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PHASE FIELD MODEL OF CELL MOTILITY

The equations for the phase-field cross section model are:

∂φ(r, t)

∂t
= −u · ∇φ(r, t) + Γ(ε∇2φ−G′/ε+ cε|∇φ|) (S1)

∇ · [νφ(∇u +∇uT )] + F sub + Fmem + F area +∇ · σa = 0. (S2)

Here, φ describes the field of the cell. The double-well potential is defined as G = 18φ2(1− φ)2 and the curvature is
computed as c = −∇ · (∇φ/|∇φ|) while Γ is a relaxation coefficient. The force terms are explicitly explained below.

The substrate force contains the cell-substrate adhesion and friction: F sub = F adh + F fric, where

F fric = −ξsχu− ξdu, F adh =
δH(φ, χ)

δφ
∇φ.

Here, u is the velocity field of the actin fluid and ξs, ξd are the cell-substrate friction coefficient and damping coefficient,
respectively. χ is the field describing the substrate, and H(φ, χ) is the interaction potential between the cell and
substrate. The The cell moves either on top of a plain substrate or between a top and bottom substrate. The location
of these substrates is given by a field χ(y) with a boundary width of δ (Fig. S1). Here, χ = 1 indicates the substrate
into which the cell cannot penetrate, and χ = 0 indicates the region accessible to the cell. In our simulations, the
substrate is parallel to the x direction and, for the case of a single substrate located at y = yB , χ is written as

χ(y) =
1

2
− 1

2
tanh{3(y − yB)/δ},

For a chamber with a parallel top substrate located at y = yT this becomes

χ(y) =
1

2
+

1

2
tanh{3[|y − (yT + yB)/2| − (yT − yB)/2]/δ}.

Given φ and χ, the interaction potential is:

H(φ, χ) =

∫
dr2φ2(φ− 2)2W (χ),

where W (χ) contains an attractive term, corresponding to adhesion, and a repulsive term, corresponding to the
non-penetrability of the substrate. For the bottom substrate, we use

W (χ) = −2A
G(χ)

δ
+
g

2
χ(y + ε), (S3)

while the potential for the top substrate has an identical form with ε replaced by −ε. Here, A is the adhesion energy
per unit length, g is a parameter that measures the penalty of overlap between cell and substrate [1], and G is a
double-well potential G(χ) = 18χ2(1− χ)2. The energy function

H(φ, χ) =

∫
φ2(φ− 2)2W (χ)d2r

corresponds, in the sharp interface limit, to an adhesive energy equal to −Al where l is the length of the cell in contact
with the substrate. Note that the inclusion of the φ2(φ−2)2 results in a force that only vanishes outside the membrane
[2]. In our simulations we take δ = ε/2. For this choice of δ we simulated cells without any propulsive force. The
resulting static shapes can be directly compared to standard energy minimization simulations. Fig. S3 shows that
the phase field shapes agree well with shapes obtained using Surface Evolver, a simulation tool that evolves surfaces
toward minimal energy by a gradient descent method [3].

The contribution from both the tension and bending of the membrane is captured by Fmem. In our simulation we
ignore the bending term since it contributes little to the shape of cell. The tension energy is given by [4, 5]:

Hten =

∫
γ

2
[ε|∇φ|2 +

G(φ)

ε
]d2r,
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resulting in Fmem = δHten

δφ ∇φ. Area conservation is introduced via F area = Ma(
∫
φdr2 − A0)∇φ with A0 the

prescribed area size, and Ma a parameter which controls the strength of the area constraint [4].
The active stress term in our model, σa = −ηaG(ψ)φρaε|∇φ|2n̂n̂, is similar to our earlier work [6] but only acts

near the substrate. This is accomplished through the addition of the term G(ψ) = 18ψ2(1 − ψ)2, where ψ, for the
bottom substrate, takes on the form

ψB(y) =
1

2
+

1

2
tanh{3[yB + (ε+ λ/2)− y]/λ}.

A similar expression is used for the top substrate. The inclusion of G(ψ) results in active stresses confined to a band
with width λ and located a distance ε away from the substrate (Fig. S1). Note that vertical height of the active stress
is controlled by λ and that

∫
G(ψ)dy = λ/2.

Three examples of the velocity fields obtained numerically are shown in Fig. S4, corresponding to the cell motion
on single substrate, confined in channels and confined in channels with asymmetric adhesion (Fig. 2 and Fig. 3 in
main text). The retrograde flow patterns are similar to previous studies in[6].

NUMERICAL METHODS

The equation for φ is stepped by uniform time step ∆t = 2 × 10−3s in a forward Euler scheme so that φ at time
step n+ 1 is obtained from φ at time step n:

φ(n+1) = φ(n) −∆tu + ∆tΓ[ε∇2φ(n) −G′(φ(n)) + εc(n)|∇φ(n)|],

Here, c(n) = −∇ · (∇φ(n)/|∇φ(n)|) is computed using a finite difference method and all other differentiation operators
are computed using a fast Fourier spectral method. Simulations were carried out on a 256× 256 grid of size 50µm×
50µm. Model parameters, modified from [5, 6], are listed in Table S1.

The velocity field u is updated every time step by a semi-implicit Fourier spectral method after updating φ as
detailed in [5]. The equation is iterated as:

ξ0uk+1 − νφ̃∇2uk+1 = ∇ · [νφ∇uk + ν(φ− φ̃)∇uTk ]− ξsχuk + F ,

where φ̃ = 2, and F represents the terms in the Stokes equation that are independent of the iteration step k. The
iteration will continue until

max |uk+1 − uk|
max |uk|

< 0.1,

or until a maximal number of iterations (here chosen to be 20) is reached.

ANALYTICAL RESULTS

As stated in the main text, we aim to analytically solve Eq. S1&S2, where several simplifications have to be made.
First, we are trying to find the steady-state solutions, so the cell shape will not change with time. Thus we drop Eq.
S1 and, instead, put boundary conditions for Eq. S2. In accordance with our simulations, we choose slip boundary
conditions, similar to[7]. The boundary condition for the steady-state cell shape is

u · n̂ = ~vc · n̂,

where ~vc is the cell’s mass of center velocity, which is our target to solve, and n̂ is the normal unit vector of the
boundary. The cell’s boundary is free so the parallel stress at the boundary is zero

t̂ · σvis = 0,

where t̂ is the tangential unit vector of the boundary. Notice that the active stress is always constrained inside the
cell so it will not enter any boundary conditions. The total force of the cell exerted on substrate should be balanced
which gives a zero net traction force condition ∫

ξ(r)ud2r = 0,
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where ξ(r) is the friction coefficient at different locations. To get analytical expressions, we neglect the spatial
heterogeneity in friction and simply take ξ(r) = ξ. This simplification does not change the central feature of our main
result (the cell’s speed is inversely related to the cell’s height).

Second, we only take into account the viscosity, friction and active stress because they are directly related to the cell
motion. The adhesion, area conservation and membrane forces only contribute to the cell’s shape, which is implicitly
included in the boundary conditions. Thus we get a simplified equation for Eq. S2:

ν∇ · σvis − ξu +∇ · σa = 0. (S4)

Integrating the above equation and using the zero traction force condition, we obtain
∮

(νσvis + σa) · n̂dl = 0. As
the active stress σa is constrained inside the cell, this will lead to a condition equivalent to the zero traction force
condition ∮

n̂ · σvisdl = 0,

which is the zero traction force condition we used below.
Notice that a fixed cell shape has to be given in order to apply the boundary conditions. Since we only care about

the cell’s mass of center velocity ~vc, and not the full solution for u, we will next show how ~vc can be obtained without
knowing u.

Analytical solution of the rectangular model cell

Here we wish to solve the Eq. S4 for a rectangular fixed cell shape x ∈ [−L/2, L/2], y ∈ [0, H] with an unknown
cell speed vc (notice we put the x-direction as cell moving direction so vc is a scalar). The boundary conditions are
ux(x = ±L/2) = vc, uy(y = 0, H) = 0, and

∫
udxdy = 0. Integrating the Stokes equation, we get

∫
d2r(ν∇ · σvis +

∇ · σa) =
∮

(νσvis · n + σa · n)dl = ξ
∫
ud2r = 0. Note that the active stress σa should be constrained within the

cell [7] resulting in the zero net traction force condition
∮
σvis · ndl = 0. This means

∫
[σvisxx (x = L/2) − σvisxx (x =

−L/2)]dy =
∫

[∂xux|x=L/2 − ∂xux|x=−L/2]dy = 0 and
∫

[σvisxy (y = H) − σvisxy (y = 0)]dx = 0 due to the rectangular
shape.

The tangential vector t̂ can be determined by the normal vector t̂x = −n̂y, t̂y = n̂x. The zero-parallel stress
condition t̂ · σvis = 0 results in

n̂yσ
vis
xx − n̂xσ

vis
xy = 0, n̂yσ

vis
xy − n̂xσ

vis
yy = 0.

For rectangular boundaries, these conditions lead to

σvisxy = 0, (S5)

at all boundaries.
Since the cell is moving along x-direction, only ux is relevant and we can integrate the 2D Stokes equation in the

y-direction. With the condition of σvisxy = 0, we obtain a 1D Stokes equation:

2ν
∂2ũx
∂x2

− ξũx +
∂σ̃axx
∂x

= 0, (S6)

where ũx =
∫H
0

uxdy, and σ̃axx =
∫H
0
σaxxdy. The corresponding boundary conditions are ũx(L/2) = ũx(−L/2) = vcH

and ∂xũx|x=L/2 = ∂xũx|x=−L/2. This is exactly the same problem as in reference [7]. Using standard Green’s function
methods, we obtain:

ũx(L/2) = − 1

4ν

∫ L/2

−L/2

σ̃axx sinh(κx)

sinh(κL/2)
dx,

and, since ux = vc at boundaries x = ±L/2, we obtain

vc =
ũx(L/2)

H
, (S7)
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as reported in the main text (Eq. 5). If the active stress is confined in a band with width λ, i.e.,
∫H
0
σaxxdy = λf(x),

the cell’s speed vc will scale as:

vc =
λv0
H

, (S8)

where v0 is a constant, corresponding to the boundary velocity determined by the 1D problem 2ν∂2xv− ξv+ f ′(x) = 0
with homogeneous boundary conditions. Notice that this scaling does not depend on the vertical position of the
active stress. Therefore, our model will give the same cell speed independent of the type of active stress (actin
polymerization, myosin contraction), as long as the integrated active stress is the same.

Effective height for non-rectangular cells

In the above section, the speed of a rectangular cell was determined exactly. Actual cells are, of course, not
rectangular but obtaining a solution for cells with more complex shapes is challenging. Nevertheless, insight can be
obtained by considering a cell composed of two rectangles, one positioned at [−L, 0] × [0, H2] and one positioned at
(0, L] × [0, H1] (H1 < H2 (see Fig. S5). We take the active stress to be located at the latter (right) rectangle. This
problem has the same boundary conditions as above, with two additional continuity conditions:

ux(x = 0+) = ux(x = 0−), ∂xux|x=0+ = ∂xux|x=0− . (S9)

To simplify the problem, we introduce the new variables u1 =
∫H1

0
uxdy and u2 =

∫H2

0
uxdy. Using the continuity

condition we have:

u2(0−) =

∫ H2

0

ux(x = 0−)dy =

∫ H2

H1

ux(x = 0−)dy +

∫ H1

0

ux(x = 0+)dy = (H2 −H1)vc + u1(0+).

Together with u1(L) = H1vc, u2(−L) = H2vc we get

u2|0−L + u1|L0 = 0. (S10)

The zero traction force will give∫ H2

0

∂xux|x=−Ldy =

∫ H2

H1

∂xux|x=0dy +

∫ H1

0

∂xux|x=Ldy.

Combining with the stress continuity we obtain

∂xu2|0 =

∫ H2

0

∂xux|x=0dy = (

∫ H1

0

dy +

∫ H2

H1

dy)(∂xux|x=0) = ∂xu1|0 + ∂xu2|−L − ∂xu1|L.

such that

∂xu2|0−L + ∂xu1|L0 = 0. (S11)

Notice that Eq. S10 and Eq. S11 have clear physical meanings, namely flow conservation and force balance, respec-
tively. It is convenient to introduce the net flow C and net force F on each rectangle:

u2|0−L = C, u1|L0 = −C, ∂xu2|0−L = F, ∂xu1|L0 = −F,

and, using the zero-parallel stress condition, we obtain the 1D version of the problem for the right and left rectangle:

2ν∂2xu2 − ξu2 = 0, 2ν∂2xu1 − ξu1 + ∂xσ
a = 0,

with σa =
∫H1

0
σxxdy. u1 can be solved by superposition of two parts: ũ1 with homogeneous boundary conditions and

active stress, and û1 with inhomogeneous boundary conditions but zero active stress. After substituting u1 = ũ1 + û1,
we obtain

2ν∂2xũ1 − ξũ1 + ∂xσ
a = 0, ũ1|L0 = 0, ∂xũ1|L0 = 0,
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and

2ν∂2xû1 − ξû1 = 0, û1|L0 = −C, ∂xû1|L0 = −F.

We can then solve for ũ1, û1 and u2 and obtain the boundary velocity:

H1vc = u1(L) = va −
C

2
− αF

2κ
, H2vc = u2(−L) = −C

2
+
αF

2κ
, (S12)

and the boundary stresses:

∂xu2|−L = −F
2

+
ακC

2
, ∂xu2|0 =

F

2
+
ακC

2
, ∂xu1|0 = πa +

F

2
− ακC

2
, ∂xu1|L = πa −

F

2
− ακC

2
, (S13)

where κ =
√
ξ/2ν, α = coth(κL/2). va and πa are the boundary speed and boundary stress from the homogeneous

equation of ũ1, which are constants.
To calculate vc, we have to determine C and F . Eq. S12 gives one condition H1/H2 = u1(L)/u2(L) and an

additional condition from the stresses in Eq. S13 is needed. Unfortunately, there is no simple relation between the
four equalities in Eq. S13 since the stress continuity equation cannot be defined at the boundary at x = 0 and between
y = H1 and y = H2. Instead, we assume that the ratio of the integrated stress at x = 0 satisfies (∂xu1|0)/(∂xu2|0) = β.
Then, we have:

vc =
κvaα

2(1 + β) + κva(1− β)− 2απa
κ[α2(1 + β)(H1 +H2) + (β − 1)(H1 −H2)]

. (S14)

Note that when H1 = H2, corresponding to β = 1, this result gives the same scaling as for the simple rectangular
shape.

With α� 1, corresponding to a highly viscous cytoskeleton, we have

vc ≈
va

H1 +H2
− 2πa
κα(1 + β)(H1 +H2)

, (S15)

which clearly shows that the cell speed is scaling inversely with the average height (H1 +H2)/2.

TEST OF MODEL PREDICTIONS

The above analysis indicates that the ratio of the height of stress band λ and the cell height H determines the
cell speed. Thus, cells with equal ratio should have similar speeds. To test this explicitly, we simulated cells in
chambers with heights varying between h = 4µm and h = 10µm, constraining the cell’s height, while keeping the
ratio λ/h = 0.5. Cells shapes for three different chamber heights are shown in Fig. S7a while the cell speed and
effective height as a function of chamber height are shown in Fig. S7b and c, respectively. Clearly, the results from
Fig. S7b show that the speed of the cell is independent of the chamber height, consistent with our model prediction.

In addition, our derived expression predicts that if λ = H, corresponding to an active stress region that spans the
entire height of the cell, the cell speed should be independent of the chamber height. To verify this, we performed
simulations of confined cells with the active stress at the entire cell front. To this end, we no longer constrain the
stress to a narrow band and, instead, use σa = −φρa(1 − χ)ε|∇φ|2n̂n̂. We introduce the factor of 1 − χ to prevent
protrusion in the region where the cell and substrate overlap, something that is excluded from occurring in other
models when the band restricts protrusion. Resulting cell shapes for different chamber heights are shown in Fig. S8a.
In Fig. S8b, we plot the cell speed as a function of the chamber height and in the Fig. S8 we plot the effective height.
As expected, the cell speed changes little as the chamber height is varied, again consistent with our predictions.

OSCILLATORY PROTRUSIONS

Results in the main text are for cells with constant active stress, resulting in constant cell shapes. Such constant
shapes are applicable to fish keratocytes, fast moving cells that maintain their morphology [8]. Other cell types, how-
ever, including neutrophils and Dictyostelium discoideum cells [9], move in a more time-dependent way, with repetitive
and short-lived protrusions called pseudopods. To determine the dependence of cell speed on chamber height for these
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types of cells we introduce an oscillatory modulation to the active stress: σa = −φρaG(ψ) sin(2πt/T )ε|∇φ|2n̂n̂. Here,
T is the period of the oscillation cycle which can be varied. Results from additional simulations show that the cell
speed gets larger as the substrate adhesion is increased (Fig. S12a). This dependence on adhesion was found to be
largely independent of the period and is similar to the one found for model cells with constant stress (Fig. 2b). Also
consistent with our results in the main text (Fig. 2c), the effective height is again inversely related to the adhesion
strength.

EXPERIMENTS

Cell culture and preparation

Wild type Dictyostelium discoideum (AX4) cells were transformed with a construct in which the regulatory region
of actin 15 drives genes encoding a fusion of GFP to LimE (∆ coil LimE-GFP) and a gene encoding a fusion of RFP
to Coronin (LimE GFP/corA RFP)[10]. Cells were transformed with the plasmid pDM115 cAR1-RFP (Hygromycin
resistance) to visualize the membrane. Cells were grown in a shaker, containing 35.5g HL5 media (R©FORMEDIUM)/L
of DI water[11] in a shaker. When cells reached their exponential phase (1− 2× 106 cells/mL), they were harvested
by centrifugation, washed in KN2/Ca buffer (14.6 mM KH2PO4, 5.4 mM Na2HPO4, 100 µM CaCl2, pH 6.4), and
resuspended in KN2/Ca at 107 cells/mL. The washed cells were developed for 5h with pulses of 50 nM cAMP added
every 6 min.

Microfluidic device

The design of microfluidic device used in the study is similar to the design of the devices that were previously used to
study gradient sensing in yeast[12] and chemotaxis in Dictyostelium[13, 14]. The microfluidic device (Fig. S9) consists
of a lithographically fabricated silicone (polydimethylsiloxane, PDMS, Sylgard 184) chip and a cover glass substrate
(with either PDMS or hydrogel coating, see below), against which the chip is sealed using vacuum suction. To this
end, the network of liquid-filled microfabricated microchannels of the chip, which are relatively narrow and either 100
or 10 µm deep, is surrounded by a wide (∼6 mm) and deep (∼1 mm) groove, serving as a vacuum cup. When the
PDMS chip is placed on a substrate, the application of vacuum to the cup generates a pulling force that instantly seals
the liquid-filled microchannels of the chip against the substrate. The application of vacuum also leads to controlled
partial collapse of the microchannels, making it possible to reduce the depth of the 10 µm deep microchannels by
> 5µm by controlling the level of vacuum. The network of liquid-filled microchannels of the device (Fig. S9) has a
single outlet (out), two main inlets, for a C0 =100nM solution of cAMP (in 1) and for buffer (in 2), and an auxiliary
inlet for cell loading (in c). The functional region of the device has two mirror-symmetric 100 µm deep, 500 µm
wide flow-through channels (Fig. S9), which are connected to the two main inlets and are flanking 3 clusters of 10
µm deep gradient chambers. The flow through the device is driven by applying equal differential pressures of ∼2
kPa between the two main inlets and the outlet. The resulting mean flow velocity in the 500 µm wide flow-through
channels is ∼200 µm/s. The gradient chambers are all 70 µm wide and each cluster has 15 identical chambers with
equal lengths. The lengths L of the gradient chambers in the upstream, middle, and downstream clusters are 360,
220, or 120 µm, respectively. There is practically no flow through the gradient chamber because of near zero pressure
gradient along them, and the diffusion of cAMP from the flow-through channel perfused with the 100 nM solution to
the flow-through channel perfused with buffer results in linear concentration profiles of cAMP with gradients of 0.28,
0.45, and 0.83 nM/µm, respectively. In different sets of experiments, the application of different levels of vacuum
resulted in the effective depths of the gradient chambers of 10, 7, and 5 µm.

Substrate preparation

In our experiments, the microfluidic chips were sealed against cover glass substrates with two different types of
coating: ∼10 µm thick layer of PDMS of the same type as the material of the chip and ∼3 µm thick layer of 30%
polyethylene glycol (PEG) gel. In the former case, the cover glass was a #1.5 thickness 47 mm circle at the bottom
of a 50 mm WillCo cell culture dish. A small amount (∼0.2 mL) of PDMS pre-polymer (10:1 mixture of base and
curing agent of Sylgard 184 by Dow Corning) was dispensed onto the cover glass. Spin-coating was made at 6000
rpm for 2 min, and PDMS was cured by overnight baking in a 60◦C oven. In the latter case, the cover glass was #2,
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50x35 mm rectangle. The cover glass was cleaned with water and ethanol, dried, air-plasma treated for 10 s, and then
exposed to 3-(Trimethoxysilyl) propyl Methacrylate (R©Aldrich) vapor at 75◦C for 30 min. A 30% PEG pre-polymer
solution was prepared by mixing PEG diacrylate (PEG-DA; avg Mn 900, R©Aldrich) with a 0.03% aqueous solution
VA086 (300 µg dissolved in 1000 µL of DI water) in a 3:7 ratio by volume. VA086 is iLine (365nm) sensitive UV
photo-initiator that cross-links PEG-DA molecules (thus, converting a PEG-DA solution into a PEG gel) by binding
to the acrylate groups and also links PEG-DA chains to the acrylate groups on the glass surface. An ∼100µL drop
of the solution was dispensed onto the center of the cover glass and squeezed to a thin layer by placing an untreated
#1.5 thickness, 30 mm diameter round cover glass on top, gently pushing this second cover glass with a pipette tip,
and removing the excess solution with a wipe. The cross-linking of PEG-DA was done by exposing it to a total of
2.19 J/cm2 of 365 nm UV (derived from 365nm UV LEDs; ∼365 mW/cm2 for 60 sec). After the round cover glass
was removed, the 50x35 mm cover glass had an ∼4 µm thick layer of covalently bonded PEG gel in the middle.

Data acquisition and image analysis

Differential interference contrast (DIC) images were taken of all gradient chambers on a spinning-disk confocal Zeiss
Axio Observer inverted microscope using a 10x objective and a Roper Cascade QuantEM 512SC camera. DIC images
were captured every 15 s for 30 min and were used to calculate the speed of the cells. To obtain the shape of the
cells, fluorescent images (488 nm and 561 nm excitation) were captured every 2 seconds with a 63X oil objective. To
visualize the shape of the cells near the substrates, z-stacks of confocal images were collected.

The centroids of all cells were tracked across the gradient chambers from 10X image sequences using Slidebook
6 (Intelligent Imaging Innovations) software. Cells that moved more than 5 frames without encountering another
cell were chosen for data analysis. 50 to 100 cell tracks were analyzed in each experiment. Velocity in the gradient
direction, Vx(t), was computed using data from frames 45 s apart with Matlab R2016a (The MathWorks, Natick,
MA). We have verified that cell speeds were largely independent of their positions within the gradient chambers.
Consequently, the average speed was defined as the mean speed of all cells at least 30µm from the sides of the
chamber adjacent to the flow-through channels at all recorded times.

Cells outlines near the top (PDMS chip) and the bottom (substrate, PDMS or PEG) of the gradient chambers were
obtained from confocal fluorescence images at 63X magnification with a custom-made Matlab code, as follows. After
removing the average background intensity value, images were binarized using a threshold that was dependent on the
cell’s maximum intensity. Matlab algorithms were then used to dilate images, to fill possible holes, to erode images,
to smooth images, and to provide information (area and outlines) about the connected pixels of the binary image.
Finally, using the resulting images, we computed the ratio between the cell contact area at the top and bottom of the
chamber and averaged this ratio over three time points for each cell.

Statistics and reproducibility

Each experiment was carried out four or five times on different days and the data were averaged for N=200-300
cells. Cell speed was found to be approximately normally distributed and p-values were computed with the unpaired
t-test. For the area size ratio, the data distribution was not normal, and the Wilcoxon rank-sum test was used to
obtain the p-values. The variations of the cell speed with the gradient chamber height and the type of substrate
coating (PDMS vs. PEG) followed the same trends in gradient chambers of different lengths, L (cf. Fig. 4d and Fig.
S11).
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Parameter Description Value
γ Tension 20 pN
ε Width of phase field 2 µm
A0 Cell area size 120 µm2

Ma Cell area conservation strength 20 pN/µm
Γ Phase field relaxation parameter 0.4 µm/s
ν Cell viscosity 102 pN s/µm
ξd Damping coefficient 0.05 Pa s/µm
ξs Substrate friction coefficient 5 Pa s/µm
ηa Active protrusion coefficient 103 pN µm2

λ Width of active stress confinement 2 µm
δ Width of the substrate phase field 1 µm
g Substrate repellent coefficient 5× 103 pN/µm

TABLE S1: Model Parameters
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FIG. S1: Illustration of the substrate field χ, with width δ, together with the protrusion band ψ, with width λ and located a
distance of ε away from the substrate.

0 10 20 30 40

Adehsion Strength (pN)

0

0.1

0.2

0.3

C
e

ll 
S

p
e

e
d

 (
µ

m
/s

) ξ
d
=0

ξ
d
=0.05

ξ
d
=0.5

FIG. S2: Cell speed as a function of adhesion strength for different values of the drag coefficient ξd (in units of Pa s/µm).
Cell speed changes little as ξd is increased from 0 to 0.5.
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FIG. S3: Simulation results of the phase-field method without active force (red line) compared to results obtained using
Surface Evolver (white dots). The phase field is plotted using the indicated color scale. (a). Adhesion strength 10 pN. (b).
Adhesion strength 20 pN.
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FIG. S4: Numerical results showing the phase field using a color scale, the outline of the cell in black (defined as φ = 1/2),
and the actin fluid velocity (multiplied with the phase field φ) for a cell moving on a single substrate (a), and confined in a
channel with equal (b) and unequal substrate adhesion (c). Arrows indicate the direction of the velocity and the arrow length
indicates the amplitude of the velocity.
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FIG. S5: Schematic illustration of the non-deformable cell considered here, consisting of two rectangles of unequal height.
Active stress occurs in the right (front) rectangle.
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FIG. S6: The average speed along the y-direction, defined as 1/L
∫
|φux|dx, for a cell in a confined chamber with a height of

h = 4µm (red line) and h = 6µm (blue line). The vertical shear dissipation increases with increasing cell height.
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FIG. S7: Simulation results of cells with a constant ratio 0.5 of the width of active stress band and the chamber height. The
cyan dots schematically indicate the active stress sites. (a) Cell shapes for different chamber heights. Scalebar=5 µm (b) Cell
speed as a function of chamber height. (c) Effective height as a function of chamber height.
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FIG. S8: Simulation results of cells with active stress at the entire front, as indicated. (a) Cell shapes for different chamber
heights. Scalebar=5µm (b) Cell speed as a function of chamber height. (c) Effective height as a function of chamber height.
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FIG. S9: Design of the microfluidic device. The enlarged image is the experimental DIC view using a 10x objective showing
gradient chambers and flow chambers with cells.
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FIG. S10: Experimentally obtained cell shapes and F-actin distribution for a cell moving in a 5 µm high channel. (a) z-stack
of a cell containing the fluorescent membrane marker Car1-RFP. The cell extends from top to bottom PDMS substrate. (b)
Cell outlines for different z values ranging from 0 (magenta) to 5 µm (cyan). The outline is essentially identical for all z
values. (c) Average fluorescence intensity (normalized) of LimE, an F-actin marker, for each confocal slice as a function of z
for representative cells in channels with height of 5,7 and 10 µm. All cells examined (N=5) displayed a qualitatively similar
pattern with increased intensity close to the substrates.
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FIG. S11: Average cell speed for different chamber heights and substrate composition for channel length L = 120µm,
corresponding to a gradient of 0.83 nM/µm, and L = 360µm, corresponding to a gradient of 0.28 nM/µm.
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FIG. S12: Cell speed and effective height for cells with oscillatory active stress. (a) Average cell speed, computed as moving
distance divided by cycle time, and (b) effective height as a function of substrate adhesion strength. Shown are the results for
oscillatory stress cycles with two different periods.
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