∞∑
n=0

[
− �

(
π

2
+ nπ

)2

−
36

�
−

�

(
π

2
+ nπ)2

]
bn sin

((
π

2
+ nπ

)
x
)
.
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Notice that the coefficient for each sin
(
(
π

2
+ nπ)x

)
 term, 

[
− �(

π

2
+ nπ)2 −

36

�
−

�

(
π

2
+nπ)2

]
 , is 

always negative when 𝜖, 𝛾 > 0 , hence sin
(
(
π

2
+ nπ)x

)
 cannot be varnished. Similarly, if we 

use the solution expression (16), the coefficient for each cos(nπx) term is also negative. 
Hence KerD�G(0, �) = ∅ for any 𝛾 > 0 , which does not meet the second condition of the 
Crandall-Rabinowitz theorem. Therefore, there are no bifurcation solutions around � = 0 
or � = 1.

5.2  Bifurcation Diagram

First, we compute the bifurcation points of � for different � in Fig. 4. It shows that more 
bifurcation points when � is smaller. Next, we compute the bifurcation diagram of (36) 
in Fig. 5 with respect to � for � = 0.3 . It shows more complex structure than the Allen-
Cahn equation. For any given � , we can also compute the multiple solutions based on 

Fig. 4  The bifurcation points �
n
 for different modes n with � = 0.3 (left) and � = 0.1 (right). The red curve is 

corresponding to sin perturbation while the blue curve is for cos perturbation

Fig. 5  The solution structure of the ACOK model with respect to � with � = 0.3 . Here y-axis labels �(−1) . 
� = 0.1
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the bifurcation diagram. For instance, when � = 1 000 and � = 0.3 , we have 12 solutions 
shown in Fig. 6.

6  Discussion and Conclusion

We develop an analytical framework based on the bifurcation analysis to explore the solu-
tion structure of phase field equations. It is applied to three well-known phase field equa-
tions, the Allen-Cahn equation, the CH equation, and the ACOK system. Our results show 
that all the solutions bifurcate from the unstable trivial solution branch. Theoretical bifur-
cation analysis and numerical computation are presented to systematically validate the 
solution structures.

Note that the bifurcation analysis near �0 = 0 leads to the solution structures for non-
trivial equilibrium solutions. This analytical approach can be applied to other complex sys-
tems as long as they have a trivial solution or an analytical non-trivial solution. This has 
been successfully demonstrated in analyzing complex free boundary problems in tumor 
growth [29, 30, 39, 76] and plaque formation [46, 77], but there are some limitations for 
current analytical approach. For example, it cannot be applied directly to cell migration 
on micro-patterns [12] in which cell is represented by a phase field function and winds up 
with a (time-dependent) periodic circular motion.

Besides, bifurcation analysis could have other impacts except providing the solution 
structure. For instance, we can use bifurcation results to obtain the stability condition of 
various numerical schemes. Consider the implicit scheme of the Allen-Cahn equation as an 
example:

Let �n+1 = �n + � . Then the linearized system reads

(56)�n+1 − �n

Δt
− Δ�n+1 +

1

�
((�n+1)3 − �n+1) = 0, 0 ⩽ i ⩽ N.

Fig. 6  Multiple non-trivial solutions of the ACOK model with � = 1 000 and � = 0.3 . There are 12 solu-
tions, each panel consists two symmetric solutions with respect to y = 1

2
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If we choose �n = 0 , then (57) becomes

which admits bifurcations, based on our results, when 1
Δt

−
1

𝜖2
< 0 , i.e., Δt > 𝜖2 . Therefore, 

to ensure the uniqueness of �n+1 , the stability condition of the implicit scheme is Δt < 𝜖2 . 
We will perform systematic study on the stability conditions for various numerical schemes 
in the future.

The bifurcation analysis we propose in this work can be naturally extended to the 2D 
case, in which the solutions are still branched out of the unstable constant solution � = 0 . 
Only it has more complicated formulations and more time-consuming numerical computa-
tion than the 1D case. When applying to the 2D case, an interesting and more complicated 
example of phase field models is the one with dynamic boundary conditions such as the 
GMS model [33] and the LW model [51, 53]. For these models, the phase field function 
� still satisfies the usual dynamics over the bulk domain � such as CH dynamics, coupled 
with standard boundary conditions such as the Neumann boundary condition. However, 
�|�� undergoes another phase field dynamics such as the Allen-Cahn, or CH, or ACOK 
type. Our bifurcation framework is applicable to this type of model as � = 0 is still the 
solution branch containing bifurcation branches to other solutions. To this end, we need 
to design stable and efficient numerical discretization schemes for the phase field models 
with dynamic boundary conditions, though [51] has introduced some structure-preserv-
ing numerical schemes for solving the GMS model and the LW model. We will leave the 
bifurcation analysis together with stable and efficient solvers for phase field models with 
dynamic boundary conditions for the future consideration.

Current work for the pACOK system is limited to the case in which phases or species A 
and B are of equal fraction. Some solution structures for a more general case of 𝜔 ≪ 1 can 
be explored based on the bifurcation from the nontrivial solution branch for the case equal 
fractions. What is more, this framework can be applied to analyze the solutions structures 
of other phase field equations, e.g., the nonlocal Allen-Cahn equation, the ACOK equation 
with a general nonlocal long-range interaction, and minimal phase field models for cell 
migration.
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