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• Description of stable blow-up in supercritical nonlinear Schrodinger equation.
• Stable blow-up solutions in supercritical regime have square root blow-up rate.
• Profile equation has multi-bump structure of profile solutions but only one profile describes stable blow-up.
• No significant difference in stable blow-up in energy-critical, sub-or super-critical regimes.

a r t i c l e i n f o

Article history:
Received 2 November 2018
Received in revised form 25 February 2019
Accepted 27 February 2019
Available online 15 March 2019
Communicated by D. Pelinovsky

Keywords:
NLS equation
Blow-up dynamics
Super-critical collapse
Dynamic rescaling method
Multi-bump profiles

a b s t r a c t

We study stable blow-up dynamics in the L2-supercritical nonlinear Schrödinger equation with radial
symmetry in various dimensions. We first investigate the profile equation and extend the result of
Wang (1990) and Budd et al. (1999) on the existence and local uniqueness of solutions of the cubic
profile equation to other L2-supercritical nonlinearities and dimensions d ≥ 2. We then numerically
observe the multi-bump structure of such solutions, and in particular, exhibit the Q1,0 solution, a
candidate for the stable blow-up profile. Next, using the dynamic rescaling method, we investigate
stable blow-up solutions in the L2-supercritical NLS and confirm the square root rate of the blow-up
as well as the convergence of blow-up profiles to the Q1,0 profile.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Consider the Cauchy problem of the nonlinear Schrödinger
(NLS) equation{
iut +∆u + |u|p−1u = 0, (t, x) ∈ [0, T ) × Rd

u(x, 0) = u0 ∈ Hs(Rd), s ≥ 1.
(1.1)

During their lifespan, the solutions u(x, t) of the Cauchy problem
(1.1) conserve mass and energy (or Hamiltonian):

M[u(t)] def
=

∫
|u(x, t)|2 dx = M[u0], (1.2)

E[u(t)] def
=

1
2

∫
|∇u(x, t)|2 dx −

1
p + 1

∫
|u(x, t)|p+1 dx = E[u0].

(1.3)

(The momentum is also conserved, however, we omit it due to
the radial setting.)
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We are interested in the L2-supercritical case of Eq. (1.1),
for that we recall the scaling index and scaling invariance. If
u(x, t) solves (1.1), then so does ũ(x, t) = λ

2
p−1 u(λx, λ2t). A direct

calculation shows that the following Ḣsc norm is invariant under
the above scaling, i.e., ∥u∥Ḣsc = ∥ũ∥Ḣsc , with the critical index
defined by

sc =
d
2

−
2

p − 1
. (1.4)

Eq. (1.1) is classified as

• L2-subcritical (or mass-subcritical) if sc < 0;
• L2-critical (or mass-critical) if sc = 0;
• intercritical (or mass-supercritical and energy-subcritical) if

0 < sc < 1;
• Ḣ1-critical (or energy-critical) if sc = 1;
• Ḣ1-supercritical (or energy-supercritical) if sc > 1.

The well-posedness of solutions to Eq. (1.1) has been long
investigated starting with works by Ginibre and Velo in [1], see
also [2] and references therein. We discuss separately cases sc ≤ 1
and sc > 1. When sc ≤ 1, the local well-posedness is available in
H1(Rd), implying that for u0 ∈ H1(Rd) there exists 0 < T ≤ ∞
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such that there is a unique solution u(t) ∈ C([0, T ),H1(Rd)). We
say the solution exists globally in time if T = ∞, and the solution
blows up in finite time if T < ∞ and lim supt ↗ T ∥∇u(t)∥L2 = ∞.
When sc > 1, taking the Schwartz class initial data u0 ∈ S(Rd),
local well-posedness is obtained in Hs with s > sc . As discussed
in [3], solutions of Eq. (1.1) may Hs-blow up at time T ∗, that is
limt→T∗ ∥u(t)∥Ḣs = ∞, and persistence of regularity yields that
T ∗ is unique with respect to the norms H s̃, s̃ > sc . Hence, while
the local H1 theory is absent in this case, there is still a clear
distinction between global solutions (T = ∞) and finite-time
blow-up solutions (T < ∞) for sc > 1.

Solutions to Eq. (1.1) when sc ≥ 0 may blow-up in finite
time. A typical argument to show the existence of such blow-
up solutions is the convexity argument for the negative energy
initial data (E[u0] < 0) with finite variance (V [u0]

def
=
∫

|xu0|
2 <

∞). When sc < 0, solutions to (1.1) exist globally in time,
for example, see [4]. The first attempt to study stable blow-up
solutions was in the mass-critical case (sc = 0), where there has
been good progress in both analytical and numerical descriptions,
see [5–12], and references therein. In this case, the dynamics of
finite-time stable blow-up is described as follows: solutions have
the ‘‘log–log’’ blow-up rate

∥∇u(t)∥2 ∼

(
ln ln( 1

T−t )

T − t

) 1
2

as t → T ,

for example, see [12–21]; and the blow-up profiles are given
by the (unique positive) ground state solution of the nonlinear
elliptic equation

− Q +∆Q + |Q |
p−1Q = 0, Q ∈ H1(Rd). (1.5)

In this paper, we investigate stable blow-up solutions in the
mass-supercritical case sc > 0. To be specific, we consider radial
solutions u(r, t) to Eq. (1.1), r = |x|, x ∈ Rd. For consistency with
previous work (e.g., [5,13,14]), we set σ =

p−1
2 and write the

nonlinear term as |u|2σu; note that in this notation sc =
d
2 −

1
σ
.

Due to the scaling invariance we can rescale solutions to the
NLS equation in the radial setting with a scaling function L(t)
(e.g., L(t) = 1/∥u(t)∥σ

∞
, for other options see [14,22])

u(r, t) =
1

L(t)
1
σ

v(ξ, τ ), where ξ =
r

L(t)
, τ =

∫ t

0

ds
L(s)2

.

(1.6)

Then Eq. (1.1) becomes

ivτ + ia(τ )
(
ξvξ +

v

σ

)
+∆v + |v|2σv = 0, (1.7)

where

a(τ ) = −L
dL
dt

= −
d ln L
dτ

. (1.8)

The second term in (1.7), containing a(τ ), makes a fundamental
difference in the blowup behavior between the mass-critical and
supercritical cases, this is due to the limiting behavior of a(τ ).
As discussed, for example, in [5] or [23], the stable blow-up
dynamics will correspond to a(τ ) → a, a constant, as the rescaled
time τ → ∞. If a(τ ) converges to zero,1 then stable singular
solutions to Eq. (1.1) blow-up at the square root rate with the
‘‘log–log’’ correction (and that happens exactly in the L2-critical
case, see, [5,11,12,14,22,24]). If a(τ ) converges to a non-zero
constant, then solutions to (1.1) blow up at the square root rate
without any correction in the leading term. This characterizes

1 For example, in [5,12,14] the convergence of a(τ ) is at the rate 1/(ln τ +

3 ln ln τ ).

the L2-supercritical stable blow-up, see [5,11,14]. Therefore, un-
derstanding the behavior of a(τ ) sheds light onto the rate of the
stable blow-up solutions in Eq. (1.1).

A more challenging task is to understand and describe the
blow-up profiles. Following the setting of Zakharov [23] (see also
details in [25]) v(ξ, τ ) = eiτQ (ξ ) and considering a(τ ) → a as
τ → ∞, we obtain

∆ξQ − Q + ia
(
Q
σ

+ ξQξ

)
+ |Q |

2σQ = 0. (1.9)

We refer to this equation as the profile equation. The desired
solutions of (1.9) satisfy

Qξ (0) = 0, Q (0) = real, and Q (∞) = 0. (1.10)

Accordingly, we investigate the profile equation (1.9) with condi-
tions (1.10).

Note that in the critical setting (sc = 0), the value a = 0, and
thus, Eq. (1.9) is reduced to (1.5), the ground state equation.

As predicted by Zakharov in [23] (see also [24]), stable blow-
up solutions are expected to be of the self-similar form

u(x, t) =
1

L(t)
1
σ

Q
(

x
L(t)

)
exp

(
iθ +

i
2a

log
T

T − t

)
, (1.11)

where

L(t) = (2a(T − t))1/2. (1.12)

The existence theory for such solutions Q was first shown
by X.-P. Wang in his thesis [26] for the 3d cubic case, he also
showed that in the cubic case Q (x) decays as 1/|x| when |x| → ∞.
Later in [27], Budd, Chen and Russell, using the Volterra integral
equation theory, extended the existence results for the cubic NLS
cases in the inter-critical regime, i.e., when 0 < sc < 1 or
2 < d < 4. They also showed the 1/|x| decay of such solutions Q
in the cubic case.

The first numerical evidence of monotone decreasing solutions
to the profile equation (1.9) for the 3d cubic and 2d quintic
NLS cases was given in [28]. There it was also shown that the
asymptotic behavior of solutions to (1.9)–(1.10) (for any σ > 0),
in the form of (1.11), includes for Q (ξ ) two linearly independent
solutions for large ξ :

Q1 ≈ |ξ |−
i
a −

1
σ and Q2 ≈ e−

iaξ2
2 |ξ |

i
a −d+ 1

σ ,

and thus, Q can be written as Q = αQ1 + βQ2 when ξ → ∞

(with α, β ∈ C). Substituting the ansatz (1.11) into the formulas
for conserved quantities, we obtain the following expressions for
the mass and energy (here, ωd - the surface area of the d −

1-dimensional unit sphere):

M[u(t)] = L(t)2sc ωd

∫
∞

0
|Q (ξ )|2ξ d−1 dξ, (1.13)

E[u(t)] = L(t)2(sc−1) ωd

2
(1.14)

×

∫
∞

0

[
|∇Q (ξ )|2 −

1
σ + 1

|Q (ξ )|2(σ+1)
]
ξ d−1 dξ .

For the profile solutions Q and to simplify the notation (getting
rid of ωd and the factor 1

2 in (1.14)), we denote the Hamiltonian
of Q as H[Q ], or the integral in (1.14)

H[Q ]
def
=

∫
∞

0

[
|∇Q (ξ )|2 −

1
σ + 1

|Q (ξ )|2(σ+1)
]
ξ d−1 dξ .

When 0 < sc < 1, the energy of the self-similar blow-up in (1.14)
must be finite, and hence, the Hamiltonian of Q must be zero:
H[Q ] = 0 (since L(t) → 0 as t → T ). Similarly, the mass of u in
(1.13) remains constant, and thus, the L2 norm of Q is unbounded.
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In summary, Q = αQ1 + βQ2 is in Ḣ1 but not in L2. Though both
Q1 and Q2 vanish at infinity, the fast oscillating span Q2 should
be excluded from consideration (or one has to choose only those
parameters Q (0) and a, which generate the solutions to (1.9) with
β ≡ 0). Thus, the next natural step is to understand the Q1-type
solutions, or solution to (1.9) with boundary conditions

Qξ (0) = 0, Q (0) = real, Q (∞) = 0, H[Q ] = 0.

(1.15)

As far as the uniqueness, the local uniqueness was shown
in [27]: for any given Q (0) ∈ R and constant a > 0, Eqs. (1.9)–
(1.15) has a unique solution. The obvious question then is, which
Q (0) and a produce solutions that would match the profiles of the
stable blow-up solutions of (1.1) from generic initial data.

It should be mentioned that prior to [27], Kopell and Landman
in [29] constructed such a unique profile Q in the cubic case
when the dimension d is exponentially asymptotically close to 2.
(Using this result, Merle, Raphaël, and Szeftel in [30] constructed
stable blow-up solutions in the cubic case when d ⪆ 2.) In [31]
Rottshäfer and Kaper improved the construction to include set-
tings where the dimension d is algebraically close to 2, i.e., d(a) =

2+O(al) for l > 0. The physical case of the 3d cubic NLS, however,
is in no way close to the dimension 2, consequently, the above
perturbative approaches (the only ones currently available for Q
construction) leave the question of profile(s) Q open.

LeMesurier, Papanicolaou, Sulem and Sulem in [28], while con-
sidering several generic initial conditions and solving the equa-
tion numerically via the dynamic rescaling method that they
introduced, found that a(τ ) tends to some specific constant, for
example, in the 3d cubic NLS a = 0.917...; Q (0) has also a
specific value, Q (0) = 1.885.... They observed that the values of
a and Q (0) are very sensitive to perturbations, even 4% deviation
would generate a nontrivial perturbation and would not generate
a profile with non-oscillating tail. Despite such a sensitivity, it
is remarkable that the authors in [28] were able to identify the
above parameters with such precision; furthermore, they inves-
tigated the case of the 2d quintic NLS and obtained a = 1.533...
and Q (0) = 1.287... in that setting.

Budd, Chen and Russell in [27] numerically studied the cubic
NLS in 2 < d < 4, and found that the span of Q1 solutions
to Eqs. (1.9)–(1.15) is large: an infinite (at least a countable)
number of distinct self-similar solutions (with monotone decay
at infinity, or in other words, with non-oscillatory tails), which
are characterized by the number of maxima of |Q | when the
dimension d is close to 2, and thus, called ‘multi-bump’ solu-
tions. Among those solutions, only one monotonically decreasing
solution, denoted by Q1,0, is the actual profile of the stable blow-
up (from the generic initial data) in the cubic NLS equation. It
is indeed the only monotone solution when the dimension is
asymptotically close to 2. As the dimension increases away from
two, there may be other monotone solutions as was demon-
strated for the cubic NLS in [27], we also show examples of
several monotone solutions for other nonlinearities in Section 3,
see Figs. 3–4. Observe that the profile Q1,0 is exactly the one
found by LeMesurier, Papanicolaou, Sulem and Sulem in [28].
We provide some more details about the profile solutions QJ,K in
Section 3 and show examples; for further reading on the structure
of profile solutions as well as estimates on the location and value
of the maxima, see [27,32]; for further discussion on numerical
treatments refer to [5,15,33,34]. An attempt to investigate multi-
bump solutions analytically, via dynamical systems approach,
was done by Rottshäfer and Kaper in a very interesting paper [35].
There, far range asymptotics was glued to the origin, resulting
in the so-called midrange part, where non-monotone behavior
is possible, and that led to a variety of multi-bump solutions.

We also note that the papers [29,31,35] are the only analytical
constructions of Q in the mass-supercritical setting.

In this paper, we investigate mass-supercritical cases of the
NLS equation, including energy-supercritical cases. We first show
the existence and local uniqueness of solutions to the profile
equations (1.9)–(1.10), including nonlinearities p ̸= 3, and review
the decay of Q solutions. We then investigate the profile equation
(1.9) and study the multi-bump solutions QJ,K numerically for the
specific powers of nonlinearities p = 3, 5, 7 (or σ = 1, 2, 3)
in a variety of dimensions (from two to five). Finally, using the
dynamic rescaling method, we obtain stable blow-up solutions
to the NLS equations and show that the rate of the blow-up is
indeed given by (1.12) and the blow-up profiles converge to the
specific solution Q1,0 of the profile equation (1.9) with (1.15).

The paper is organized as follows: in Section 2, we discuss the
existence and uniqueness theory for solutions of (1.9)–(1.10) to
all mass-supercritical cases for d ≥ 2, as well as the decay of Q as
|x| → ∞. In Section 3, we provide a numerical method to obtain
the solutions Q to (1.9) & (1.10), and in particular, numerically
identify the profiles Q1,0. We observe no difference in obtaining
Q solutions for sc < 1, sc = 1 and sc > 1, though these three
cases lead, respectively, to the zero Hamiltonian, constant Hamil-
tonian and negative Hamiltonian solutions from our numerical
observations (the negative Hamiltonian solutions are actually due
to the finite interval, we show that the Hamiltonian decreases
to negative infinity as the computational domain increases). In
Section 4, we simulate the blow-up solutions by the dynamic
rescaling method and show the results of convergence of blow-
up solutions to the profiles Q1,0 and the square root rate of
the blow-up. We provide various error estimates between the
blow-up rate and the predicted rate. All the error quantities are
satisfactorily small (e.g., on the order 10−5). Such behaviors are
observed among all considered cases with 0 < sc < 1, sc = 1 and
sc > 1.

2. Existence theory of Q

2.1. Existence of Q for general nonlinearity in radial setting

We start with the existence theory of Eqs. (1.9)–(1.10), which
is derived from Eq. (1.7) as a stationary solution by separation of
variables v(ξ, τ ) = eiτQ (ξ ) (recall ξ and τ from (1.6)). Denoting
limτ→∞ a(τ ) = a, we obtain⎧⎨⎩∆ξQ − Q + ia

(
Q
σ

+ ξQξ

)
+ |Q |

2σQ = 0,

Qξ (0) = 0, Q (0) = real, and Q (∞) = 0.
(2.1)

Here, σ > 0, and ∆ξ := ∂ξξ +
d−1
ξ
∂ξ denotes the Laplacian with

the radial symmetry.
This equation is the key to understanding the profiles for the

stable blow-up solutions in the mass-supercritical case. In the
cubic case (σ = 1), the existence of solutions to (2.1) was shown
in [5,14,26,27]. Here, we consider mass-supercritical cases with
d ≥ 2 and p > 1, or σ > 0. First, we discuss some useful
properties of solutions, then we address the question of existence
by incorporating the approach from [27], and close this section
with an alternative proof of existence using the method from [26],
which also gives decay estimates.

Lemma 2.1. If Q (ξ ) is the solution of Eq. (2.1) in any dimension d,
then, it satisfies the identities⏐⏐⏐⏐ξQξ +

Q
σ

⏐⏐⏐⏐2 + 2
(
d − 2 −

1
σ

)∫ ξ

0
s|Qs|

2
+

(
2 −

2
σ

)∫ ξ

0
s|Q |

2

(2.2)
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−
d − 2
σ

|Q (0)|2 − ξ 2|Q |
2
+

(
d − 2
σ

−
1
σ 2

)
|Q (ξ )|2

+
1

σ + 1
ξ 2|Q |

2σ+2
+

2
σ (σ + 1)

∫ ξ

0
s|Q |

2σ+2
= 0,

and

2 Im(ξQξ Q̄ ) + 2(d − 2) Im
∫ ξ

0
QsQ̄ + 2a

(
1
σ

− 1
)

(2.3)

×

∫ ξ

0
s|Q |

2
+ a|ξ |2|Q |

2
= 0.

Proof. The identity (2.2) is obtained by multiplying the equation
in (2.1) by 2ξ (ξ Q̄ξ +

Q̄
σ
), taking the real part and then integrating

from 0 to ξ . The identity (2.3) is obtained by multiplying the
equation in (2.1) by 2ξ Q̄ , taking the imaginary parts and then
integrating from 0 to ξ . □

In the next lemma we show the boundedness of solutions to
(2.1). Recall sc =

d
2 −

1
σ

and σ > 0.

Lemma 2.2. If sc > 0, d > 1+
1
σ
, and Q is the C2 solution of (2.1),

then |Q (ξ )| is bounded for all ξ > 0.

Proof. First note that a C2 solution to (2.1) is bounded on a finite
interval ξ ∈ [0,M] for any finite M > 0. Therefore, it suffices to
show boundedness of Q for ξ > M , or as ξ → ∞. For that we
first rewrite the identity (2.2) as follows

1
ξ 2

⏐⏐⏐⏐ξ Qξ +
Q
σ

⏐⏐⏐⏐2 + |Q |
2
(

1
σ + 1

|Q |
2σ

− 1
)

(2.4)

+
1
ξ 2

(
d − 2
σ

−
1
σ 2

)
|Q |

2

+
1
ξ 2

(
2 −

2
σ

)∫ ξ

0
s |Q |

2

+
2

σ (σ + 1)ξ 2

∫ ξ

0
s |Q |

2σ+2

=
1
ξ 2

(
d − 2
σ

|Q (0)|2 + 2
(
2 +

1
σ

− d
)∫ ξ

0
s|Qs|

2
)
.

Our claim is that if |Qξ | is bounded, then so is |Q |. To the contrary,
suppose that |Q | is not bounded, that is, |Q (ξ )| → ∞ as ξ → ∞.
By combining the second and third terms in the left-hand side
(LHS) of (2.4), we obtain

|Q |
2
[

1
σ + 1

|Q |
2σ

− 1 +
1
ξ 2

(
d − 2
σ

−
1
σ 2 )

]
.

Observe that since |Q | → ∞ by our assumption, the first term
with |Q |

2σ in the square brackets is dominant (and grows as ξ
grows), and the last term is decreasing as ξ−2 regardless of the
sign in d−2

σ
−

1
σ2 , and thus, the whole expression is increasing to

infinity as ξ → ∞, so for sufficiently large ξ it will certainly be
positive. Adding the second line from (2.4) and comparing it with
the entire expression, we obtain for large enough ξ

0 ≤ |Q |
2
[

1
σ + 1

|Q |
2σ

− 1 +
1
ξ 2

(
d − 2
σ

−
1
σ 2

)]
(2.5)

+
1
ξ 2

∫ ξ

0
s|Q |

2
[

2
σ (σ + 1)

|Q |
2σ

+

(
2 −

2
σ

)]
ds

≤ LHS of (2.4)
= RHS of (2.4).

Now, the RHS of (2.4) has two terms: the first term behaves as
c
ξ2

and the integral in the second term is on the order of c ξ 2 as

ξ → ∞ (recalling the hypothesis |Qξ | being bounded). Hence,
overall, the RHS is bounded by a constant when ξ → ∞. This
gives a contradiction as the left side in the inequality (2.5) grows
to ∞ as ξ → ∞, while the RHS remains bounded. Therefore, we
conclude that |Q | cannot grow to infinity as ξ → ∞ and has to
be bounded provided |Qξ | is bounded.

Next, we show that |Qξ | is indeed bounded when ξ → ∞.
Again, we prove the boundedness of |Qξ | by contradiction. Sup-
pose |Qξ | is not bounded, that is lim supξ→∞ |Qξ (ξ )| = ∞. Then,
there exists a monotonically increasing sequence {ξj}

∞

0 for both
ξj and Q (ξj) such that |Qξ (ξj)| → ∞ as ξj → ∞, and |Qξ (ξj)| >
|Qξ (ξk)| for j > k.

For the RHS of the identity (2.4), we first consider the case
when 2 +

1
σ

− d ≤ 0 (or d ≥ 2 +
1
σ
). Then the RHS is

negative. On the other hand, the LHS of (2.4), is always positive.
We consider separately the case when Q is bounded and when Q
is unbounded. If Q is bounded, we move the ‘‘possible negative
terms’’ 1

ξ2
( d−2
σ

−
1
σ2 )|Q |

2 and |Q |
2( 1
σ+1 |Q |

2σ
−1) in (2.4) to the RHS

and then put the prior bound of |Q | on the terms 1
ξ2
( d−2
σ

−
1
σ2 )|Q |

2

and |Q |
2( 1
σ+1 |Q |

2σ
− 1). Then, these two terms will be absorbed

by a constant c and the RHS will still be negative by choosing
sufficiently large j. If Q is not bounded, then all the terms in the
LHS of the identity (2.4) are positive. In both cases, we obtain the
identity with strictly positive LHS and strictly negative RHS for
some sufficiently large ξj. Therefore, we reach a contradiction in
the case 2 +

1
σ

− d ≤ 0 as ξ → ∞.
Now we consider the case 2+

1
σ
−d > 0 (or 1+

1
σ
< d < 2+

1
σ
).

In this case, the RHS of the identity (2.4) satisfies

c +
2(2 +

1
σ

− d)

ξ 2j

∫ ξj

0
s|Qs(s)|2ds (2.6)

≤ c +
2(2 +

1
σ

− d)

ξ 2j

∫ ξj

0
s|Qs(ξj)|2ds

= c +

(
2 +

1
σ

− d
)

|Qξ (ξj)|2.

Since d > 1+
1
σ
, there exists δ > 0 such that 1−δ > 2+

1
σ
−d (that

is, 0 < δ < d−1− 1
σ
). Again we discuss two options for Q : Q being

bounded or Q being unbounded. If Q is bounded, we move the
‘‘possible negative terms’’ 1

ξ2
( d−2
σ

−
1
σ2 )|Q |

2 and |Q |
2( 1
σ+1 |Q |

2σ
−1)

in (2.4) to the RHS and then put the prior bound on |Q |. These two
terms will be absorbed by a constant c. If Q is not bounded, then
all terms in the LHS of the identity (2.4) are not negative. In both
scenarios, we obtain

(1 − δ)|Qξ (ξj)|2 < LHS of (2.4) (2.7)

≤ c + (2 +
1
σ

− d)|Qξ (ξj)|2.

Note that 1−δ > 2+
1
σ
−d, and hence, we reach a contradiction in

the inequality (2.7) by choosing a sufficiently large ξj. Therefore,
we conclude that |Qξ | is bounded. Combining the cases of ξ < M
and ξ → ∞, we conclude that |Q (ξ )| is bounded for all ξ > 0. □

Remark 2.3. The only limitation for extending our results to
d = 1 is the argument on choosing the parameter δ > 0, where
we want 1− δ > 2+

1
σ

− d to be true. This implies that we need
2 +

1
σ

− d < 1, implying d > 1 +
1
σ
> 1.

Before we state our existence and uniqueness results for
Eq. (2.1), we recall three lemmas on Volterra integral equations
from [36] on existence, continuity and extension of solutions.

Lemma 2.4 (Existence and Uniqueness for the Volterra Integral
Equation). Consider the Volterra integral equation

x(t) = f (t) +

∫ t

0
g(t, s, x(s))ds. (2.8)
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Fig. 1. Q solutions in the coordinates (C,D) for different values of parameter a with fixed value of Q (0) ≡ Q1,0(0). Left: a = 0.8. Right: a = 1. Both solutions show
fast oscillating behavior when approaching the origin, thus, not suitable candidates for the blow-up profiles (the value of a with no oscillations is close to 0.9).

Fig. 2. Q profiles (we plot |Q |). Left: The blue curve is the first solution Q1,0 in the branch Q1,J and the red one is the first bifurcation solution Q1,1 . Right: The
phase plane for the 3d cubic case in coordinates (C,D).

Fig. 3. Q profiles for d = 3, σ = 2 (left) and the phase plane for Q (right).

Let a, b and L be positive numbers, and for some fixed α ∈ (0, 1) we

define c = α/L. Suppose

• f is continuous on [0, a],
• g is continuous on U = {(t, s, x) : 0 ≤ s ≤ t ≤

a and |x − f (t)| ≤ b},

• g is Lipschitz with respect to x on U, i.e., |g(t, s, x) − g(t, s, y)|

≤ L|x − y|, if (t, s, x), (t, s, y) ∈ U.

If M = maxU |g(t, s, x)|, then there exists a unique solution of (2.8)

on [0, T ], where T = min[a, b/M, c].
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Fig. 4. Q profiles for d = 3, σ = 3 (left) and the phase plane for Q (right).

Fig. 5. The change of a and Q (0) = Q1,0(0) with respect to the dimension d for the cubic case (σ = 1).

Fig. 6. The change of a and Q (0) = Q1,0(0) with respect to the dimension d for the quintic case (σ = 2).

Lemma 2.5 (Continuity for the Volterra Integral Equation). Let f :

[0, a] → R and g : U → R both be continuous, where U =

{(t, s, x) : 0 ≤ s ≤ t ≤ a and |x − f (t)| ≤ b}. Then there exists
a continuous solution of (2.8) on [0, T ], where T = min[a, b/M]

and M = maxU |g(t, s, x)|.

Lemma 2.6 (Extension of the Solution). Let f : [0, inf) → R and
g : U → R be continuous, where U = {(t, s, x) : 0 ≤ s ≤ t ≤

a and |x − f (t)| ≤ b}. If x(t) is a solution of (2.8) on an interval

[0, T ), then there exists a T̃ > T such that x(t) can be continued to
[0, T̃ ].

Theorem 2.1 (Existence and Uniqueness of Q ). If sc > 0 and d ≥ 2,

for any given initial value Q (0) ∈ R and a constant a > 0, Eq. (2.1)

has a unique C2 solution.
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Fig. 7. The change of a and Q (0) = Q1,0(0) with respect to the dimension d for the septic case (σ = 3).

Fig. 8. The change of the energy with respect to the computational interval K in dimension d = 2, 3, 4, 5 for the quintic case (σ = 2).

Proof. Eq. (2.1) is equivalent to the following Volterra integral

equations. For d = 2:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Q (ξ ) = Q (0) − ia
∫ ξ

0
sQ (s)ds

+

∫ ξ

0

[
1 + ia(2 −

1
σ
) − |Q (s)|2σ

]
×Q (s) [s(ln ξ − ln s)] ds,

Q (∞) = 0.

(2.9)

For d > 2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q (ξ ) = Q (0) − ia
∫ ξ

0
sQ (s)ds

+
1

d − 2

∫ ξ

0

[
1 + ia(d −

1
σ
) − |Q (s)|2σ

]
×Q (s)

(
s −

sd−1

ξ d−2

)
ds,

Q (∞) = 0.

(2.10)
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Fig. 9. Left: |Cnum − Cpred| for the 3d (blue solid line) and the 4d (red dash line) energy-critical cases. One can see that both errors are on the order of 10−9 . Right:
relative error |

Cnum
Cpred

− 1| of the above quantities.

Fig. 10. The relative error between the predicted blow-up rate and the numerical results for the 2d quintic case. The increase of the error at a very small L is due
to less accurate estimate of the blow-up time T .

Both of Eqs. (2.9) and (2.10) are of the form

Q (ξ ) = Q (0) +

∫ ξ

0
g(s, ξ ,Q (s))ds, Q (∞) = 0. (2.11)

By Lemmas 2.4 and 2.5 (arguing similarly to [27]), one can
easily see that (2.11) has a continuous unique solution on the
interval ξ ∈ [0,M] for a fixedM > 0 as g(s, ξ ,Q (s)) is continuous.
Both existence and uniqueness are extended to M = ∞ by
Lemma 2.6 as |Q (ξ )| is bounded on any finite interval [0,M]. We
next note that Q is the solution not only to Eq. (2.9), or (2.10), but
actually to the differential equation (2.1), and thus, differentiating
Q twice classically, it is straightforward to see that Q is of class
C2, which finishes the proof. □

Corollary 2.7. For d ≥ 2 and sc > 0, if σ = 1, then |Q (ξ )| ≲ ξ−1

for ξ large enough (recall that ξ is radial variable here, and thus,
non-negative).

Proof. When σ = 1, the term 2a
( 1
σ

− 1
) ∫ ξ

0 s|Q |
2ds in (2.3)

cancels. Then, the rest of the proof is the same as in [27, Theorem
2.2]. □

2.2. Decay of Q and an alternative proof of existence for the case
sc =

1
2

The argument of Theorem 2.1 does not provide information on
the decay rate of Q except for σ = 1 as in Corollary 2.7 (though

the asymptotic analysis in [24] showed it should be |ξ |−
1
σ , and

the argument for the cubic nonlinearity from [27] also gave the
decay rate |ξ |−1 as we showed above). An argument of X.-P. Wang
from [26] allows us to obtain extension of the existence theory of
Q to other sc > 0 with σ > 1

2 as well as the decay properties,
which we state in Theorem 2.2. We note that this theorem should
hold for all sc > 0 but for brevity we present the argument for
sc =

1
2 , see also our Remark 2.8 on how to handle other cases.

This alternative approach implies that |Q (ξ )| ≤ |ξ |−
1
σ , the same

conclusion as in the asymptotic analysis in [24].

Theorem 2.2. For any a > 0 satisfying sc =
1
2 and σ > 1

2 , there
exists a global nontrivial solution of (2.1) such that Q (ξ ) =

1

ξ
1
σ

R(ξ ),

where R(ξ ) is bounded.

Proof. In order to apply the fixed point argument, we first define
the Banach space

B =

{
y(t)|y(t) ∈ C1

[0,∞), |y(t)|,

|y′(t)|
t + 1

bounded, y(0) = (0, 0)T
}

with the norm

∥y(t)∥B = max
{

sup
t∈[0,∞)

|y(t)|, sup
t∈[0,∞)

|y(t)|
t + 1

}
.
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Fig. 11. Blow-up profiles for the 3d cubic case at different times τ and t .

We go back to Eq. (2.1). We rescale the solution Q as

Q̃ (t) =
1

a
1
2σ

Q
(

t

a
1
2

)
. (2.12)

Then Eq. (2.1) becomes

Q̃tt +
d − 1

t
Q̃t −

1
a
Q̃ + i(tQ̃t +

Q̃
σ
) + |Q̃ |

2σ
Q̃ = 0. (2.13)

Further substitution

Q̃ (t) =
1

t
1
σ

e−it2/4P(t),

and recalling sc =
d
2 −

1
σ
, transforms Eq. (2.13) into

Ptt +
2sc − 1

t
Pt +

1
σ

(
2 +

1
σ

− d
)

1
t2

P −
1
a
P (2.14)

+
t2

4
P − iscP +

|P|
2σ P
t2

= 0.

The term 2sc−1
t Pt is eliminated by taking sc =

1
2 . By splitting

P = x1+ix2, where x1 and x2 are real and x = (x1, x2)T , and rewrit-
ing (2.14) as a first order system by letting X = (x(t), xt (t))T , we
obtain{
X ′

= A(t)X + Hy(t)X
X(0) = (0, 0, b, 0)T ,

(2.15)

where b is some constant, and

A(t) =

[
0 I

−a(t)I +
1
2
J 0

]
, Hy(t) =

⎡⎣ 0 0
|x(t)|2σ

t2
I 0

⎤⎦ ,
a(t) =

t2

4
−

1
a

+
1
σ

(
3
2

−
d
2

)
1
t2
, J =

[
0 −1
1 0

]
,

(2.16)

and I is the 2 × 2 identity matrix.
From (2.16), we observe that the linear part A(t) is of the

same form as in [26], except with the extra term 1
σ
( 32 −

d
2 )

1
t2

in a(t), which is of the higher order and can be neglected in the
analysis. Therefore, the uniform bound on the linear term A(t) is
obtained according to the argument in [26, Section 3 and Section
4, Chapter 2].

Remark 2.8. The statement of Theorem 2.2 holds for other
sc ̸=

1
2 , which can be obtained as follows: if sc ̸=

1
2 , then the

matrix A(t) in (2.16) becomes

A(t) =

⎡⎣ 0 I

−a(t)I +
1
2
J

1 − 2sc
ξ

I

⎤⎦ .
Consequently, the four eigenvalues of the matrix A(t) are

λ1 =

√
−a +

i
2

− 2sc + 1, λ2 =

√
−a −

i
2

− 2sc + 1,

λ3 = −

√
−a +

i
2

− 2sc + 1, λ3 = −

√
−a −

i
2

− 2sc + 1.

Next, after some tedious computations, we get the correspond-
ing eigenfunctions, then diagonalizing the matrix A(t) yields a
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Fig. 12. Blow-up data for the 3d cubic case: ln(T − t) vs. ln(L) (upper left), the quantity a(τ ) (upper right), the distance between Q and v on time τ (∥|v(τ )|−|Q |∥L∞
ξ
)

(lower left), the relative error with respect to the predicted blow-up rate (lower right).

Fig. 13. The relative error comparison when choosing different step sizes in space and time for the 3d quintic (σ = 2) case.

corresponding expression to (2.16) and neglecting higher orders
finishes this argument in a general case.

Continuing with the proof of the theorem, we follow the
same process as in [26, Chapter 2]: it is easy to see that for
Lemma 2 in [26, Section 4, Chapter 2], the prior bound for the
nonlinear term B̃y(t), which comes from a series of linear trans-
formations on Hy(t) (see [26, Section 3, Chapter 2]), turns out to
be ∥B̃y(t)∥B ≤

1
tα for large t , where α = min{3, 2σ + 1}. In order

to apply the Gronwall’s inequality for Lemma 3 in [26, Section 4,
Chapter 2] for the next step, we need 2σ + 1 < 2. Thus, we need
σ > 1

2 .

The proof of Theorem 2.2 is completed by an application of
the Schauder fixed point theorem. The rest of the details can be
found in [26, Section 4, Chapter 2]. □

Remark 2.9. Note that the above Theorems 2.1 and 2.2 do not
guarantee that for any a > 0, the solution Q would be slowly
decaying, i.e., Q = αQ1 + βQ2 with β = 0, where Q1 and Q2
are as in (3.4) in Section 3. This unique solution Q may include
the fast oscillating tails from Q2 part, which is not suitable for us
(due to zero Hamiltonian). The main issue is to identify for which
a > 0, solutions Q do not have fast oscillating parts, which we
start addressing in the next section.
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Fig. 14. Blow-up profiles for the 4d cubic case at different time τ and t .

3. Profiles Q

Observe that after rescaling (1.7), we have the mass and en-
ergy in terms of v as

M[v] = L(t)2sc
∫
Rd

|v|2dx, (3.1)

E[v] = L(t)2sc−2 1
2

∫
Rd

(
|∇v|2 −

2
p + 1

|v|p+1
)
dx (3.2)

def
=
ωd

2
L(t)2sc−2 H[v].

It was shown in [27], see also [29], that in the cubic NLS case
(and 2 < d < 4, or equivalently, 0 < sc < 1), the Hamiltonian
H[Q ] = 0 if and only if⏐⏐⏐⏐( 1
σ

+
i
a

)
Q (ξ ) + ξQξ (ξ )

⏐⏐⏐⏐ → 0 as |ξ | → ∞. (3.3)

We note that this property is an essential ingredient in numerical
study of solutions to (1.9), since it is a good approximation for the
boundary condition Q (∞) = 0 by taking ξ = K in (3.3) for some
K large enough (e.g., K = 200).

We next investigate suitable boundary conditions in the case
sc ≥ 1. Recall that the asymptotic analysis in [22] for Eq. (2.1)
shows that one can drop the (higher order) nonlinear term
|Q |

2σQ in (1.9) and obtain Q as a linear span of two linearly
independent solutions

Q1 ∼ |ξ |−
i
a −

1
σ , Q2 ∼ e−

iaξ2
2 |ξ |

i
a −d+ 1

σ , (3.4)

and hence, Q = αQ1 + βQ2. As discussed in the introduction,
we exclude the fast oscillating solution Q2, since only Q1 with

the slow decaying tails would produce potential candidates for
the stable blow-up profile in the NLS equation (see [5,14] for
further details). Note that if Q ∼ Q1, then the decay of Q is
|ξ |−

1
σ , as we also show in Theorem 2.2. Computing H[Q ], we

note that both terms do not converge in the energy-supercritical
case (the asymptotic behavior is ξ 2(sc−1) as ξ → ∞) and give
some constant when sc = 1, see exact computation at the end of
this section. Therefore, we no longer have the zero Hamiltonian
property for Q when sc ≥ 1, however, Eq. (3.3) is still a good
approximation for the boundary condition Q (∞) = 0, since the
solution Q must be linearly dependent on Q1 when ξ → ∞;
therefore, computing the Wronskian for Q and Q1, gives us(

1
σ

+
i
a

)
Q (ξ ) + ξQξ (ξ ) = 0 as ξ → ∞,

which yields (3.3) in all cases sc > 0. Thus, we approximate the
boundary condition Q (∞) = 0 by(

1
σ

+
i
a

)
Q (K ) + KQξ (K ) = 0, (3.5)

taking sufficiently large K .
We are now ready to compute the profiles for the mass-

supercritical cases, including energy-critical and energy-
supercritical regimes. We first confirm the results of Budd et al.
in [27] (in particular, we show our computations in the 3d cubic
case (d = 3, σ = 1) as the computational consistency check),
and then show the results for other nonlinear powers such as
p = 5 and p = 7 (or σ = 2, 3, correspondingly) and dimensions
d = 2, 3, 4, 5.
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Fig. 15. Blow-up data for the 4d cubic case: ln(T − t) vs. ln(L) (upper left), the quantity a(τ ) (upper right), the distance between Q and v on time τ (∥|v(τ )|−|Q |∥L∞
ξ
)

(lower left), the relative error with respect to the predicted blow-up rate (lower right).

3.1. Computation of Q

We split the solution Q into the real and imaginary parts
Q = P + iW . Then, Eqs. (2.1) and (3.5) become⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆P − P − a(
W
σ

+ ξWξ ) + (P2
+ W 2)σ P = 0,

∆W − W + a(
P
σ

+ ξPξ ) + (P2
+ W 2)σW = 0,

Pξ (0) = 0,
W (0) = 0,
Wξ (0) = 0,
1
σ
P −

1
a
W + KPξ = 0,

1
a
P +

1
σ
W + KWξ = 0.

(3.6)

The equation system (3.6) is discretized by the Chebyshev
collocation points and differential matrices (see [37,38]). Then, it
reduces into the nonlinear algebraic system which can be solved
by the matlab solver fsolve. The initial guess for the solver
fsolve for such case is obtained by solving the initial value
problem of (2.1) by the matlab solver ode45, with the estimation
of the parameters a and P(0). This method requires a relative
accurate estimation on the values of a and P(0). However, since
we know that a ≈ 0.917 and P(0) ≈ 1.885 for σ = 1
from [14,27], the estimation on a and P(0) for the other cases can
be obtained by continuous parameter search. For example, if we
want to compute the 4d cubic case (d = 4 and σ = 1), we use
the values of a and P(0) to compute the initial guess of d = 3.1,

and then compute the solution Q for d = 3.1. Next, we use these
parameters of a and P(0) to compute the case for d = 3.2, and fi-
nally until d = 4. During our computation, this estimation can be
refined by extrapolation, e.g., a|d=4= 3a|d=3.9−3a|d=3.8+a|d=3.7.
This refinement allows us to take larger steps on the dimension
or nonlinearity and also reduce the iterations in the fsolve in
the next stage.

We use N = 257 Chebyshev collocation points and take
the length of the computational interval LD = 200 during our
computation. The tolerance on fsolve is set to be 10−15. For
most of the cases, the residue for the algebraic system is on the
order of 10−12.

3.2. Numerical results on profiles Q

We first show our results of Q solutions in the 3d cubic case
(see Fig. 2), where we plot |Q | (since Q is complex-valued). Our
challenge is to select the initial condition Q (0) and the parameter
a that yields the slowly oscillating type Q1 solutions of the profile
equation. In [27] it was done by considering the perturbations on
the dimension (d = 2.0001, 2.001, 2.01, etc.) and showing that
(at least some) Q1-type solutions of the profile equation can be
organized in branches of multi-bump solutions QK ,J .

In these multi-bump solutions QK ,J the index K = 0, 1, 2, . . .
indicates the branch of the sequence. In the cubic NLS case in [32]
it was shown that solutions of each specific branch K converge
non-uniformly as d → 2 to the H1 solution Q K of the ‘ground
state’ equation (1.5) (here, Q 0

≡ 0, Q 1 is the ground state, Q l,
l ≥ 2, are the excited, sign-changing, states). Thus, we are mostly
interested in the branch K = 1, or {Q1,J}, solutions of which non-
uniformly converge to the well-known ground state. Solutions
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Fig. 16. Blow-up profiles for the 5d cubic case at different time τ and t .

within the branch were classified in [27] (in the cubic NLS case)
by the number of bumps (or maxima) in each sequence, J =

0, 1, . . ., when the dimension d was close to 2. It was also shown
that when d is close to 2, the number K + J indicated the number
of turning points. As we increase the dimension, the number of
turning points (as well as maxima) change for a fixed J , and some
profiles of |Q | loose some turning points, and some even become
completely monotone (with no bumps), see Figs. 2–4; in any case,
here we keep the notation QK ,J for consistency.

We obtain Q1,0 from initial guess for parameters a and Q (0)
in the 3d cubic case we extracted from the literature [14,27]
– see the blue curve in Fig. 2; this confirms matching of our
computations with previous results. By using another initial guess
for parameters a and Q (0), for example, from [27], we obtain the
solution Q1,1, which is the first bifurcation from Q1,0 (see the red
dashed curve in Fig. 2).

To really understand the dependence of solutions on param-
eters a and Q (0), we study the pseudo-phase plane, which was
introduced by Kopell–Landman in [29] and adopted in Budd–
Chen–Russell [27]. We write

Q ≡ C(ξ ) exp
(
i
∫ ξ

0
ψ

)
, D(ξ ) = Cξ/C ≡ Re(Qξ/Q ). (3.7)

In other words, C is the amplitude of Q , C(ξ ) = |Q (ξ )|, D is its
logarithmic derivative, and ψ is the gradient of the phase. In the
coordinates (C,D) we will track the behavior of the graph as it
is decreasing down to the origin as both C and D approach zero
when ξ → ∞. To see that recall that asymptotically

Q (ξ ) ∼ α ξ−
1
σ exp

(
−

i
a

log(ξ )
)

+ β ξ−(d− 1
σ )

× exp
(

−
i a ξ 2

2
+

i
a
log(ξ )

)
,

where the first term is slowly decaying and the second term
decays faster with fast oscillations. The solution Q that varies
slowly at infinity, would have no oscillations at the end of the
curve (as C → 0), since

C ∼
α

ξ
1
σ

and D ∼ −
1
σ ξ

as ξ → ∞.

Thus, such solutions will approach the origin in coordinates (C,D)
along the curve D ∼ −

1
σ ασ

Cσ . In the case of σ = 1 (cubic
power), this will be a straight line with slope −1/α, which we
demonstrate in the paths shown in Fig. 2 (right plot). In the
case of σ = 2, 3, this will be a parabola (quadratic or cubic,
respectively), which we show in Figs. 3 and 4 (plots on the right).

If the solution Q oscillates fast at infinity, then its graph in
the coordinates (C,D) will approach the origin in the oscillating
manner, since

C ∼
α

ξ
1
σ

and D ∼ −
β a
α

1

ξ d−
2
σ −1

sin
(
a ξ 2

2
−

2
a
log(ξ )

)
.

We show an example of such oscillating behavior for σ =

1 (cubic nonlinearity in 3d) in Fig. 1, where we perturb the
value of a, while keeping Q (0) fixed (recall Q (0) = Q1,0(0) =

1.8856569903): taking a = 0.8 (left plot) and a = 1 (right
plot). Both plots show severe oscillations as the curve approaches
the origin (recall that for a ≈ 0.9, or more precise, a =

0.9173561446, the curve has no oscillations as shown in Fig. 2).
We note that our results in Fig. 2 match the ones obtained in [27]
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Fig. 17. Blow-up data for the 5d cubic case: ln(T − t) vs. ln(L) (upper left), the quantity a(τ ) (upper right), the distance between Q and v on time τ (∥|v(τ )|−|Q |∥L∞
ξ
)

(lower left), the relative error with respect to the predicted blow-up rate (lower right).

both in the amplitude and phase plane representations, therefore,
we conclude that our numerical approach is trustful.

In Figs. 3–4 we show |Q | profiles for the 3d quintic (d = 3
and σ = 2) and 3d septic (d = 3 and σ = 3) cases, which are the
energy-critical and energy-supercritical cases, respectively.

We next investigate how the values Q (0) def
= Q1,0(0) and a

change with respect to the dimension d. The results are shown
in Fig. 5 (cubic), Fig. 6 (quintic) and Fig. 7 (septic). Observe that
both values produce a smooth curve from the energy-subcritical
regime to the energy-supercritical regime.

We next study more closely the values of (conserved) en-
ergy depending on the critical scaling index sc . Recall that moti-
vated by the scaling invariance, we seek the self-similar blow-up
solutions of (1.1) of the form

u(r, t) =
1

(
√
2a(T − t))

1
σ

Q
(

r
√
2a(T − t)

)
(3.8)

× exp
(
iθ +

i
2a

log
T

T − t

)
.

The rescaled mass and energy for u(r, t) in terms of Q (ξ ) are

M [u(t)] = Ca,d(T − t)sc
∫

∞

0
|Q (ξ )|2 ξ d−1 dξ, (3.9)

E [u(t)] = Ca,d(T − t)sc−1
∫

∞

0

(
|Qξ |2 −

1
σ + 1

|Q |
2σ+2

)
(3.10)

× ξ d−1 dξ = Ca,d(T − t)sc−1H[Q ].

For sc < 1, (T − t)sc−1
→ ∞ as t → T . From the energy

conservation in (3.10), H[Q ] should be zero, since E [u(t)] remains

constant in time t . For sc = 1, (T − t)sc−1
= 1, and thus, H[Q ]

should be a constant. For sc > 1, (T − t)sc−1
→ 0 as t → T , and

thus,∫ ξ

0

(
|Qξ |2 −

1
σ + 1

|Q |
2σ+2

)
ξ d−1 dξ → ∞ as ξ → ∞.

Fig. 8 justifies the above reasoning. We calculate the energy of Q
in the quintic NLS case (σ = 2) in various dimensions, truncated
at different lengths of the interval K . The top left subplot shows
that in the 2d case the energy E[Q ] goes to zero as the interval
K → ∞, this is consistent for the energy-subcritical setting, here
sc =

1
2 < 1. The top right subplot shows that in the 3d case the

energy E[Q ] goes to a constant as K → ∞, this is the energy-
critical case, sc = 1. The bottom left subplot shows that in the 4d
case the energy E[Q ] goes to negative infinity linearly as K → ∞,
here sc =

3
2 > 1. The bottom right subplot shows that in the

5d case the energy E[Q ] goes to negative infinity quadratically as
K → ∞, here sc = 2 > 1. Furthermore, the bottom two subplots
justify that the solution Q decays with a rate of |Q | ∼ ξ−1/σ ,
since substituting |Q | = ξ−1/σ into (3.10) and integrating from
K0 to ∞, one gets

E(Q ) ∼

∫
∞

K0

ξ 2sc−3dξ .

This matches the linear decay for sc =
3
2 (e.g., see d = 4 and

σ = 2 in Fig. 8), and the quadratic decay for sc = 2 (e.g., see
d = 5 and σ = 2 in Fig. 8).
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Fig. 18. Blow-up profiles for the 2d quintic case at different time τ and t .

3.3. Further justification of the constant Hamiltonian for the energy
critical case

The conjecture that H[Q ] = const for the energy critical case
(sc = 1) can be justified by the following argument.

From (3.4) the asymptotic behavior of Q satisfies Q (ξ ) ≈

C0 ξ
−

i
a −

1
σ for ξ ≫ 1. Assuming H[Q ] being finite, we have

H[Q ] =

∫ ξ0

0

(
|Qξ |2 −

1
σ + 1

|Q |
2σ+2

)
ξ d−1 dξ (3.11)

+

∫
∞

ξ0

(
|Qξ |2 −

1
σ + 1

|Q |
2σ+2

)
ξ d−1 dξ < ∞.

The first integral of (3.11) gives a constant. Since neither of the
terms |Qξ |2 and |Q |

2σ+2 are integrable, these two terms must
cancel each other in the second integral. The direct calculation
for the second integral in (3.11) gives

C0 =

[
(σ + 1)

(
1
σ 2 +

1
a2

)] 1
2σ

. (3.12)

Fig. 9 shows the difference of C0 numerically calculated from
(3.6) (C0 := Cnum) and C0 calculated from (3.12) (C0 := Cpred).
Observe that the difference is on the order of 10−9 for Q1,0 in
both d = 3 (blue solid line) and d = 4 (red dash line). Moreover,
both are decreasing as ξ is increasing.

Now that we have developed a certain description of pro-
files Q , in particular, numerical identification and properties of
Q1,0, we proceed to investigating the dynamics of stable blow-up
solutions in the mass-supercritical cases.

4. Blow-up dynamics for the NLS equation

4.1. Numerical method

We compute the rescaled equation (1.7) and then reconstruct
the solution u(x, t) from the rescaled equation, since the so-
lution v(ξ, τ ) to the rescaled equation exists globally in time.
This method is called the dynamic rescaling method, which was
first introduced by LeMesurier, Papanicolaou, Sulem and Sulem
in [13,22]. This method needs the prior knowledge of the scaling
of the singular part of the solution (scaling property).

There are several other methods that can track the blow-up
dynamics. For example, one may use the adaptive mesh method
in [15], moving mesh method in [27], iterative grid redistribu-
tion method in [39] for multi-dimensions and [40] for the 1d
case, see also discussion on numerical treatments in [33]. These
methods, unlike the dynamic rescaling method, do not need the
prior knowledge of the scaling of the singular part and can deal
with more general blow-up dynamics cases. Here, however, we
consider generic data which leads to the peak-type solutions,
i.e., solutions attain their maximum at the origin, see [11, Chap-
ter14], and the prior knowledge is already given by rescaling.
Therefore, the dynamic rescaling method is more effective for our
task.

We fix the value ∥v(ξ, τ )∥L∞
ξ

≡ 1 in time τ as in [24] and [41],
and write

L(t) =

(
1

∥u(t)∥L∞

)σ
, (4.1)

and

a(τ ) = −σ Im (v̄∆v)|(0,τ ) . (4.2)
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(lower left), the relative error with respect to the predicted blow-up rate (lower right).

Eq. (1.7) can be written as

i vτ +∆v + N (v) = 0, τ ∈ [0,∞), ξ ∈ [0,∞), (4.3)

with

N (v) = ia(τ )
(
ξvξ +

v

σ

)
+ |v|2σv.

The initial value v0(ξ ) is calculated from (1.6) by setting ∥v0∥L∞ =

1.
Let N ∈ Z be a fixed integer, [0, LD] the computational domain

with LD ≫ 1, and h =
LD
N the uniform grid size in space. Let

vj ≈ v(jh, τ ) denote the semi-discrete approximate solution at
jh, j = 0, 1, . . . ,N . The spatial derivative is approximated by the
sixth order central difference scheme:

vξ (jh, τ ) ≈ D(1)
6 vj =

1
60h

[−vj−3 + 9vj−2 − 45vj−1 (4.4)

+45vj+1 − 9vj+2 + vj+3],

vξξ (jh, τ ) ≈ D(2)
6 vj (4.5)

=
1

180h2 [2vj−3 − 27vj−2 + 270vj−1

− 490vj + 270vj+1 − 27vj+2 + 2vj+3],

and the Laplacian operator is approximated by

∆v(jh, τ ) ≈ ∆hvj = vξξ (jh, τ ) +
d − 1
jh

vξ (jh, τ ). (4.6)

When the grid points beyond the right-hand side computational
domain are needed, we set up the fictitious points obtained by

extrapolation,

vN+2 = 8vN+1 − 28vN + 56vN−1 − 70vN−2

+56vN−3 − 28vN−4 + 8vN−5 − vN−6.

For the grid points beyond the left-hand side computational do-
main, note that v(ξ ) is radially symmetric, and thus, we use the
fictitious points v−j = vj. The singularity at ξ = 0 in the Laplacian
term ∆h is eliminated by the L’Hospital’s rule

lim
ξ→0

d − 1
ξ

vξ = (d − 1)vξξ .

The time discretization is similar to our previous work [12]
for the mass-critical case (see also in [5]). Let ∆τ denote the
uniform time step with respect to the rescaled time τ and τm =

m ·∆τ ,m = 1, 2, . . .. Let v(m)
j ≈ v(jh,m ·∆τ ) be the approximate

solution at (jh,m · ∆τ ), and Lm the approximation of L(τm). The
time evolution of (4.3) can be approximated by the second order
Crank–Nicolson–Adam–Bashforth method:

i
v
(m+1)
j − v

(m)
j

∆τ
+

1
2

(
∆hv

(m+1)
j +∆hv

(m)
j

)
(4.7)

+
1
2

(
3N (v(m)

j ) − N (v(m−1)
j )

)
= 0,

given the initial condition v(0) and v(1). Here, v(1) is obtained by
the standard second order explicit Runge–Kutta method (RK2).
We introduce the two-step Adams predictor–corrector method as
in [11, Chapter 28] to increase the accuracy and stability, while
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Fig. 20. Blow-up profiles for the 3d quintic case at different time τ and t .

remaining a second order scheme in time:

i
v
(m+1)
pred,j − v

(m)
j

∆τ
+
∆hv

(m+1)
pred,j +∆hv

(m)
j

2
(4.8)

+
3
2
N (v(m)

j ) −
1
2
N (vm−1

j ) = 0, (P)

i
v
(m+1)
j − v

(m)
j

∆τ
+
∆hv

(m+1)
j +∆hv

(m)
j

2
(4.9)

+
1
2
N (v(m+1)

pred,j ) +
1
2
N (v(m−1)

j ) = 0. (C)

We use the method in [24] to reconstruct the solution in (r, t)
variable. After getting the value v(m+1), we update the value a(m+1)

from (4.2). From (1.8), ln L(τm+1) is obtained by the second order
trapezoid rule:

ln L(τm+1) = ln L(τm) +
∆τ

2
(a(m+1)

+ a(m)). (4.10)

Then, we have L(τm+1) = exp(ln L(τm+1)). Denoting ∆tm+1 :=

tm+1−tm, we obtain this difference from the last equation of (1.6)

∆tm+1 = ∆τL2(τm+1). (4.11)

Thus, the mapping for rescaled time τ back to the real time t is
calculated as

t(τm+1) = t((m + 1)∆τ ) :=

m+1∑
j=1

∆tj = ∆τ

m+1∑
j=1

L(τj)2. (4.12)

Finally, the numerical solution u(m+1)
j ≈ u(ξjL(τm+1), τm+1) can be

reconstructed.

Note that as time evolves, the time difference T − t(τn) will
become smaller and smaller, and eventually reach saturation
level (with little change), therefore, we treat the stopping time
t(τend) = t(τM ) as the blow-up time T , where M is the total
number of iterations when reaching the stopping condition (L <
10−24). Then, we can take

T = t(τend) = t(M∆τ ) = ∆τ

M∑
j=1

L(τj)2. (4.13)

Consequently for any ti, we calculate T − ti as

T − ti =

M∑
j=i+1

∆tj = ∆τ

M∑
j=i+1

L(τj)2. (4.14)

This indicates that instead of recording the cumulative time ti, we
only need to record the elapsed time between the two recorded
data points, i.e., ∆ti = ti+1 − ti. By doing so, it can avoid the loss
of significance when adding a small number onto a larger one.

We construct the artificial boundary condition on the right-
hand side from the argument in [41] and [5, Chapter 6.1], since
otherwise, the solution to (1.7) has to be solved in the entire
space ξ > 0. For ξ ≫ 1, the nonlinear term and the Laplacian
terms is of the higher order compared with the other linear terms,
and consequently, can be negligible. Consequently, Eq. (1.7) is
reduced to

vτ + a(τ )
( v
σ

+ ξvξ

)
= 0 (4.15)
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(lower left), the relative error with respect to the predicted blow-up rate (lower right).

near ξ = LD, the right endpoint of the computational domain.
Eq. (4.15) can be solved exactly (see [5,41])

v(ξ, τ ) = v

(
ξ
L(τ )
L(τ0)

, τ0

)(
L(τ )
L(τ0)

) 1
σ

, (4.16)

which suggests that at ξ = LD,

v(LD, τm+1) = v

(
LD

L(τm+1)
L(τm)

, τm

)(
L(τm+1)
L(τm)

) 1
σ

. (4.17)

Note that a(m)
= −

L′(τm)
L(τm) from (1.8), and L(τm)

L(τm−1)
can be approxi-

mated with the second order accuracy by

L(τm)
L(τm−1)

= e−
∆τ
2 (a(m−1)

+a(m))
+ O(∆τ 3)

from (4.10). The value L(τm+1) can be approximated by the second
order central difference

L(τm+1) = L(τm−1) + 2∆τLτ (τm) + O(∆τ 3). (4.18)

Multiplying Eq. (4.18) by 1/L(τm), we obtain

L(τm+1)
L(τm)

=
L(τm−1)
L(τm)

− 2∆τa(m)
+ O(∆τ 3). (4.19)

Therefore, the right-hand side boundary condition is approxi-
mated with the second order accuracy

v(LD, τm+1) = v

(
LD(e

∆τ
2 (a(m−1)

+a(m))
− 2∆τa(m)), τm

)
(4.20)

×

(
(e

∆τ
2 (a(m−1)

+a(m))
− 2∆τa(m))

) 1
σ
.

Since we are simulating the generic blow-up solutions, the ampli-
tude ∥u∥L∞ is increasing. Thus, for all τ > 0, the term L(τm+1)

L(τm) < 1.
Taking ζ = LD

L(τm+1)
L(τm) , then ζ must be within the computational

domain [0, LD], but not necessarily to be one of the grid points.
A cubic spline interpolation is adopted to evaluate v(ζ , τm) and
consequently lead to v(LD, τm+1) from (4.17).

An alternative method for obtaining the artificial boundary
condition is to solve Eq. (4.15) numerically, since at the point ξ =

LD, it reduces to the ODE with respect to τ . In [42], the authors
solved Eq. (4.15) by using the second order Adam–Bashforth
method

v(LD, τm+1) = v(LD, τm) (4.21)

−
1
2
∆τ

[
3a(m)

(
v(LD, τm)

σ
+ LDvξ (LD, τm)

)
− a(m−1)

(
v(LD, τm−1)

σ
+ LDvξ (LD, τm−1)

) ]
,

where the terms v(LD, τn) ≈ v
(n)
N and vξ (LD, τn) is calculated by

the six order central difference in space from v(LD, τn), where
n = m − 1 and m.

While both numerical boundary conditions (4.20) and (4.21)
are of the second order accuracy and lead to the similar results,
our numerical experiments suggest that using the method (4.20)
allows us to take a larger time step ∆τ .
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Fig. 22. Blow-up profiles for the 4d quintic case at different time τ and t .

4.2. The rescaling of Q and a

Recall the solution u(r, t) to Eq. (1.1) satisfies the self-similar
form

u(x, t) =
1

L(t)
1
σ

Q
(

x
L(t)

)
exp

(
iθ +

i
2a

log
T

T − t

)
, (4.22)

where L(t) is predicted to be

Lpred(t) ≈ (2a(T − t))
1
2 (4.23)

from [24].
Suppose Q (ξ ) is the profile from solving (3.6), and Q̃ (η) is

another profile with ∥Q̃∥L∞ = ∥v0(0)∥L∞ (e.g., ∥Q̃∥L∞ = 1). From
(4.22), we have a family of the Q profiles

Q (ξ ) =

(
Q (0)

Q̃ (0)

)
Q̃
(
ξ

(
Q (0)

Q̃ (0)

)σ)
(4.24)

and consequently, the value ã corresponding to the value a from
(3.6) is

ã = a
[

|v0(0)|
Q (0)

]2σ
. (4.25)

For simplicity, we still use Q to represent the family of Q profiles,
adding ‘‘up to scaling’’.

4.3. Numerical results

In this section, we list examples of initial data we choose and
the quantities we track. We take h = 0.1, k = 10−4/2σ−2, LD =

100 for the dimension d = 2, 3, and LD = 200 for the dimension

Table 1
Samples of initial conditions u0 used in our simulations.
d σ u0 E[u0] u0 E[u0]

3 1 5e−r2 <0 6
(1+r2)4

>0

4 1 6e−r2 <0 8
(1+r2)4

>0

5 1 6e−r2 <0 8
(1+r2)4

>0

2 2 2e−r2 >0 2.5
(1+r2)4

<0

3 2 3e−r2 <0 3
(1+r2)4

>0

4 2 3e−r2 <0 3
(1+r2)4

>0

3 3 2.5e−r2 <0 2.5
(1+r2)4

>0

d = 4, 5, since larger dimensions may lead the approximation
of the artificial boundary condition (4.20) or (4.21) being more
reflective, and thus, need larger interval. Other choices of those
parameters lead to the similar results (for example, we have
tested for h = 0.05 or ∆τ = 10−4/2σ−1, see Fig. 13). The initial
data is taken to be Gaussian u0 = Ae−r2 or rational function with
fast enough decay u0 =

A
(1+r2)4

. Table 1 lists the examples of
initial data together with the energy sign.

In our numerical simulations, the following quantities are of
the most interest:

• blow-up profiles v(ξ, τ ) at different time when approaching
blow-up time T ;

• blow-up rate ln L vs. ln(T − t);
• the value of a(τ ) with respect to the time τ ;
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ξ
)

(lower left), the relative error with respect to the predicted blow-up rate (lower right).

• the dependence of the distance ∥|v(τ )| − |Q |∥L∞
ξ

between
|Q | and |v| on the rescaled time τ ;

• the relative error between blow-up rate and the predicted
blow-up rate

Erel =

⏐⏐⏐⏐⏐⏐
(

L(t)√
2ã(T − t)

) 1
σ

− 1

⏐⏐⏐⏐⏐⏐ ,
where the value ã is taken to be ã = a(τend), i.e., when the
stopping criterion reaches

L < 10−24. (4.26)

Since we track the quantities ln(L), ln(T − t), a(τ ) in the simula-
tions, the relative error Erel is calculated as

Erel =

⏐⏐⏐⏐exp( 1
2σ

(2 ln(L) − ln(T − t) − ln 2 − ln ã)
)

− 1
⏐⏐⏐⏐ . (4.27)

When each term in (4.27) is moderate (not too large or too
small), the accuracy is improved. Note that the value ã can also
be calculated from Eq. (4.25), where the values of a and Q (0) are
obtained from solving Eq. (3.6).

We numerically verify that the ã from these two methods
only differs at an order 10−8. This indicates that the profile of
Q obtained in Section 3 is indeed the blow-up profile.

In Fig. 10, the left picture shows the relative error in our
simulations ending at L ∼ 10−24, and the right one is up to
L ∼ 10−16. The relative error always stays small until the last
few points close to our simulation ending time. It suggests that
this phenomenon is due to the inaccurate estimation of T , instead
of the solution behavior itself. In the rest of our work, to make it

less confusing, we only show the relative error up to L ∼ 10−20,
while we end our simulation at L < 10−24.

4.4. Consistency verification

We first report the data for the 3d cubic case, which has
been considered in [14,27,42], as the purpose of verifying the
consistency. Figs. 11 and 12 show the blow-up dynamics for the
3d cubic case. We also track the relative error Erel for different h
and k. As an example, we list the 3d quintic case in Fig. 13, which
shows that while the different space step size does not affect the
relative error, shrinking the time step will lead to more accurate
results.

4.5. Numerical results

We now present our numerical results for different dimen-
sions and nonlinearities.

We first present the cubic case in dimensions d = 3, 4, 5.
These cases include sc < 1, sc = 1 and sc > 1, respectively.
Fig. 11 shows the blow-up profiles at different times τ (or t).
One can see that the solution converges to the predicted blow-
up profile Q , up to scaling, as τ → ∞ (or t → T ). The two
profiles become nearly indistinguishable after τ = 10. The top
left subplot in Fig. 12 shows that the slope of L on log scale is still
1
2 . The top right subplot in Fig. 12 shows that the parameter a(τ )
converges to a constant right away (before τ = 10). This indicates
that before τ = 10, the solution enters the self-similar blow-
up regime and explains why the profile v(ξ, τ ) and the rescaled
Q become indistinguishable right after τ = 10. Note that it is
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Fig. 24. Blow-up profiles for the 3d septic case at different time τ and t .

not the case for the mass-critical case, where the ‘‘log–log’’ blow-
up regime can only be reached at extremely high focusing levels
(see e.g. [5,11,12]). The bottom left subplot in Fig. 12 shows the
distance between |v(ξ, τ )| and the rescaled |Q (ξ )|. The quantity
stabilizes before τ = 10, which agrees with the time when the
quantity a(τ ) stabilizes in the top right subplot. The bottom right
subplot in Fig. 12 shows the relative error Erel. This quantity Erel
stabilizes at the focusing level L ∼ 10−6 with a satisfactory
order (around 10−5). This shows that there is no such ‘‘adiabatic’’
regime occurring before the self-similar regime as the case for the
L2-critical NLS (see e.g., [7,8,12]).

Figs. 14 and 15 show the results for the 4d cubic case. Both
the blow-up profiles and quantities we track are similar to the
3d cubic case. Compared with the 3d cubic case in Figs. 11 and
12, the blow-up profiles become indistinguishable around τ = 50
(see Fig. 14), and the relative error reaches the stabilized regime
around the focusing level L ≈ 10−7 (see bottom right subplot in
Fig. 15). For the 5d cubic case, besides the similar results to the
previous cases (Figs. 16 and 17), from the bottom right subplot in
Fig. 17, we see that the relative error reaches a stabilized regime
around the focusing level L ≈ 10−8.

We next present the results for the quintic case for dimensions
d = 2, 3, 4, see Figs. 18 to 23. We obtain the similar results for
these cases as for the cubic cases above. However, by comparing
the bottom right subplots in Figs. 19, 21 and 23, we can see that
the relative error reaches the stabilized regime at the focusing
level 10−6, 10−7 and 10−8, respectively. This shows that for a
fixed nonlinearity, the higher dimension leads to the higher fo-
cusing level for the solution to reach the self-similar regime. This
is also true for the cubic cases (see Figs. 12, 15 and 17).

Finally, we list the 3d septic (sc > 1) case in Figs. 24 and
25. While the profiles and results are still similar to the previous

ones, we compare the results for different nonlinearities. Again,
the solution reaches the self-similar regime around the focusing
level L = 10−6 for the 3d cubic case, around L = 10−7 for the
3d quintic case and around L = 10−10 for the 3d septic case (see
the bottom right subplot in Fig. 25). This shows that for a fixed
dimension, the higher nonlinearity leads to the higher focusing
level for the solution to reach the self-similar regime.

5. Conclusion

We generalized the existence and local uniqueness theory of
Q for dimensions d ≥ 2 and nonlinearities other than cubic,
in the mass-supercritical NLS equations, sc > 0. From our nu-
merical simulations, we found that the energy-subcritical, critical
and energy-supercritical cases enjoy very similar stable blow-up
dynamics. We obtained the self-similar profiles to which stable
blow-up solutions converge. Our numerical results show that
E[Q ] = constant if sc = 1 and E[Q ] = −∞ if sc > 1. All these
facts show that it maybe challenging to analyze theoretically the
stable blow-up dynamics in the mass-supercritical setting. On
the other hand, unlike the mass-critical case, certain features of
the stable blow-up are easier to exhibit, for example, blow-up
solutions converge to the predicted blow-up rate very fast, which
can be simply observed numerically, and thus, we do not need to
use extended and involved asymptotic analysis on solutions to
get information about the rates such as an ‘‘adiabatic’’ regime or
the ‘‘log–log’’ regime, which appear in the mass-critical case.
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