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0. Introduction

In these notes we shall discuss various numerical aspects for the solution of advection-diffusion-
reaction equations. Problems of this type occur for instance in the description of transport-
chemistry in the atmosphere and we shall consider the equations with this application as
reference. Other examples for the occurrence of advection-diffusion-reaction equations can be
found in the introduction of Morton (1996).

The advection-diffusion-reaction equations

The mathematical equations describing the evolution of chemical species can be derived from
mass balances. Consider a concentration u(x, t) of a certain chemical species, with space
variable x and time t. Let h > 0 be a small number, and consider the average concentration
ū(x, t) in a cell Ω(x) = [x − 1

2h, x + 1
2h],

ū(x, t) =
1

h

∫ x+h/2

x−h/2
u(x′, t)dx′ = u(x, t) +

1

24
h2uxx(x, t) + · · · .

If the species is carried along by a flowing medium with velocity a(x, t) then the mass conser-
vation law implies that the change of ū(x, t) per unit of time is the net balance of inflow and
outflow over the cell boundaries,

∂

∂t
ū(x, t) =

1

h

[

a(x − 1
2h, t)u(x − 1

2h, t) − a(x + 1
2h, t)u(x + 1

2h, t)
]

.

Here a(x± 1
2h, t)u(x± 1

2h, t) are the fluxes over the left and right cell boundaries. Now, if we
let h → 0, it follows that the concentration satisfies

∂

∂t
u(x, t) +

∂

∂x

(

a(x, t)u(x, t)
)

= 0.

This is called an advection equation (or convection equation). In a similar way we can consider
the effect of diffusion. Then the change of ū(x, t) is caused by gradients in the solution and
the fluxes across the cell boundaries are −d(x ± 1

2h, t)ux(x ± 1
2h, t) with d(x, t) the diffusion

coefficient. The corresponding diffusion equation is

∂

∂t
u(x, t) =

∂

∂x

(

d(x, t)
∂

∂x
u(x, t)

)

.

There may also be a change in u(x, t) due to sources, sinks and chemical reactions, leading to

∂

∂t
u(x, t) = f(u(x, t), x, t).

The overall change in concentration is described by combining these three effects, leading to
the advection-diffusion-reaction equation

∂

∂t
u(x, t) +

∂

∂x

(

a(x, t)u(x, t)
)

=
∂

∂x

(

d(x, t)
∂

∂x
u(x, t)

)

+ f(x, t, u(x, t)) .

We shall consider the equation in a spatial interval Ω ⊂ R with time t ≥ 0. An initial profile
u(x, 0) will be given and we also assume that suitable boundary conditions are provided.
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More general, let u1(x, t), · · · , us(x, t) be concentrations of s chemical species, with spatial
variable x ∈ Ω ⊂ R

d (d = 2 or 3), and time t ≥ 0. Then the basic mathematical equations for
transport and reaction are given by the following set of partial differential equations (PDEs)

∂

∂t
uj(x, t) +

d∑

k=1

∂

∂xk

(

ak(x, t)uj(x, t)
)

=

d∑

k=1

∂

∂xk

(

dk(x, t)
∂

∂xk
uj(x, t)

)

+ fj(u1(x, t), ..., us(x, t), x, t) , j = 1, 2, ..., s

with suitable initial and boundary conditions. The quantities ak that represent the velocities
of the transport medium, such as water or air, are either given in a data archive or computed
alongside with a meteorological or hydrodynamical code. (In such codes Navier-Stokes or
shallow water equations are solved, where again advection-diffusion equations are of primary
importance.) The diffusion coefficients dk are constructed by the modellers and may include
also parametrizations of turbulence. The final term fj(c, x, t), which gives a coupling between
the various species, describes the nonlinear chemistry together with emissions (sources) and
depositions (sinks). In actual models these equations are augmented with other suitable sub-
grid parametrizations and coordinate transformations.

Numerical requirements in air pollution models

The data, such as the velocity field a, diffusion coefficients and reaction constants, are in
general not very accurate. Therefore the accuracy requirements for the numerical solution are
also low. On the other hand, with many models there are very many spatial grid points, for
instance 104 for a domain covering Europe, 106 for global models. The number of species s
may range typically from 10 to 100. So, the problems may be ”very big” and we need

• fast, ”cheap” numerical methods.

Often, one is interested in long term effects, so that the equations have to be integrated over
long time intervals. Therefore, in spite of the low accuracy demands, the numerical solutions
should be ”qualitatively correct”, and we need properties like

• mass conservation,

• positivity,

• small phase errors.

In most air pollution models the transport is advection dominated, and there can be strong,
local sources. Hence we may expect steep spatial gradients in the solution and numerical
schemes are needed with

• good resolution of steep gradients.

All these requirements together are already difficult to fulfill. In the next sections these various
aspects will be addressed.
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Further, it should also be noted that the reaction terms are usually very stiff, that is, some
reactions take place on very small time scales compared to the overall time scale, due to large
reaction constants. This implies that such terms have to be solved implicitly, which make
them difficult and time consuming. Moreover, with large reaction constants positivity is often
necessary to maintain stability of the model.

As a very simple example, consider s =
1 and f(w) = −κw2 with reaction constant
κ ≫ 1. Then solutions of w′(t) = f(w(t)) are
only stable if we start with w(0) ≥ 0. With
w(0) < 0 there will be a ”blow-up” of the
solution.

Therefore, if such a reaction term occurs
for a certain chemical component, the treat-
ment of advection-diffusion should be such
that negative values are avoided.

Relevant literature

Numerical problems arising with air pollution models are discussed in more detail in the
review paper of McRea et al. (1982) and the book of Zlatev (1995). Standard text books that
deal with advection-diffusion problems are Richtmyer & Morton (1967), Mitchell & Griffiths
(1980), Hirsch (1988) and Strikwerda (1989).

In these notes we shall mainly consider finite-difference or finite-volume methods on simple
grids. For spectral methods and finite elements we refer to Canuto et al. (1988) and Strang
& Fix (1973), respectively. More recent material on finite element methods can be found in
the monograph of Morton (1996).

Some implicit ODE methods that are suited for stiff chemistry calculations are listed in the
appendix. A comprehensive treatment of such ODE methods is found in Hairer and Wanner
(1991).
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1. Some simple space discretizations and modified equations

1.1. Test equations

To introduce numerical schemes for the advection-diffusion-reaction equations we first con-
sider some spatial discretizations for simple advection and diffusion equations with constant
coefficients. We consider the following partial differential equations (PDEs)

ut + aux = 0 for x ∈ R, t ≥ 0, (1.1)

and
ut = duxx for x ∈ R, t ≥ 0 (1.2)

with given constants a ∈ R, d > 0, given initial value u(x, 0) and the periodicity condition

u(x + 1, t) = u(x, t).

The reason for considering periodicity conditions is mainly for the ease of presentation of the
main concepts. Boundary conditions cause additional theoretical and numerical problems, as
we shall see gradually in later sections. Note that with this periodicity condition we only
have to compute the solution for 0 ≤ x ≤ 1. In this section we shall look at some simple
space discretizations and an attempt will be made to understand the qualitative behaviour of
the discretizations. This will be done (in a heuristic way) by considering so-called modified
equations. First we take a short look at the behaviour of the exact solutions.

Equation (1.1) is an advection (test-)problem. The solution simply is u(x, t) = u(x−at, 0).
Initial profiles are shifted (carried along by the wind) with velocity a. The lines x−at constant
in the (x, t)-plane are the characteristics of this advection problem. Along these characteristics
the solution u(x, t) is constant.

→

Equation (1.2) is a diffusion (test-)problem. Insight in the behaviour of solutions can be
obtained by Fourier decompositions. Consider

ϕk(x) = e2πikx for k ∈ Z, (ϕ, ψ) =

∫ 1

0
ϕ(x)ψ(x)dx.

The functions ϕk will be called Fourier modes, and (ϕ, ψ) is an inner product for the function
space L2[0, 1], consisting of all square integrable complex functions on [0, 1] with identification
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of functions that differ only on sets of measure zero. The set {ϕk}k∈Z is an orthonormal basis
for this space. For any function ψ ∈ L2[0, 1] we have

ψ(x) =
∑

k∈Z

αkϕk(x) with αk = (ϕk, ψ),

‖ψ‖2
L2

=

∫ 1

0
|ψ(x)|2dx =

∑

k∈Z

|αk|2 (Parseval’s identity).

Formal proofs of these statements can be found in analysis text books where Fourier series
are discussed, for example Pinkus & Zafrany (1997).

Now, consider (1.2) with initial profile u(x, 0) = ϕk(x) for some k. To find the solution we
make the ”Ansatz” (a motivated guess that will turn out right) by separation of variables

u(x, t) = γ(t)ϕk(x), γ(0) = 1.

Inserting this into (1.2) leads to an equation for γ(t),

γ′(t)ϕk(x) = −4π2k2d γ(t)ϕk(x),

γ(t) = e−4π2k2d t.

So we see that the Fourier modes are damped, the larger the frequency the stronger the
damping. In general, if

u(x, 0) =
∑

k

αkϕk(x),

then
u(x, t) =

∑

k

αke
−4π2k2d tϕk(x).

Because the high frequencies are damped more rapidly than the low ones, the solution will
become smoother. This is of course consistent with the physical interpretation of (1.2) as heat
flow or diffusion caused by Brownian motion of particles.

→

For the advection-diffusion test problem

ut + aux = duxx (1.3)
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with periodicity condition and u(x, 0) = ϕk(x) we get, in the same way as above,

u(x, t) = e(−2πika−4π2k2d)tϕk(x) = e−4π2k2d t
︸ ︷︷ ︸

damping

ϕk(x − at)
︸ ︷︷ ︸

shift

(superposition of previous cases). So, all Fourier modes are shifted with the same velocity and
they are damped according to their frequency.

Remark. If d were negative, then the Fourier modes with high frequency would be strongly
amplified and we would have instability in the L2-norm (blow up). The sign of the velocity
term a merely decides whether we have a shift to the left or to the right. 3

Remark. If u(x, t) is a concentration then
∫ 1
0 u(x, t)dx is the mass in [0,1] at time t. This is

a conserved quantity:

d

dt

∫ 1

0
u(x, t)dx =

∫ 1

0
ut(x, t)dx =

∫ 1

0

(

−aux(x, t) + duxx(x, t)
)

dx =

= −a
(

u(1, t) − u(0, t)
)

+ d
(

ux(1, t) − ux(0, t)
)

= 0,

due to the periodicity. 3

1.2. Finite difference discretizations

In this section we shall consider some simple space discretizations on a uniform grid xi =
ih with mesh width h = 1/m. Approximations wi(t) ≈ u(xi, t), i = 1, 2, ..., m are found
by replacing the spatial derivatives by difference quotients. This gives a finite difference
discretization in space. Setting w(t) = (w1(t), ..., wm(t))T , we then get a system of ordinary
differential equations (ODEs)

w′(t) = F (t, w(t)), (1.4)

with a given initial value w(0). Often we shall deal with an F that is linear in w,

w′(t) = Aw(t) + g(t). (1.5)

| • • • • • •
0 x1 x2 xm = 1

In later sections we shall also consider simple finite volume discretizations where the values
wi(t) are interpreted as approximations to average values of u(x, t) on the cells [xi − 1

2h, xi +
1
2h]. For the moment, with the above test equations, there is no difference between the two
approaches.

Finite element and spectral discretizations are not considered here, but we note that also
with such methods one arrives at ODE systems, Bw′(t) = Aw(t) + Bg(t) with nonsingular
mass matrix B, but the wi(t) will then refer to a weight of a basis function.
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1.3. Discretizations for the advection operator

Consider the advection equation (1.1) with a > 0. The formula

1

h

(

ψ(x − h) − ψ(x)
)

= −ψx(x) + O(h) (1.6)

leads to the 1-st order upwind discretization

w′
i(t) =

a

h

(

wi−1(t) − wi(t)
)

, i = 1, 2, ..., m, (1.7)

with w0(t) = wm(t) by periodicity. This is of the form (1.5) with g = 0 and

A =
a

h










−1 1
1 −1

. . .
. . .

1 −1
1 −1










.

The formula
1

2h

(

ψ(x − h) − ψ(x + h)
)

= −ψx(x) + O(h2) (1.8)

gives the 2-nd order central discretization

w′
i(t) =

a

2h

(

wi−1(t) − wi+1(t)
)

, i = 1, 2, ..., m, (1.9)

with w0(t) = wm(t) and wm+1(t) = w1(t). Here we have (1.5) with

A =
a

2h










0 −1 1
1 0 −1

. . .
. . .

. . .

1 0 −1
−1 1 0










.

For smooth profiles the 2-nd order scheme is better. However, consider a = 1 and initial
profile u(x, 0) = (sin(πx))100. Solutions at t = 1 are given in the Figures 1.1 and 1.2 for
h = 1/50, with dotted lines for the exact solution and solid lines for the numerical solution.
The 1-st order scheme is not accurate, but the result of the 2-nd order scheme is also far from
satisfactory: it gives oscillations, negative values and a significant phase error.
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 Figure 1.1.   First order upwind advection
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 Figure 1.2.   Second order central advection

The qualitative behaviour can be understood by considering the modified equation of the
discretizations. Further expansion in formula (1.6) gives

1

h

(

ψ(x − h) − ψ(x)
)

= −ψx(x) +
1

2
hψxx(x) + O(h2).

From this it can be seen (proof is given in the next section) that the upwind discretization (1.7)
gives a first order approximation for ut + aux = 0, but it gives a second order approximation
to the modified equation

ũt + aũx =
a

2
hũxx.

This explains the diffusive nature of the first order upwind discretization in Figure 1.1. Al-
though we are seeking a solution to the advection problem, we are actually generating a
solution to an advection-diffusion equation, with a numerical diffusion coefficient 1

2ah.
Likewise, a further expansion in formula (1.8) gives

1

2h

(

ψ(x − h) − ψ(x + h)
)

= −ψx(x) − 1

6
h2ψxxx(x) + O(h4),

from which it can be seen that the central discretization (1.9) gives a fourth order approxi-
mation to the modified equation

ũt + aũx = −a

6
h2ũxxx

(again, arguments for convergence proof follow in the next section). The term ũxxx gives rise
to dispersion, that is, Fourier modes ϕk(x) are shifted with with a velocity that depends on
k. With initial value ũ(x, 0) = ϕk(x) the solution of this modified equation is

ũ(x, t) = e2πik(x−akt) = ϕk(x − akt), ak = a(1 − 2

3
π2k2h2).

Hence Fourier modes with high frequencies move too slow.
If the initial profile is smooth, the coefficients in front of the high-frequency modes are

very small. If the initial profile has large gradients then some high-frequency modes will be
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significant, and then the dispersive effect will cause oscillations with the central discretization,
see Figure 1.2.

Remark. If ψ ∈ Cj(R) with period 1, ψ(x) =
∑

k αkϕk(x), then

|αk| ≤
1

(2πk)j
max

0≤x≤1
|ψ(j)(x)|,

as can be seen by considering the inner product of ψ(j) with ϕk. (For a differentiable function
we are allowed to differentiate its Fourier series, see Pinkus & Zafrany (1997, Sect.2.9).) Thus
for smooth functions ψ the coefficients αk are extremely small for large |k|.

If we consider a block-shaped function (say ψ(x) = 1 if |x − 1
2 | ≤ 1

4 , ψ(x) = 0 otherwise)
as an example of a function with a discontinuity, then it follows from direct calculation that
|αk| ∼ k−1. Note that this function is piecewise C1. 3

1.4. Discretization for the diffusion operator

Consider the diffusion equation (1.2). We have

1

h2

(

ψ(x − h) − 2ψ(x) + ψ(x + h)
)

= ψxx(x) + O(h2). (1.10)

This leads to the second order central discretization, for the diffusion equation,

w′
i(t) =

d

h2

(

wi−1(t) − 2wi(t) + wi+1(t)
)

, i = 1, 2, ..., m, (1.11)

with again w0 ≡ wm and wm+1 ≡ w1. This can be written as an ODE system with

A =
d

h2










−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2










.

A further expansion in (1.10) gives

1

h2

(

ψ(x − h) − 2ψ(x) + ψ(x + h)
)

= ψxx(x) +
1

12
h2ψxxxx(x) + O(h4).

Therefore, the modified equation that is approximated with order 4 by this central discretiza-
tion reads

ũt = dũxx +
d

12
h2ũxxxx.

The heuristic analysis by this modified equation is not as easy as in the previous examples,
due to the fact that this equation is not well posed : if ũ(x, 0) = ϕk(x) then ũ(x, t) = γ(t)ϕk(x)
with

γ(t) = e−4π2k2d(1− 1

3
π2h2k2)t,

which gives exponential growth for h2k2 > 3/π2. As we shall see below, it is only necessary
to consider |k| ≤ 1

2m since higher frequencies cannot be represented on the grid. This gives

9



|hk| ≤ 1
2 and thus all γ(t) tend to zero. Under this restriction, the qualitative behaviour

of the modified equation corresponds with that of the exact solution. In particular, there is
no advection or dispersion, only damping. Indeed the qualitative behaviour is correct, see
the Figures 1.3, 1.4. In these figures numerical solutions are plotted at time t = 1/1000 and
t = 1/100, respectively, for the diffusion equation with d = 1 and initial profile u(x, 0) =
sin(πx)100. The dotted line is the numerical solution with h = 1/10, the dashed line for
h = 1/20 and solid line is the exact solution, also found numerically but with very small h
(the numerical solution with h = 1/40 is already virtually the same). Note that even on the
very coarse grid, with h = 1/10, the qualitative behaviour is correct (for a good quantitative
behaviour we need a smaller h).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

1.5
 Figure 1.3.  Second order central diffusion, t=1/1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

1.5
 Figure 1.4.  Second order central diffusion, t=1/100 

To see why we may restrict ourselves to |k| ≤ 1
2m we consider discrete Fourier decomposi-

tions. Let
φk = (ϕk(x1), ϕk(x2), ..., ϕk(xm))T ∈ C

m for k ∈ Z,

and consider the inner product on C
m

(v, w) = h
m∑

j=1

vjwj .

We have

(φk, φl) = h
m∑

j=1

e2πi(l−k)xj = h
m∑

j=1

ρj , ρ = e2πi(l−k)h.

If k = l mod m, then ρ = 1 and (φk, φl) = 1. Otherwise

(φk, φl) = hρ
1 − ρm

1 − ρ
= 0 since ρm = e2πi(l−k) = 1.
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It follows that

{φ−k, φ−k+1, ..., φm−k−1} is an orthonormal basis for C
m,

φk = φl if k = l mod m.

For the basis we can take k = m/2 if m is even, k = (m − 1)/2 if m is odd. In conclusion,
on our grid we can only represent Fourier modes with frequency |k| ≤ m/2. To study a space
discretization, and its modified equation, we thus may restrict ourselves to these modes.

We note that in above example for the diffusion test problem, one could also include higher
order terms in the modified equation, leading to

ũt = dũxx +
d

12
h2ũxxxx +

d

460
h4ũxxxxxx.

This equation is well posed, as can be seen by inserting Fourier modes. It is clear, however, that
the modified equation approach, which easily gave insight in the advection discretizations, is
rather cumbersome for the simple diffusion test equation. On the other hand, from a practical
point of view, discretization of the diffusion equation poses much less problems than for the
advection equation.

Note. Modified equations to study the behaviour of discretizations were introduced by Warm-
ing & Hyett (1974). We will consider such equations only in a heuristic fashion, with the aim
of understanding the qualitative behaviour. A more general discussion on the subject can be
found in Griffiths & Sanz-Serna (1986).

Remark. We have the following relation,

1

h








−1 1
1 −1

. . .
. . .

1 −1








=
1

2h









0 −1 1

1 0
. . .

. . .
. . . −1

−1 1 0









+ ε
1

h2









−2 1 1

1 −2
. . .

. . .
. . . 1

1 1 −2









,

with ε = 1
2h. Thus the 1-st order upwind advection equals the 2-nd order central advection

plus diffusion with numerical diffusion coefficient ε. Apparently, this numerical diffusion coef-
ficient is too large, see Figure 1.1. So, an obvious question is whether better schemes can be
constructed by a more careful addition of numerical diffusion. We shall return to this subject
in connection with limited schemes. 3
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2. Space discretizations: general considerations

2.1. Discretization and truncation errors

Consider a PDE solution u(x, t) with t ≥ 0, x ∈ Ω of an initial(-boundary) value problem.
Discretization on a grid Ωh, with h > 0 the mesh width (or maximal mesh width) yields an
ODE system, the semi-discrete system,

w′(t) = F (t, w(t)), w(0) given, (2.1)

with w(t) ∈ R
m. The term semi-discrete is used to indicate that only space derivatives are

discretized, the time is still continuous.
We want to compare u(x, t) (function in x) with w(t) (vector in R

m). For this, let wh(t)
be a suitable representation of the exact solution on R

m. For example, for finite difference
discretizations considered in the previous section the components of wh(t) will be function
values u(xi, t) at the various grid points.

The spatial (discretization) error of the semi-discrete system is

wh(t) − w(t).

In order to estimate this global quantity, we consider a suitable norm ‖ · ‖ on R
m (or C

m),
and we define the space truncation error

σh(t) = w′
h(t) − F (t, wh(t)), (2.2)

which is the residual obtained by substituting the exact PDE solution (or rather its represen-
tation on the grid) in the semi-discrete system. Assuming smoothness of the PDE solutions
one obtains, by Taylor expansion, an estimate of the form

‖σh(t)‖ = O(hq),

where q ∈ N is the order of the space discretization. We want, of course, a bound for the error
‖wh(t) − w(t)‖.

The analysis will be presented for linear systems,

F (t, v) = Av + g(t). (2.3)

Some basic linear algebra concepts that will be used, with examples of vector and matrix
norms, are listed in a next subsection. Here we shall use the following notations: for any
m × m matrix B let

‖B‖ = max
v 6=0

‖Bv‖
‖v‖

stand for the induced matrix norm. The exponential function of a matrix is defined by the
following series

eB = I + B +
1

2
B2 + · · · + 1

k!
Bk + · · · ,

so that the solution of w′(t) = Bw(t), w(0) = v can be written as w(t) = etBv.
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We can relate ‖wh(t) − w(t)‖ with ‖σh(t)‖ if we make the following stability assumption

‖etA‖ ≤ Ketω for all t ≥ 0 (2.4)

with some ”moderate” constants K > 0, ω ∈ R.

Theorem 2.1. Consider the linear system (2.1), (2.3) with stability assumption (2.4). Then

‖wh(t) − w(t)‖ ≤ Keωt‖wh(0) − w(0)‖ +
K

ω
(eωt − 1) max

0≤s≤t
‖σh(t)‖.

(Here we use the convention that 1
ω (eωt − 1) = t in case ω = 0.)

Proof. The spatial error ε(t) = wh(t) − w(t) satisfies

ε′(t) = Aε(t) + σh(t), t ≥ 0.

By the ”variation of constants formula” we thus find

ε(t) = etAε(0) +

∫ t

0
e(t−s)Aσh(s) ds.

Hence

‖ε(t)‖ ≤ ‖etA‖ ‖ε(0)‖ +

∫ t

0
‖e(t−s)A‖ ds max

0≤s≤t
‖σh(s)‖.

Using the stability assumption, the bound for the spatial error follows. 2

Corollary 2.2. If (2.4) is valid and w(0) = wh(0), ‖σh(t)‖ ≤ Chq for 0 ≤ t ≤ T , then

‖wh(t) − w(t)‖ ≤ K

ω
(eωt − 1)Chq for 0 ≤ t ≤ T.

2

In general, the term stability will be used to indicate that small perturbations give a
small overall effect. This is just what we have in the above: the unperturbed system is
w′(t) = Aw(t) + g(t) with given w(0), and wh can be regarded as solution of the perturbed
system w′

h(t) = Awh(t)+g(t)+σh, with perturbation σh and also a perturbation wh(0)−w(0)
on the initial value.

The term ”moderate” will be used in general to indicate something of order of magnitude
1, but this must be understood in an operational sense. For example, if we have perturbations
with order of magnitude ∼ 10−6 and these perturbations are amplified with a factor ∼ 103,
then this factor might still be considered as ”moderate enough” if one is only interested in 3
digits accuracy.
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2.2. Example: 1-st order upwind discretization for advection operator

Consider the periodic advection equation ut + ux = 0 with first order upwind discretization
and let wh(t) = (u(x1, t), ..., u(xm, t))T . Then the i-th component of σh(t) is

σh,i(t) =
d

dt
u(xi, t) −

1

h

(

u(xi−1, t) − u(xi, t)
)

=

= −ux(xi, t) −
1

h

(

u(xi−1, t) − u(xi, t)
)

= −1

2
huxx(xi, t) + O(h2).

In the discrete L2-norm ‖v‖ = (h
∑m

i=1 |vi|2)1/2 we thus have

‖σh(t)‖ ≤ 1

2
h max

0≤x≤1
|uxx(x, t)| + O(h2).

Note that if we consider the local truncation error σ̃h with respect to the modified equation
ũt + ũx = 1

2hũxx, then we obtain ‖σ̃h(t)‖ = O(h2).
To apply Theorem 2.1 we have to verify the stability condition (2.4) for

A =
1

h








−1 1
1 −1

. . .
. . .

1 −1








.

Consider the discrete Fourier modes φk = (e2πikx1 , ..., e2πikxm)T for 1 ≤ k ≤ m. We have for
all components j = 1, 2, ..., m (also for j = 1 due to periodicity)

(Aφk)j =
1

h

(

e2πikxj−1 − e2πikxj

)

= λke
2πikxj = λk(φk)j ,

λk =
1

h

(

e−2πikh − 1
)

.

So, the discrete Fourier modes are the eigenvectors for A with eigenvalues λk in the left halve
of the complex plane. In Figure 2.1 these are plotted for m = 100.
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 Figure 2.1.  Eigenvalues 1-st order upwind advection,  m=100
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Further, any vector v ∈ C
m can be written as v =

∑m
k=1 αkφk ∈ C

m, and we have

‖v‖2 = (v, v) =
∑

k,l

αkαl(φk, φl) =
m∑

k=1

|αk|2

(discrete counterpart of Parseval’s identity). So, consider v′(t) = Av(t), v(0) =
∑m

k=1 αkφk.
Then

v(t) =
m∑

k=1

αke
tλkφk,

‖v(t)‖2 =
m∑

k=1

|αke
λkt|2 ≤

m∑

k=1

|αk|2 = ‖v(0)‖2.

For arbitrary v(0) ∈ C
m we thus have

‖v(t)‖ = ‖etAv(0)‖ ≤ ‖v(0)‖,

which shows that ‖etA‖ ≤ 1. Therefore we can apply Theorem 2.1 and Corollary 2.2 with
K = 1, ω = 0.

We note that in a somewhat more abstract setting the above can also be written as follows.
Let U = [φ1, φ2, ..., φm] ∈ C

m×m and Λ = diag(λ1, ..., λm). We have

A = UΛU−1

Therefore etA = UetΛU−1 and

‖etA‖ ≤ ‖U‖ ‖etΛ‖ ‖U−1‖ = max
1≤k≤m

|etλk | cond(U) = 1,

since Reλk ≤ 0 with equality for k = m, and cond(U) = ‖U‖ ‖U−1‖ = 1, due to the fact that
the discrete Fourier modes, which form the columns of U , are orthonormal. (Note that U iself
is not unitary, but for V =

√
hU we do have V ∗V = I.)

So, in conclusion, we have shown that with the discrete L2-norm:

The 1-st order upwind discretization (1.7) converges for h → 0 with
order 1 to the solution of ut + aux = 0. Moreover, with respect to the
modified equation ũt + aũx = 1

2ahũxx the order of convergence is 2.

2.3. Example: central discretizations for advection/diffusion operator

With the second order discretizations (1.9),(1.11) we can proceed similarly. Also for these
instances the discrete Fourier modes are the eigenvectors for the discretized operator A, and
all eigenvalues have nonpositive real part.
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For (1.9) with a = 1, we get

A =
1

2h









0 −1 1

1 0
. . .

. . .
. . . −1

−1 1 0









,

and by some calculations it is seen that
Aφk = λkφk with the eigenvalues given by

λk =
1

2h

(

e−2πikh − e2πikh
)

=

= − i

h
sin(2πkh),

see Figure 2.2. These are purely imaginary
since A is skew-symmetric, that is, AT = −A.
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 Figure 2.2.  Eigenvalues 2-nd order central advection,  m=100

The claims on convergence of this central advection discretization that were made in Section 1
can now be proven in the same way as for the 1-st order upwind discretization, by considering
the space truncation error with respect to the advection equation ut +aux = 0 or the modified
equation ũt + aũx = −1

6ah2ũxxx. We obtain convergence in the discrete L2 norm with order
2 for the advection equation and order 4 for the modified equation.

In a similar way we can obtain stability and convergence results with the central discretiza-
tion (1.11) for the diffusion equation.

Considering (1.11) with d = 1,

A =
1

h2









−2 1 1

1 −2
. . .

. . .
. . . 1

1 1 −2









,

we have again Aφk = λkφk, but now with
real eigenvalues

λk =
1

h2

(

e−2πikh − 2 + e2πikh
)

=

=
2

h2

(

cos(2πkh) − 1
)

=
−4

h2
sin2(πkh),

see Figure 2.3.
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1
Figure 2.3  Eigenvalues 2-nd order central diffusion, m=100

Results for combined advection-diffusion ut + aux = duxx follow in the same way. With
second order central differences the eigenvalues now become

λk =
2d

h2

(

cos(2πkh) − 1
)

− ia

h
sin(2πkh).

These are on an ellipse in the left half plane. Note also that the eigenvalues are in a wedge
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Wα = {ζ ∈ C : |arg(−ζ)| ≤ α} with angle α such that tanα ≈ a/(2πd) (determined by
λ1 ≈ −2π2d − 2πia). With first order upwind advection discretization we obtain the same
formula for the eigenvalues, except that then d should be replaced by d + 1

2 |a|h.

Remark. The above examples might give the impression that stability somehow follows
automatically for consistent discretizations. This is not so. Consider, for instance, ut +ux = 0
with the ”down-stream” discretization w′

i(t) = 1
h(wi(t) − wi+1(t)). This has also a first order

truncation error, but it has no practical significance due to the fact that it is not stable.
The eigenvalues will be in the right half-plane, similar to Figure 2.1 but reflected around the
imaginary axis, and therefore condition (2.4) only holds with ω = 2/h. With this ω we have

1

ω
(etω − 1) → ∞ for h → 0.

In fact, this discretization is only a reasonable one with respect to the truncation error.
With ut +ux = 0 the time evolution at a point xi is determined by what happens to the left of
xi. With the above down-stream discretization the evolution of wi(t) is determined by what
happens to the right of xi. So, the semi-discrete system gets its information from the wrong
direction. We note that the instability of this system also follows from the classical paper of
Courant, Friedrichs & Lewy (1928), the first paper where stability of difference schemes was
discussed. 3

2.4. Some linear algebra concepts

Here some basic properties are listed that are used throughout these notes. A good reference
for linear algebra is the book of Horn & Johnson (1985). More advanced results can be found
in Horn & Johnson (1991). The topic of numerical linear algebra will not be treated. The
standard text book in this field is Golub & van Loan (1996).

Consider the vector spaces R
m and C

m and let h = 1/m. Some vector norms used in these
notes are the discrete Lp-norms, with p = 1, 2 or ∞,

‖v‖2 =
(

h
m∑

j=1

|vj |2
)1/2

, ‖v‖1 = h
m∑

j=1

|vj |, ‖v‖∞ = max
1≤j≤m

|vj |, (2.5)

for v = (v1, v2, ..., vm)T . The L2-norm is generated by the inner product

(u, v)2 = h
∑

j

ūjvj . (2.6)

Given a vector norm, the induced matrix norm for m × m matrices B is defined as

‖B‖ = max
v 6=0

‖Bv‖
‖v‖ . (2.7)

We have ‖AB‖ ≤ ‖A‖‖B‖ for any two A and B in R
m×m or C

m×m.
Further, if B = (bjk) then B∗ = (bkj) denotes the Hermitian adjoint. If B is real this is

the same as the transpose BT . The set of eigenvalues of B, denoted by σ(B), is called the
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spectrum of B. The spectral radius of B, max{|λ| : λ ∈ σ(B)}, is denoted by ρ(B), and we
always have ρ(B) ≤ ‖B‖. Some examples of induced matrix norms are

‖B‖2 =
√

ρ(B∗B), ‖B‖1 = max
1≤k≤m

m∑

j=1

|bjk|, ‖B‖∞ = max
1≤j≤m

m∑

k=1

|bjk|. (2.8)

As for vectors, we also have for matrices the Hölder inequality ‖B‖2 ≤
√

‖B‖1‖B‖∞. This
follows from

‖B‖2
2 = ρ(B∗B) ≤ ‖B∗‖∞‖B‖∞ = ‖B‖1‖B‖∞.

A vector norm is called monotone if ‖u‖ = ‖v‖ for any two vectors whose components have
equal modulus, |ui| = |vi| for all i. This is equivalent with the property

‖Λ‖ = max
j

|λj | for any diagonal matrix Λ = diag(λ1, λ2, ..., λm).

The above Lp-norms are monotone. If we consider arbitrary inner products (u, v) = u∗Gv
with G = H∗H and H nonsingular, that is G positive definite, then the corresponding norm
‖v‖ =

√

(v, v) is only monotone if G is diagonal.

The matrix B is unitary if B∗B = I, that is B−1 = B∗. This implies that ‖Bv‖2 = ‖v‖2 =
‖B−1v‖2 for any vector v, and in particular

‖B‖2 = 1, cond2(B) = ‖B‖2‖B−1‖2 = 1.

The matrix B is said to be normal if BB∗ = B∗B. A normal matrix has a complete set of
orthogonal eigenvectors (see Horn & Johnson (1985, Sect.2.5)), and it can be decomposed as

B = UΛU−1

with unitary U and diagonal Λ = diag(λ1, λ2, ..., λm). Note that the columns of U are the
eigenvectors of B, that is, Buj = λjuj if U = [u1, u2, ..., um].

Examples of normal matrices are the unitary (orthogonal) matrices B∗B = I, the Her-
mitian (symmetric) matrices B∗ = B, and the skew-Hermitian (skew-symmetric) matrices
B∗ = −B. The eigenvalues of a unitary matrix are all on the unit circle, the eigenvalues of an
Hermitian matrix are all real and those of a skew-Hermitian matrix are all purely complex.

If P (z) = p0 + p1z + · · · + psz
s is a polynomial and A an m × m matrix, we define

P (A) = p0I + p1A + · · · + psA
s.

The eigenvalues of P (A) are P (λ), with λ eigenvalue of A. For a rational function R(z) =
P (z)/Q(z) we define R(A) = P (A)[Q(A)]−1, provided R is analytic on the spectrum of A.
The exponential function of a matrix is defined by the series

eA = I + A +
1

2
A2 + · · · + 1

k!
Ak + · · · .

If A = UΛU−1 with Λ = diag(λj) and ϕ is a rational or exponential function, we have

ϕ(A) = Uϕ(Λ)U−1, ϕ(Λ) = diag(ϕ(λ1), ϕ(λ2), ..., ϕ(λm)). (2.9)

In case A is normal it thus holds that

‖ϕ(A)‖2 = max
1≤j≤m

|ϕ(λj)|. (2.10)
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2.5. Logarithmic norms

The stability condition (2.4) was easy to verify in the examples of the previous subsections,
due to the fact that we did consider problems that are linear with constant coefficients and
without boundary conditions. This leads to a normal matrix A for which it easy to obtain
results in the L2-norm.

A useful concept for stability results with non-normal matrices is the logarithmic norm,
defined as

µ[A] = lim
τ↓0

‖I + τA‖ − 1

τ
. (2.11)

For τ > 0 the difference ratio on he right hand side side is easily seen to be in the interval
[−‖A‖, ‖A‖], and it is monotonically nondecreasing in τ : if 0 < θ < 1 then

1

θτ

(

‖I + θτA‖ − 1
)

≤ 1

θτ

(

‖θI + θτA‖ + |1 − θ| − 1
)

=
1

τ

(

‖I + τA‖ − 1
)

.

Hence the limit in (2.11) exists. Note that the logarithmic norm is not a matrix norm; it can
be negative. The importance of this logarithmic norm lies in the following result.

Theorem 2.3. Let A ∈ R
m×m. We have

µ[A] ≤ ω iff ‖etA‖ ≤ etω for all t ≥ 0.

Proof. Suppose that µ[A] ≤ ω. Then

‖I + τA‖ ≤ 1 + ωτ + o(τ), τ ↓ 0,

and consequently

‖(I + τA)n‖ ≤ (1 + ωτ + o(τ))n → etω as τ ↓ 0, t = nτ fixed.

Since
etA = lim

τ↓0
(I + τA)n as τ ↓ 0, t = nτ fixed,

it follows that ‖ exp(tA)‖ ≤ etω.
On the other hand, suppose that ‖etA‖ ≤ etω for all t > 0. Since I + τA = eτA + O(τ2) it

follows that
‖I + τA‖ ≤ 1 + τω + O(τ2) for τ ↓ 0,

and hence µ[A] ≤ ω. 2

For the Lp vector norms, the corresponding logarithmic norm of a real matrix A is given
by

µ2[A] = max
v 6=0

(Av, v)2
(v, v)2

= max{λ : λ eigenvalue of
1

2
(A + AT )}, (2.12)

µ1[A] = max
j

(

ajj +
∑

i6=j

|aij |
)

, µ∞[A] = max
i

(

aii +
∑

j 6=i

|aij |
)

. (2.13)
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These expressions can be derived directly from the formulas for the matrix norms in the
definition of µ[A]. In particular, we have µ2[A] ≤ 0 iff (v, Av)2 ≤ 0 for all v ∈ R

m. If the
diagonal elements of A are negative, we have µ∞[A] ≤ 0 whenever A is row-wise diagonally
dominant, and µ1[A] ≤ 0 when A is column-wise diagonally dominant.

Further properties of the logarithmic norms can be found in Coppel (1965) or Dekker &
Verwer (1984). We note that the concept of logarithmic norms was introduced in 1958 by G.
Dahlquist and S.M. Lozinskij, see loc.cit.

In the following some examples (formulated as exercises) are given where the logarithmic
norm can be used to prove stability.

Example. Consider ut + (a(x)u)x = 0 for 0 ≤ x ≤ 1 with periodicity in x and with smooth
periodic velocity a(x). Show that

∫ 1
0 u(x, t)d x is constant in t.

Consider the space discretization, on uniform grid xj = jh,

w′
j =

1

h

(

aj−1/2wj−1/2 − aj+1/2wj+1/2

)

,

with aj+1/2 = a(1
2xj + 1

2xj+1) and with wj+1/2 = 1
2wj + 1

2wj+1 (central). Let

ω =
1

2h
max

j
(aj+1/2 − aj−1/2) = O(1).

Determine the truncation error of the discretization. Write the ODE system as w′(t) = Aw(t)
and show that (Av, v)2 ≤ ω(v, v)2 for all vectors v (hint: A is a skew-symmetric matrix plus
a diagonal matrix). Consequently, µ2[A] ≤ ω.

Suppose that a(x) ≥ 0 and consider wj+1/2 = wj (upwind). Show that now µ1[A] ≤ 0 and

µ∞[A] ≤ 2ω. Using the Hölder inequality for matrices it now follows that ‖etA‖2 ≤ etω. 3

Example. Consider ut+a(x)ux = 0 with periodicity as above. Show that u(ξ(t), t) is constant
along the characteristics (ξ(t), t) in the (x, t)-plane, defined by ξ′(t) = a(ξ(t)).

Consider here discretizations

w′
j =

1

h
a(xj)

(

wj−1/2 − wj+1/2

)

,

with wj+1/2 as above, either central or upwind. Show that we have consistency and stability in

the L2-norm, provided 1
h maxj |a(xj)−a(xj+1)| = O(1). With upwind we now have µ∞[A] ≤ 0.

3

Example. Consider ut = (d(x)ux)x + g(x, t) with d(x) > 0, again with periodicity as above.
Determine consistency for

w′
j =

1

h2

(

dj−1/2(wj−1 − wj) − dj+1/2(wj − wj+1)
)

+ g(xj , t)

with dj+1/2 = d(1
2xj + 1

2xj+1). Show that µ1[A] ≤ 0, µ∞[A] ≤ 0. Using the Hölder inequality

for matrices, applied to etA, it follows that also µ2[A] ≤ 0. 3
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3. Time discretizations: MOL and von Neumann stability

Suppose our PDE, with solution u(x, t), has been discretized in space, resulting in the semi-
discrete system (of ODEs)

w′(t) = F (t, w(t))

with w(t) = (wi(t))
m
i=1 ∈ R

m, m being proportional to the number of grid points in space.
Fully discrete approximations wn

i ≈ u(xi, tn) can now be obtained by applying some suitable
ODE method with step size τ for the time levels tn = nτ . In the following we use wn = (wn

i )m
i=1

to denote the vector (grid function) containing the discrete numerical solution.
The approach of considering space and time discretizations separately is called the method

of lines (MOL). This is not a ”method” in the numerical sense, it is a way to construct and
analyze certain numerical methods. A typical MOL reasoning goes as follows: if we know
that ‖w(t) − wh(t)‖ ≤ Chq for our space discretization and the ODE theory tells us that
‖w(tn) − wn‖ ≤ Cτp, then we have an error bound for the fully discrete approximations

‖wh(tn) − wn‖ ≤ Cτp + Chq.

For the error bound in time we need of course to verify consistency and stability of our
numerical ODE method. The stability considerations in the MOL literature are usually based
on the stability functions and stability regions of the ODE methods. On the other hand,
in the traditional PDE literature one usually sees stability considerations based on Fourier
decomposition, the so-called von Neumann analysis.

In this section we shall consider these concepts. For the ODE method we consider, as an
example, the θ-method

wn+1 = wn + τ(1 − θ)F (tn, wn) + τθF (tn+1, wn+1) (3.1)

with as special cases the explicit (forward) Euler method (θ = 0), the trapezoidal rule (θ = 1
2)

and the implicit (backward) Euler method (θ = 1). As we shall see, the order is p = 2 if
θ = 1

2 , and p = 1 otherwise. Application of the method to the scalar, complex test equation
w′(t) = λw(t) gives approximations

wn+1 = R(τλ)wn, R(z) =
1 + (1 − θ)z

1 − θz
.
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This R is the stability function of the method. Near z = 0 we have R(z) = 1+z +θz2 +O(z3).
The stability region is the set

S = {z ∈ C : |R(z)| ≤ 1}
in the complex plane. An ODE method that has the property that S contains the left half-
plane C

− = {z ∈ C : Rez ≤ 0} is called A-stable. The θ-method is A-stable for θ ≥ 1
2 .

Examples of more general ODE methods, together with some basic properties, are given
in the appendices. Here we review some of these ODE concepts by means of the θ-method.

3.1. Convergence of ODE methods

Inserting the ODE solution w(t) into (3.1) gives

w(tn+1) = w(tn) + τ(1 − θ)w′(tn) + τθw′(tn+1) + τρn (3.2)

with truncation error ρn. By Taylor expansion around t = tn it follows that

ρn =
1

2
(1 − 2θ)τw′′(tn) +

1

6
(1 − 3θ)τ2w′′′(tn) + O(τ4).

Thus, for w(t) sufficiently smooth, we get ‖ρn‖ = O(τ) if θ 6= 1
2 , and ‖ρn‖ = O(τ2) if θ = 1

2 .
For further analysis, assume as before that the problem is linear, F (t, v) = Av + g(t). Let

εn = w(tn) − wn, n ≥ 0, stand for the global discretization error. We want to find an upper
bound for ‖εn‖. Subtraction of (3.1) from (3.2) leads to the recursion

εn+1 = εn + (1 − θ)τAεn + θτAεn+1 + τρn

for n ≥ 0. It follows that

εn+1 = R(τA)εn + δn (n ≥ 0), ε0 = w(0) − w0, (3.3)

with
R(τA) = (I − θτA)−1(I + (1 − θ)τA), δn = (I − θτA)−1τρn.

We see from (3.3) that the matrix R(τA) determines how an error already present at time
level tn is propagated to the next time level. On the other hand, during this time step also
a new error δn is introduced. This δn is the local discretization error. The ODE method is
said to be consistent of order p if ‖δn‖ = O(τp+1) whenever the exact solution is sufficiently
smooth. Note that we do have ‖δn‖ ≤ Cτ‖ρn‖ provided that

‖(I − θτA)−1‖ ≤ C.

The existence of this inverse simply means that the implicit relation in the θ-method has
a unique solution, and a bound on the inverse will hold if we can bound ‖R(τA)‖, since
(I − θτA)−1 = θR(τA) + (1− θ)I. We then find p = 2 if θ = 1

2 , and p = 1 for the other values
of θ.

To relate the local discretization errors to the global errors we need stability. Assume

‖R(τA)n‖ ≤ K for n ≥ 0, nτ ≤ T . (3.4)
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Theorem 3.1. The stability assumption (3.4) implies

‖w(tn) − wn‖ ≤ K‖w(t0) − w0‖ + K
n−1∑

j=0

‖δj‖ for nτ ≤ T .

Proof. Elaboration of the error recursion (3.3) gives

εn = R(τA)nε0 + R(τA)n−1δ0 + · · · + R(τA)δn−2 + δn−1,

from which the result directly follows. 2

So, with this theorem, if ‖δj‖ ≤ Cτp+1 for all j and w0 = w(0), we obtain the global error
bound

‖w(tn) − wn‖ ≤ C ′τp for nτ ≤ T ,

with constant C ′ = KTC, and thus we have convergence of order p. Obviously, stability is
the crucial point here.

Now, if we consider a fixed matrix A, then

R(τA) = I + τA + O(τ2), τ ↓ 0,

and hence
‖R(τA)n‖ ≤

(

1 + τ‖A‖ + O(τ2)
)n

≤ e2tn‖A‖ for nτ ≤ T ,

provided τ > 0 is sufficiently small (in fact, τ‖A‖ should be sufficiently small). Thus for fixed,
bounded A we will have stability.

However, if A results from spatial discretization of a PDE problem, it will contain negative
powers of the mesh width h and its dimension will also grow with decreasing h. The stability
assumption (3.4) then must be carefully examined, since we want estimates that hold uniformly
in h. To do this, we can consider the homogeneous equation w′(t) = Aw(t) and prove that
‖wn‖ ≤ K‖w0‖ for arbitrary w0, with K independent of h. In the remainder of this section
this will be worked out for some examples.

Note. Theorem 3.1 can be viewed as a time-discrete version of Theorem 2.1. Both results
essentially state that

consistency & stability =⇒ convergence.

Within a certain technical framework, the reverse also holds. This ”iff” result is known as the
Lax equivalence theorem, see Richtmyer & Morton (1967).

3.2. Example: explicit Euler for the diffusion problem

Consider the diffusion test problem ut = uxx with periodicity condition at x = 0, 1. The
standard semi-discrete system is (see Section 1)

w′
j(t) =

1

h2

(

wj−1(t) − 2wj(t) + wj+1(t)
)

, j = 1, 2, ..., m,
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with w0 ≡ wm and wm+1 ≡ w1. Application of the explicit Euler method now gives the fully
discrete scheme

wn+1
j = wn

j +
τ

h2

(

wn
j−1 − 2wn

j + wn
j+1

)

. (3.5)

To study stability, we can proceed as in the previous sections by inserting discrete Fourier
modes. Thus we put w0

j = (φk)j = e2πikxj and we make the ”Ansatz” wn+1
j = rwn

j , that is

wn
j = rne2πikxj for n ≥ 0. Insertion in (3.5) yields

rn+1e2πikxj = rne2πikxj

(

1 +
τ

h2
(e−2πikh − 2 + e2πikh)

)

.

Thus we find the amplification factor for the k-th Fourier mode

r = rk = 1 +
τ

h2
(e−2πikh − 2 + e2πikh) = 1 − 4τ

h2
sin2(πhk).

The von Neumann criterion for stability is

|rk| ≤ 1 for all k = 1, 2, ..., m,

which is fulfilled here if
τ

h2
≤ 1

2
. (3.6)

If this holds then the numerical solution will stay bounded, because if we consider an arbitrary
starting vector w0 =

∑

k αkφk ∈ C
m then wn =

∑

k αk(rk)
nφk (superposition of results for

individual Fourier modes), and thus

‖wn‖2 =
k∑

|αk|2|rk|2n ≤
k∑

|αk|2 = ‖w0‖2

in the discrete L2-norm.
In general, stability means that perturbations are not amplified too much. For example,

if we would start with a perturbed initial value w̃0, we want the difference ‖w̃n − wn‖ to be
bounded by C‖w̃0−w0‖, with a moderate constant C > 0. For linear problems we can simply
look at boundedness of solutions vn of the homogeneous equation (that is, without source
terms), since the difference w̃n − wn will satisfy the same recursion as vn.

The MOL approach would lead to the equivalent, but conceptually different reasoning:
our semi-discrete system can be written as w′(t) = Aw(t) with A given by (1.11). We know
from Section 2 that

A = UΛU−1, Λ = diag(λk), cond(U) = 1.

Application of the explicit Euler method to this system of ODEs gives wn+1 = R(τA)wn.
Hence

wn = R(τA)nw0,

and thus to be sure that wn stays bounded we need to know whether this holds for R(τA)n.
We have

R(τA)n = UR(τΛ)nU−1, R(τΛ)n = diag(R(τλk)
n).
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It follows that, in the L2-norm

‖R(τA)n‖ = max
1≤k≤m

|R(τλk)
n|,

and thus we will have stability provided that

τλk ∈ S for all k.

In this example the above eigenvalue criterion is the same as the von Neumann criterion,
since

rk = R(τλk), λk = − 4

h2
sin2(πhk).

It is important to note that in the present example the eigenvalue criterion is sound because
the matrix A is normal (orthogonal basis of eigenvectors, namely the discrete Fourier modes).

For the θ-method with θ > 0 we can proceed in a similar way. If θ < 1/2 the ratio τ/h2

must be bounded to achieve stability. The precise bound is given in Table 3.1.

3.3. Step size restrictions for advection/diffusion

For the other examples considered thus far the matrix A was also normal, due to the fact
that we consider problems with constant coefficients and no boundary conditions. So, with
arbitrary stability function R we have, as for the Euler scheme,

R(τA)n = UR(τΛ)nU−1, R(τΛ)n = diag(R(τλk)
n),

and thus we have in the L2-norm

‖R(τA)n‖ = max
1≤k≤m

|R(τλk)
n|.

So, to verify stability we look at the eigenvalue criterion

τλk ∈ S for all k. (3.7)

Direct insertion of the Fourier modes in the scheme would lead to growth factors rk = R(τλk),
and thus the von Neumann analysis leads to the same result.

Combination of the pictures for the eigenvalues of A given in Section 2 with pictures of
the stability regions of the θ-methods (S = {z ∈ C : |z + α| ≤ α} with α = 1/(1 − 2θ) for
θ < 1/2) directly leads to the following conditions on the step size that have to be satisfied
for stability.

θ < 1
2 θ ≥ 1

2

upwind advection (1.7) aτ/h ≤ 1/(1 − 2θ) τ ≤ ∞

central advection (1.9) aτ/h ≤ 0 τ ≤ ∞

central diffusion (1.11) dτ/h2 ≤ 1/(2 − 4θ) τ ≤ ∞

TABLE 3.1. Von Neumann conditions for stability with θ-methods.

25



For the schemes with θ ≥ 1
2 there are no step size restrictions (unconditional stability), due to

the fact that these θ-methods are A-stable.
Although the von Neumann stability analysis can be applied, in strict mathematical sense,

only to a very restricted class of problems (no boundary conditions, constant coefficients), in
practice it often gives a good criterion for much more general problems. In this section we
have only considered the θ-methods for time integration. Of course, many more methods are
available, either of the Runge-Kutta type or linear multistep type. Although it is not the
intention to go deeply into the choice of particular ODE methods here, a few comments are
in order.

Explicit ODE methods always have a bounded stability domain. Application to an advec-
tion equation will lead to a stability condition of the form

aτ

h
≤ C,

a so-called CFL-restriction (after Courant-Friedrichs-Lewy), where C depends on the particu-
lar method and space discretization. If the space discretization is central then the eigenvalues
will be on the imaginary axis, and the ODE method should be selected such that a portion of
the imaginary axis is contained in the stability region.

Application of an explicit ODE method to a diffusion equation will give rise to a stability
condition

dτ

h2
≤ C,

with again C determined by the method and space discretization. Since solutions of diffusion
problems often give rise to rather smooth solutions, this time step restriction makes explicit
methods unattractive for such problems. With implicit methods we can avoid such restrictions.

As a rule, with exceptions, explicit methods are more efficient for advection dominated
problems than implicit methods. For problems with significant diffusion the implicit methods
are in general to be preferred. In the appendices some ODE methods and stability restrictions
are listed.

Remark. If semi-discretization leads to an ODE system w′(t) = Aw(t) + g(t) with A not
normal, then straightforward application of the eigenvalue criterion might still seem to be
possible, but in such a situation this may lead to wrong conclusions.

A notorious example is given by the 1-st order upwind discretization of the initial-boundary
value problem

ut + ux = 0, u(0, t) = 0,

leading to

w′
j(t) =

1

h

(

wj−1(t) − wj(t)
)

, j = 1, 2, ..., m,

with h = 1/m and w0(t) = 0 (inflow boundary condition). In vector form we have w′(t) =
Aw(t) with

A =
1

h








−1
1 −1

. . .
. . .

1 −1








.
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This matrix has only one eigenvalue, namely λ = −1/h. So, with the explicit Euler method we
have τλ ∈ S iff τ/h ≤ 2. On the other hand, the von Neumann stability condition (ignoring
boundaries) reads τ/h ≤ 1, and this is the correct condition.

For example, in the Figures 3.1 the L2-norm ‖R(τA)n‖ is plotted versus n, for m = 10, 20
with τ/h = 3/2. Clearly, with this Courant number τ/h = 3/2 the scheme is not stable (with
moderate constants). Although we see that ‖R(τA)n‖ → 0 for n → ∞ due to the fact that
the eigenvalues are damped, before this happens ‖R(τA)n‖ can become very large, leading to
an unacceptable error propagation.
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A further illustration is given in the Figures 3.2 with time integration from t = 0 till
t = T = 1

4 , initial condition u(x, 0) = sin(πx)100 and h = 1/50. In Figure 4.1a the numerical
results are shown for the above scheme with τ = 1/60 (15 time steps, Courant number 5/6)
and in Figure 3.2b with τ = 1/40 (10 time steps, Courant number 5/4).
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Figure 3.2a  Result at T = 1/4 , Courant number 5/6
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Figure 3.2b  Result at T = 1/4 , Courant number 5/4

We shall not pursue this matter here. The message simply is that the eigenvalue criterion
(3.7) should be handled with great care if the matrix is not normal. For a thorough discussion
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we refer to Morton (1980), Dorsselear et al. (1993). Further stability results can also be found
in Strikwerda (1989), Thomée (1990). 3

Remark. In some instances stability results in inner product norms are easy to obtain
using the logarithmic norms. Let ‖u‖ =

√

(u, u) with (·, ·) an inner product on R
m, and let

D(r) = {ζ ∈ C : |ζ + r| ≤ r}. Then the following holds,

‖A + αI‖ ≤ α, D(r) ∈ S =⇒ ‖R(τA)‖ ≤ 1 for τα ≤ r.

In the limit α to ∞, this leads to

µ[A] ≤ 0, C
− ⊂ S =⇒ ‖R(τA)‖ ≤ 1 for all τ > 0.

These results are based on a theorem of J. von Neumann from 1941, which states that
‖ϕ(B)‖ ≤ max{|ϕ(z)| : z ∈ C, |z| ≤ 1} if ‖B‖ ≤ 1 and ϕ is analytic on the unit disc. Indeed,
this is the same von Neumann as in the ”von Neumann analysis”, but this analysis refers to
Fourier decompositions, whereas in the above results non-normal matrices are allowed.

The last result tells us that with A-stable methods there will be unconditional stability
provided that µ[A] ≤ 0. A very elegant proof of this statement, due to M. Crouzeix, can be
found in Hairer & Wanner (1991). In that book a similar stability result can be found for
multi-step methods, due to O. Nevanlinna, where R is the companion matrix. 3

3.4. Simultaneous space-time discretizations

The MOL approach, where space and time discretizations are considered separately, is concep-
tually simple and flexible. However, sometimes it is better to consider space and time errors
simultaneously: there may be cancellation of the various error terms.

Example. Consider once more the explicit Euler, 1-st order upwind discretization for the
advection test equation ut +aux = 0, with a > 0, given initial profile and periodicity condition
at x = 0, 1,

wn+1
j = wn

j +
aτ

h

(

wn
j−1 − wn

j

)

, j = 1, 2, ..., m, (3.8)

and with aτ/h ≤ 1 for stability. This scheme is also known as the Courant-Isaacson-Rees
scheme. If we insert the exact PDE solution into this difference scheme we get

u(xj , tn+1) = u(xj , tn) +
aτ

h

(

u(xj−1, tn) − u(xj , tn)
)

+ τρn
j , j = 1, 2, ..., m,

with a (residual) local truncation error

ρn
j =

[

(ut +
1

2
τutt + · · ·) + a(ux − 1

2
huxx + · · ·)

]

(xj , tn) =

= −1

2
ah

(

1 − aτ

h

)

uxx(xj , tn) + O(h2).

We have
wh(tn+1) − wn+1 = R(τA)(wh(tn) − wn) + τρn
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where ρn = (ρn
1 , ..., ρn

m)T is the space-time local truncation error. If ‖R(τA)‖ ≤ 1, which can
be shown in this example easily for the L1, L2 and L∞-norms if aτ/h ≤ 1, then it follows in a
standard fashion that

‖wh(tn) − wn‖ ≤ 1

2
tnah

(

1 − aτ

h

)

max
x,t

‖uxx(x, t)‖ + O(h2).

If we let τ → 0 with h fixed, we just reobtain the bound for the spatial error. We see,
however, that the error for the above scheme will actually decrease for τ > 0, and it will
be less than the error of the semi-discrete system with exact time integration. Apparently
the error of the explicit Euler time stepping counteracts the error of 1-st order upwind space
discretization. 3

In the above example the discrete scheme still could be viewed within the MOL framework,
only a more refined analysis is needed to obtain the true error behaviour. There are also some
schemes which cannot be regarded as an ODE method applied to a certain space discretization.
We conclude this section with a short description of two such schemes.

Example. One of the most popular schemes for advection equations is the Lax-Wendroff
scheme. For the model equation ut + aux = 0 this scheme reads

wn+1
j = wn

j +
aτ

2h

(

wn
j−1 − wn

j+1

)

+
1

2
(
aτ

h
)2

(

wn
j−1 − 2wn

j + wn
j+1

)

. (3.9)

The scheme is stable, in the sense of von Neumann, under under the CFL condition |aτ/h| ≤ 1.
This can be shown by inserting Fourier modes and computing the amplification factors. The
local truncation error in space and time, defined as in the previous example, is

ρn
j =

1

6
ah2

(

1 − (
aτ

h
)2

)

uxxx(xj , tn) + O(h3).

For h fixed and τ → 0 we get the same bound as for the semi-discrete system (1.9) with
central differences (not surprisingly, if we divide (3.9) by τ and then consider τ → 0). As in
the previous example, the error becomes smaller for τ > 0.

The Lax-Wendroff scheme can be interpreted in terms of the characteristics: we know that
u(xj , tn+1) = u(xj − τa, tn), and to find the value for u(xj − τa, tn) one can apply quadratic
interpolation using the values u(xj−1, tn), u(xj , tn) and u(xj+1, tn), leading to (3.9). 3

Example. A special scheme for the diffusion equation ut = duxx is the DuFort-Frankel
scheme,

wn+1
j = wn−1

j + 2d
τ

h2

(

wn
j−1 − wn−1

j − wn+1
j + wn

j

)

. (3.10)

This is an explicit 2-step scheme. It is unconditionally stable (in the sense of von Neumann),
which is of course very peculiar for an explicit scheme. The stability result is not as straight-
forward as in the other examples since this is a 2-step scheme, but it can be done by writing
the 2-step recursion for wn as a 1-step recursion for (wn, wn−1)

T , see Richtmyer & Morton
(1967). The local truncation error of this scheme equals

ρn
j = 2d

τ2

h2
utt(xj , tn) + O(τ2) + O(h2).
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In spite of the unconditional stability, the time step cannot be chosen large, since this local
truncation error is proportional to (τ/h)2.

Due to the fact that with standard explicit schemes one needs a bound on τ/h2, the
DuFort-Frankel scheme is still occasionally used for calculations where accuracy of the diffusion
calculation is not so important, but it is not a method that can be recommended for general
use. 3
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4. Linear space discretizations and positivity

In this section we shall look at more general space discretizations than the first and second
order examples treated thus far, and we consider the requirements for having positive solutions.

4.1. Linear advection discretizations

We consider again
ut + aux = 0 with a > 0,

for 0 ≤ x ≤ 1 with periodicity condition and given initial profile u(x, 0). As we already saw in
Section 1, the 1-st order upwind discretization is too diffusive, whereas the 2-nd order central
discretization gives oscillations (”wiggles”) and negative values. Therefore we consider the
general spatial discretization formula

w′
j(t) =

1

h

r∑

k=−s

γkwj+k(t), j = 1, 2, ..., m, (4.1)

with wi+m ≡ wi. The spatial truncation error is

ut(x, t) − 1

h

∑

k

γku(x + kh, t) = −aux − 1

h

∑

k

γk

(

u + khux +
1

2
k2h2uxx + · · ·

)
∣
∣
∣
∣
(x,t)

=

= −1

h

∑

k

γku −
(

a +
∑

k

kγk

)

ux − 1

2
h

∑

k

k2γkuxx − · · ·
∣
∣
∣
∣
∣
(x,t)

.

The conditions for order q are

∑

k

γk = 0,
∑

k

kγk = −a,
∑

k

k2γk = 0, · · · ,
∑

k

kqγk = 0.

This can be satisfied q ≤ r+s. Schemes with order q = r+s are called optimal order schemes.
For each r and s there is precisely one such scheme. There is a fundamental result on the
stability of these schemes:

The optimal order schemes, with q = r + s, are stable for r ≤ s ≤ r + 2 and
unstable otherwise.

This result is due to Iserles & Strang (1983). A proof for the stability of the methods with
s = r, s = r + 1, s = r + 2 can be found in Iserles & Nørsett (1991), pages 124,125. In
that book also the instability of the other schemes is demonstrated, but this is complicated
and relies on the theory of order stars. We note that the sufficiency for stability was proved
already by Strang (1962) for fully discrete schemes.

Example: 3-th and 4-th order advection discretizations

For s = 2, r = 1 we obtain the 3-th order upwind biased discretization

w′
j(t) =

a

h

(

−1

6
wj−2(t) + wj−1(t) −

1

2
wj(t) −

1

3
wj+1(t)

)

. (4.2)
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The modified equation for this discretization, which is approximated with order 4, reads
ũt + aũx = − 1

12ah3ũxxxx. The term −ũxxxx is a higher order dissipation, giving damping of
the high-frequency Fourier modes, but still giving some oscillations and over and under-shoot.
(It should be noted that the equation ut = −uxxxx does not satisfy the maximum principle.
For instance, if u(x, 0) = 1 − cos(2πx) then u(0, 0) = 0 and ut(0, 0) = −(2π)4 < 0.)

Figure 4.1 gives the numerical solution at t = 1 for h = 1/50 and u(x, 0) = (sin(πx))100,
the same as in the Figures 1.1 and 1.2. We see that this 3-th order discretization still gives
some (rather small) oscillations, but the phase-speed is very good, which is in accordance with
the modified equation.

If a < 0, the 3-th order upwind-biased discretization reads

w′
j(t) =

a

h

(1

3
wj−1(t) +

1

2
wj(t) − wj+1(t) +

1

6
wj+2(t)

)

,

which is a reflection of formula (4.2).
For r = s = 2 we get the 4-th order central discretization

w′
j(t) =

a

h

(

− 1

12
wj−2(t) +

2

3
wj−1(t) −

2

3
wj+1(t) +

1

12
wj+2(t)

)

. (4.3)

The local truncation error will now only contain dispersion terms, no damping. For nonsmooth
solutions this gives strong oscillations, see Figure 4.2 (with same initial profile and mesh width
as before).
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 Figure 4.1.   Third order upwind-biased advection
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 Figure 4.2.   Fourth order central advection

If we insert Fourier modes into the 3-th order discretization (4.2), in the same way as in
Section 2, we obtain growth factors etλk , k = 1, 2, ..., m with eigenvalues

λk =
a

h

(

−1

6
e−4πikh + e−2πikh − 1

2
− 1

3
e2πikh

)

=

= −4

3

a

h
sin4(πkh) − i

3

a

h
sin(2πkh)

(

4 − cos(2πkh)
)

,
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see Figure 4.3. Note that, although there is damping, many eigenvalues stay very close to the
imaginary axis.
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 Figure 4.3.  Eigenvalues 3-th order upwind-biased advection,  m=100
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Figure 4.4. Eigenvalues 4-th order central advection, m=100

It can be shown that the explicit Euler method applied to this 3-th order discretization will
be unstable for fixed Courant numbers aτ/h as h → 0, due to the fact that many eigenvalues
are almost purely imaginary. Higher order explicit Runge-Kutta methods are conditionally
stable, see Appendix A.

The eigenvalues of the 4-th order central discretization are all on the imaginary axis, see
Figure 4.4, similar to the 2-nd order central discretization, since this discretization is also
skew-symmetric.

4.2. Positive space discretizations

For advection-diffusion equations we know, by physical interpretation, that

u(x, 0) ≥ 0 for all x =⇒ u(x, t) ≥ 0 for all x and t > 0.

As we have seen, space discretizations may destroy this property. We would like to have a
criterion that tells us when positivity is maintained.

Consider a semi-discrete ODE system in R
m

w′
i(t) = Fi(t, w(t)), i = 1, 2, ..., m. (4.4)

This system will be called positive (short for ”nonnegativity preserving”) if

wi(0) ≥ 0 for all i =⇒ wi(t) ≥ 0 for all i and t > 0.

We want to have a criterion on F that tells us whether the system is positive.

Theorem 4.1. Suppose that F (t, v) is continuous and satisfies a Lipschitz condition with
respect to v. Then, system (4.4) is positive iff for any vector v ∈ R

m and all i = 1, 2, ..., m,
t ≥ 0,

vi = 0, vj ≥ 0 for all j 6= i =⇒ Fi(t, v) ≥ 0.
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Proof. Necessity of the above criterion easily follows. As for sufficiency, note that the criterion
is equivalent with

wi(t) = 0, wj(t) ≥ 0 for all j 6= i =⇒ w′
i(t) ≥ 0.

This is not enough to prove positivity, we also need the Lipschitz condition. (A counterexam-
ple, provided by Z. Horvath (1994, private communications), is w(t) = (1 − t)3 satisfying the
scalar equation w′(t) = −3(w(t))2/3. Note that in this example the right hand side −3w2/3

does not satisfy a Lipschitz condition.)
It would be enough to have

wi(t) = 0, wj(t) ≥ 0 for all j 6= i =⇒ w′
i(t) > ε > 0,

since then w(t) cannot cross the hyperplanes {w ∈ R
m : wi = 0 for some i}. This will

hold for the perturbed system with components F̃i(t, w) = Fi(t, w) + ε. Using the Lipschitz
condition, we can apply a standard stability argument for ODEs to show that the solution of
the unperturbed system will be approximated with any precision by a solution of the perturbed
system if we let ε → 0, see for instance Coppel (1965). 2

Corollary 4.2. A linear system w′(t) = Aw(t) is positive iff

aij ≥ 0 for all j 6= i.

Proof. This is a consequence of Theorem 4.1. A more direct proof for linear systems follows
from the relations

eτA = I + τA + O(τ2)

to show necessity, and

etnA = lim
n→0

(I + τA)n with tn = nτ fixed

to show sufficiency. The elaboration of this is left as exercise. 2

Positivity may also imply a stronger property, namely a maximum principle. For linear
PDEs without boundary conditions, the semi-discrete system will often satisfy the affine
invariance property

F (t, αv + βe) = αF (t, v) for all α, β ∈ R and v ∈ R
m,

with e = (1, 1, ..., 1)T ∈ R
m. This means that if w(t) is a solution of (4.4) and v(0) =

αw(0)+βe, then v(t) = αw(t)+βe is also a solution of (4.4). So, in particular, if 0 ≤ wi(0) ≤ 1
and vi(0) = 1 − wi(0), for all components i, then positivity of v(t) implies wi(t) ≤ 1. More
general, if we have affine invariance, then positivity implies the maximum principle

min
j

wj(0) ≤ wi(t) ≤ max
j

wj(0) for all t > 0, (4.5)

and thus global overshoots and undershoots cannot arise.
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4.3. Positivity for advection discretizations

Returning to our discretizations (4.1) for the advection equation, we see that the requirement
for positivity is

γk ≥ 0 for all k 6= 0. (4.6)

This is satisfied by the 1-st order upwind discretization, which is very inaccurate and very
diffusive. Unfortunately, it is also ”optimal” under the positive advection discretizations:

For q ≥ 2 we need
∑

k k2γk = 0, and therefore

(4.6) =⇒ q ≤ 1.

Furthermore, if q = 1 then the leading term in the truncation error is propor-
tional to

∑

k k2γk. Since we have
∑

k kγk = −a, it follows that

(4.6) =⇒
∑

k

k2γk ≥ a,

and the minimal error coefficient
∑

k k2γk = a is achieved by the 1-st order
upwind discretization.

Consequently, if we want positivity and better accuracy than 1-st order upwind we have to
consider nonlinear discretizations.

Note. Positivity for the advection equation is related to more general monotonicity and
contractivity properties for nonlinear hyperbolic equations, as discussed in the monograph of
LeVeque (1992). We note that the order barrier q ≤ 1 for positive or monotone advection
schemes is due to Godunov, 1959, see loc. cit.

4.4. Linear diffusion discretizations

In the same way as for the advection equation, we can consider linear discretizations for the
diffusion equation

ut = duxx

with periodicity condition and given initial values. A general formula for the spatial discretiza-
tion is

w′
j(t) =

1

h2

r∑

k=−s

γkwj+k(t), j = 1, 2, ..., m, (4.7)

with wi+m ≡ wi. We assume that s = r and γ−k = γk, symmetry in space.
For the symmetric discretization the spatial truncation error is

ut(x, t) − 1

h2

∑

k

γku(x + kh, t) =

= duxx − 1

h2

∑

k

γk

(

u + khux +
1

2
k2h2uxx + · · ·

)
∣
∣
∣
∣
(x,t)

=
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= − 1

h2

∑

k

γku +
(

d −
∑

k

1

2
k2γk

)

uxx − 1

4!
h2

∑

k

k4γkuxxxx − · · ·
∣
∣
∣
∣
∣
(x,t)

.

So, the conditions for order q (q is even, due to symmetry) are

∑

k

γk = 0,
∑

k

k2γk = 2d,
∑

k

k4γk = 0, · · · ,
∑

k

kqγk = 0,

which is possible for q ≤ 2r.

Example. For r = 2 we obtain the 4-th order central diffusion discretization

w′
j(t) =

1

h2

(

− 1

12
wj−2(t) +

4

3
wj−1(t) −

5

2
wj(t) +

4

3
wj+1(t) −

1

12
wj+2(t)

)

.

The eigenvalues corresponding to this discretization are easily seen to be on the negative real
axis, and thus the discretization is stable. 3

The above 4-th order discretization fails to be positive, due to the − 1
12 coefficients. Indeed,

the requirement of positivity, γk ≥ 0 for all k 6= 0, again leads to an order barrier:

For q > 2 we need
∑

k k4γk = 0, and therefore

(4.6) =⇒ q ≤ 2.

Furthermore, if q = 2 then the leading term in the truncation error is propor-
tional to

∑

k k4γk. Since we have
∑

k k2γk = 2d, it follows that

(4.6) =⇒
∑

k

k4γk ≥ 2d,

The minimal error coefficient
∑

k k4γk = 2d is achieved by the standard 2-nd
order central discretization with r = 1 and γ−1 = γ1 = d, γ0 = −2d.

Although this is again somewhat disappointing, the situation is not as bad as for the advection
equation, since for many practical purposes this second order discretization is sufficiently
accurate.

Remark. The restriction in the above to symmetric discretizations for the diffusion equation
is reasonable, since, if w′(t) = Aw(t) is a non-symmetrical semi-discrete system (4.7), then the
symmetrical system w′(t) = 1

2(A + AT )w(t) can be shown to be more accurate (no dispersion
terms) and at least as stable. 3

Remark. Consider the advection-diffusion equation ut + aux = duxx. If we use 2-nd order
central discretization for both advection and diffusion we get the semi-discrete system

w′
j =

a

2h
(wj−1 − wj+1) +

d

h2
(wj−1 − 2wj + wj+1).

This system will be positive if |ah/d| ≤ 2. The number |ah/d| is called the cell Péclet number.

36



If we discretize the equation in space with first order upwind for the advection and second
order central for the diffusion part, we get

w′
j =

a+

h
(wj−1 − wj) +

a−

h
(wj − wj+1) +

d

h2
(wj−1 − 2wj + wj+1),

with a+ = max(a, 0) and a− = min(a, 0). This semi-discrete system is always positive. It will
also satisfy the translation invariance property mentioned in this section, and therefore we
will have ‖w(t)‖∞ ≤ ‖w(0)‖∞. This implies stability for the linear semi-discrete system in the
max-norm. From this, it can be easily be shown that the space discretization will convergence
in the max-norm. The claim made in this section that solutions of the advection-diffusion
equation with non-negative initial profile stay non-negative (”by physical interpretation”) can
be proven mathematically this way. 3
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5. A nonlinear advection discretization by flux-limiting

Positive solutions can of course always be obtained by simply ”cutting off” negative approxi-
mations. However, in this way we are adding mass, and we do not eliminate over/under shoot.
So, the aim is to derive a space discretization for the advection equation that will give positive
solutions, no over/under shoot and better accuracy than the 1-st order upwind scheme.

5.1. Flux forms

Mass conservation is guaranteed if we consider discretizations in the flux form (or conservation
form)

w′
i(t) =

1

h

(

fi− 1

2

(w(t)) − fi+ 1

2

(w(t))
)

. (5.1)

Such a form is natural for finite volume schemes where wi(t) approximates the average value
in the cell Ωi = [xi− 1

2

, xi+ 1

2

],

wi(t) ≈
1

h

∫

Ωi

u(x, t)dx.

Ωi
︷ ︸︸ ︷

| • | • | • |
xi−1 xi xi+1

Then fi− 1

2

, fi+ 1

2

are the fluxes at the cell boundaries. Note that the flux that ”leaves” Ωi is

the flux that ”enters” Ωi+1, and therefore we will always have mass conservation regardless of
the actual choice for the fluxes.

Examples. For the advection test problem ut + aux = 0, with a > 0, some flux forms are

fi+ 1

2

(w) = awi,

for the 1-st order upwind flux, and

fi+ 1

2

(w) =
1

2
a(wi + wi+1).

for the 2-nd order central fluxes. This last form can also be written as the 1-st order flux plus
a correction (”anti-diffusion”) fi+ 1

2

(w) = awi + 1
2a(wi+1 − wi). For the 3-th order upwind

biased formula we have the fluxes

fi+ 1

2

(w) = a(−1

6
wi−1 +

5

6
wi +

1

3
wi+1).

Writing this as a correction to the 1-st order flux, we get

fi+ 1

2

(w) = a
[

wi + (
1

3
+

1

6
θi)(wi+1 − wi)

]
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where

θi =
wi − wi−1

wi+1 − wi
.

3

In the following we consider the more general form

fi+ 1

2

(w) = a
[

wi + ψ(θi)(wi+1 − wi)
]

, (5.2)

with limiter function ψ, which is to be chosen such that we have better accuracy than 1-st
order upwind but still positivity. For a smooth profile we have θi ≈ 1, except near extrema.
Therefore we will take ψ(θ) equal to 1

3 + 1
6θ in a region around θ = 1, so that the accuracy of

the third order scheme will be maintained away from extrema.
Note that (5.1),(5.2) are affine invariant. Hence, if we achieve positivity we will also avoid

under/over shoot. Further it should be noted that for a < 0 we get, by reflection,

fi+ 1

2

(w) = a
[

wi+1 + ψ(
1

θi+1
)(wi − wi+1)

]

,

which is the same formula as (5.2), only seen from the ”backside”.

5.2. Choice of limiter function

The discretization (5.1),(5.2), written out in full, gives

w′
i(t) =

a

h

[

wi−1 + ψ(θi−1)(wi − wi−1) − wi − ψ(θi)(wi+1 − wi)
]

=

=
a

h

(

1 − ψ(θi−1) +
1

θi
ψ(θi)

)

(wi−1 − wi),

with wi = wi(t). In view of Theorem 4.1 we thus require

1 − ψ(θi−1) +
1

θi
ψ(θi) ≥ 0. (5.3)

Here θi−1 and θi can assume any value in R, independent of each other. A sufficient condition
on the limiter function is

0 ≤ ψ(θ) ≤ 1, 0 ≤ 1

θ
ψ(θ) ≤ µ for all θ ∈ R, (5.4)

where µ is a positive parameter. The function that satisfies this condition and is as close as
possible to 1

3 + 1
6θ is given by

ψ(θ) = max
(

0, min
(

1,
1

3
+

1

6
θ, µθ

))

. (5.5)
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The role of the parameter µ will become clear in the next section where we discuss time
discretizations. For the moment, following Koren (1993), we take µ = 1.

Remark. Nonlinear stability and accuracy results are lacking, but in practice these types of
spatial discretizations perform well. Further we note that in actual implementations of limiters
(5.2) one usually adds a small number ǫ to the denominator of the θi, to prevent division by
0. This may result in small negative values with order of magnitude ǫ. 3

Numerical results for the limited space discretization (5.5) are given in Figure 5.1 and 5.2
for the test equation ut + ux = 0 for t ≥ 0, 0 ≤ x ≤ 1 with periodicity. The plots are for t = 1
with h = 1/50 with initial profiles u(x, 0) = (sin(πx))100 and the block-function u(x, 0) = 1
for 0.3 ≤ x ≤ 0.7, 0 otherwise. The exact solution is dotted (· · ·), the non-limited 3-th order
discretization is dashed (- -) and the limited counterpart is indicated with solid lines (—).
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Figure 5.1. Third order upwind biased advection with limiting
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Figure 5.2. Third order upwind biased advection with limiting

The result for the sin100-function show that the limited discretization still has a very
good phase speed, but the amplitude error has increased by the limiting procedure near the
extremum. At the extremum we have θi ≤ 0 and thus the limiter will switch to fi+ 1

2

= awi,

the 1-st order upwind flux. Note that the inaccuracy caused by this remains confined to a
small region near the extremum. The result for the block-function shows that limiting can
also have an overall favourable effect on the accuracy.

Formal statements on the accuracy near an extremum seem difficult to obtain, due the
various switches in the discretization. In the following Table 5.3 the errors are given for a
smooth function u(x, 0) = sin2(πx) in the L1-norm (‖v‖1 = h

∑ |vi|), the L2-norm (‖v‖2 =
(h

∑ |vi|2)1/2) and the L∞-norm (‖v‖∞ = max |vi|), together with the estimated order upon
halving the mesh width h = 1/m. Also included are results for the limiter (5.5) with µ = 3.
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h L1-error L2-error L∞-error

Non-limited 1/10 0.37 10−1 0.41 10−1 0.57 10−1

1/20 0.50 10−2 (2.87) 0.56 10−2 (2.89) 0.78 10−2 (2.86)
1/40 0.64 10−3 (2.98) 0.71 10−3 (2.98) 0.10 10−2 (2.97)
1/80 0.80 10−4 (3.00) 0.89 10−4 (3.00) 0.12 10−3 (2.99)
1/160 0.10 10−4 (3.00) 0.11 10−4 (3.00) 0.15 10−4 (3.00)

Limiter µ = 1 1/10 0.70 10−1 0.88 10−1 0.15
1/20 0.16 10−1 (2.06) 0.22 10−1 (2.00) 0.49 10−1 (1.64)
1/40 0.36 10−2 (2.20) 0.58 10−2 (1.92) 0.16 10−1 (1.58)
1/80 0.81 10−3 (2.18) 0.25 10−2 (1.92) 0.55 10−2 (1.57)
1/160 0.16 10−3 (2.33) 0.39 10−3 (1.97) 0.18 10−2 (1.58)

Limiter µ = 3 1/10 0.50 10−1 0.62 10−1 0.11
1/20 0.74 10−2 (2.76) 0.12 10−1 (2.39) 0.31 10−1 (1.84)
1/40 0.15 10−2 (2.25) 0.26 10−2 (2.15) 0.94 10−2 (1.75)
1/80 0.32 10−3 (2.27) 0.65 10−3 (2.03) 0.29 10−2 (1.68)
1/160 0.64 10−4 (2.32) 0.16 10−3 (2.03) 0.93 10−3 (1.66)

TABLE 5.3. Errors and estimated orders for ut + ux = 0, u(x, 0) = sin2(πx).

Note. Limiters of the above type (5.2) were introduced for Lax-Wendroff type methods by
Sweby (1984) based on previous work of Osher, van Leer and others. References and a more
general discussion can be found in the monograph of LeVeque(1992).

The above limiter (5.5) with µ = 1 was proposed by Koren (1993). This is just one of many
possibilities, but it has been chosen here because it gives good results for linear advection. An
example of a somewhat smoother limiter, due to van Leer (1974), is

ψ(θ) =
1

2

θ + |θ|
1 + |θ| . (5.6)

The results for this limiter are slightly more diffusive than for (5.5). Many more examples
and pictures can be found in the review paper of Zalesak (1987).

5.3. Numerical example: an adsorption test

As the test example we regard an adsorption-desorption model from soil mechanics. Consider
a flow through a porous medium with a macroscopic velocity a and consider a chemical species
that dissolves in the fluid but which can also be adsorbed by the solid medium. Let u be the
dissolved concentration and v the adsorbed concentration. The conservation law for the total
concentration u + v then reads

(u + v)t + (au)x = 0.

The local balance between u and v is given by

vt = −k
(

v − ψ(u)
)
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where k > 0 is the reaction rate and

ψ(u) =
k1u

1 + k2u

describes the steady state ratio between u and v, with k1, k2 > 0. In soil mechanics ψ is
known as a Langmuir isoterm. These equations can be written as a system of advection-
reaction equations

ut + (au)x = k
(

v − ψ(u)
)

,

vt = −k
(

v − ψ(u)
)

.
(5.7)

Having u, v ≥ 0 is necessary for the model to make physical sense. Moreover ψ(u) has a
singularity at u = −1/k2. As a consequence, non-limited higher order advection discretizations
cannot be used here if we have steep gradients near a state u = 0, since this will lead to negative
values or even divergence by the singularity in ψ.

We shall take the values k = 1000, k1 = k2 = 100, and we solve the equations as a stiff
advection-reaction system. The velocity a is spatially homogeneous and given by

a(t) =

{
1 if t ≤ 1,
−1 if t > 1,

the initial condition is u, v ≡ 0, and we have given boundary conditions u(0, t) = 1 for t ≤ 1,
u(1, t) = 0 for t > 1. The equation is considered on the time interval 0 ≤ t ≤ T = 5

4 .
An illustration of the solution is given in Figure 5.4, where the concentrations u, v and total
concentration u + v are plotted as function of x at time t = 1 and t = T = 5

4 .
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Figure 5.4. Absorption-desorption test (5.7). Plots of dissolved concentration u (left), adsorbed
concentration v (middle) and total concentration u + v (right) at time t = 1 (dashed) and t = 5

4
(solid).

We see that for 0 ≤ t ≤ 1 there is a shock front traveling to the left. The speed of the
front is not equal to the advective velocity a = 1 but only approximately half of it, since the
propagation is slowed down by adsorption. After t = 1 the advective velocity is reversed and
then a rarefaction wave is formed due to advection of u to the left and dissolution of adsorbed
concentration. Note that the top of this rarefaction wave (where u becomes 1) now travels
with speed a = −1.
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For the spatial discretization we consider the 1-st order upwind scheme and the limited
discretization (5.2), (5.5) with µ = 1. Time integration is performed with very small time steps
so that no temporal errors are visible here. As said before non-limited discretizations cannot
be used directly due to negative values. As an illustration for the need of mass conservation we
have included in the experiment the non-limited 3-rd order upwind-biased discretization where
in each time step the numerical approximation wn is replaced by max(wn, 0). We refer to this
as ”clipping”. It amounts to adding mass at those regions where the advection discretization
produces negative values. The results are given in the following Figure 5.5.
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Figure 5.5. Numerical solutions for u + v at t = 1, 5

4
with h = 1

100
and 1-st order upwind (left), 3-rd order

scheme with ”clipping” of negative values (middle) and limited scheme (right). The reference solutions is
indicated by gray lines.

Comparing the 1-st order upwind and limited discretization, we see little difference up
to t = 1. This can be expected since in the shock the limiter will also switch to 1-st order
upwind and outside the shock the solution is constant, so there any consistent discretization
gives the same result. (Enlargement of the plot would show a small difference; with 1-st order
upwind the shock is a bit more smeared.) For t > 1 we clearly see that the first order upwind
scheme gives larger errors due to numerical diffusion. Even on the short interval t ∈ [1, 5

4 ]
the error has become significant. The limited scheme also adds some diffusion but much less.
The difference between these two schemes would be more pronounced if the time interval were
larger.

For the non-limited scheme with clipping of negative values we see that for 0 ≤ t ≤ 1
the front speed is too large. This is caused by the fact that we are adding mass in the front.
Therefore the adsorption will be quickly saturated and this speeds up the total solution. As
a consequence the errors are very large.

Remark. Incorrect shock speeds for schemes without mass conservation are typical for non-
linear hyperbolic equations. Such equations are outside the scope of these notes, but in
connection to (5.6) we note the following. In the above experiments the reaction constant was
given by k = 1000, and an increase of k hardly changes the solution. In the limit k → ∞ we
have v = ψ(u), or

(u + ψ(u))t + aux = 0,
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which can be formulated as a nonlinear conservation law for ū = u + ψ(u),

ūt + aφ(ū)x = 0, (5.8)

with φ implicitly defined by the relation

ū = u + ψ(u) =⇒ u = φ(ū).

We can discretize (5.8) in space by

w̄′
i(t) =

a

h

(

φ(w̄i− 1

2

(t)) − φ(w̄i+ 1

2

(t))
)

(5.9)

with w̄i+1/2 = fi+1/2(w̄) computed as before, and this leads to a solution that is virtually
the same as in Figure 5.4. For a good introduction to nonlinear conservation laws and the
numerical solution of such equations we refer to LeVeque (1992). 3

5.4. Formulas for non-constant coefficients and multi-dimensional problems

The advection equation
ut + (a(x, t)u)x = 0, (5.10)

with variable velocity a, can be discretized in space as

w′
i(t) =

1

h

(

fi− 1

2

(t, w(t)) − fi+ 1

2

(t, w(t))
)

, (5.11)

with the fluxes given by

fi+ 1

2

(t, w) = a+(xi+ 1

2

, t)
[

wi + ψ(θi)(wi+1 − wi)
]

+

+ a−(xi+ 1

2

, t)
[

wi+1 + ψ( 1
θi+1

)(wi − wi+1)
]

,
(5.12)

where a+ = max(a, 0) and a− = min(a, 0). We can take ψ as in (5.5) with µ = 1. The
semi-discrete system is then positive for arbitrary velocities a. If ψ ≡ 0 we reobtain the 1-st
order upwind discretization, and ψ ≡ 1

2 gives 2-nd order central (for central schemes the a+,
a− formulation is unnecessary, of course).

For the diffusion equation
ut = (d(x, t)ux)x, (5.13)

with d(x, t) > 0, we consider the 2-nd order central discretization

w′
i(t) =

1

h2

(

d(xi− 1

2

, t)(wi−1(t) − wi(t)) − d(xi+ 1

2

, t)(wi(t) − wi+1(t))
)

. (5.14)

Also this system is always positive, as can be verified by Corollary 4.2. It has the same form
as (5.11) with diffusion fluxes h−1d(xi+ 1

2

, t)(wi(t) − wi+1(t)).

The right-hand sides of (5.11) with (5.12) and of (5.14) can be regarded as finite differ-
ence approximations to (a(x, t)u)x and (d(x, t)ux)x, respectively. Superposition of these finite
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differences gives space discretizations for the general multi-dimensional advection-diffusion
equation

∂

∂t
u +

d∑

k=1

∂

∂xk

(

ak(x, t)u
)

=

d∑

k=1

∂

∂xk

(

dk(x, t)
∂

∂xk
u
)

(5.15)

with x = (x1, x2, ..., xd)
T ∈ R

d. (Here xk denotes the k-th direction.) Working on regu-
lar Cartesian grids, we can simply plug in our 1-dimensional discretizations for the individual
terms (aku)xk

and (dkuxk
)xk

in the various directions. Reaction terms are also easily included.
It is this possibility of superposition that makes the method of lines approach popular. Meth-
ods with combined space-time discretizations, such as the Lax-Wendroff method, are much
harder to formulate for multi-dimensional advection-diffusion-reaction problems.

Remark. Deriving the multi-dimensional discretizations
can also be done entirely within the finite-volume frame-
work by considering in- and outflows over cell boundaries,
say

w′
ij =

1

∆x
(fi− 1

2
,j − fi+ 1

2
,j) +

1

∆y
(fi,j− 1

2

− fi,j+ 1

2

),

in 2D with x and y coordinates.
Irrespective of the spatial dimension, the difference between a cell-average value and the

value in a cell-center is O(h2), and therefore the order of a discretization may depend on the
interpretation, either as finite differences or as finite volumes. This will happen only if the
order is larger than 2.

Indeed, by a Taylor expansion (and tedious calculations) it can be seen that the 1D scheme
(5.11),(5.12), with ψ(θ) = 1

3 + 1
6θ, has a third order truncation error as a finite volume scheme

and only second order for the finite difference approximations. However, in 2 dimensions the
order becomes also 2 for the finite volume interpretation, due to the fact that the fluxes over
the cell boundaries are only evaluated in the middle of the edges (midpoint approximation
to an integral). A third order finite difference approximation could be obtained by applying
the discretization (4.2) directly to ac, instead of c, but in connection with limiting the form
(5.11),(5.12) seems more appropriate. 3

Remark. Equation (5.10) is called the conservative form of the advection equation. The
advective form is given by ũt + a(x, t)ũx = 0. More general, for multi-dimensional problems
we have the forms

ut +
∑

k

∂

∂xk
(aku) = ut + div(au) = 0

and

ũt +
∑

k

ak
∂ũ

∂xk
= ũt + a · grad(ũ) = 0,

respectively. Both forms have physical meaning. For a chemical species carried along by some
fluid medium (for example, wind or water) with velocity a, the concentration u will satisfy the
conservative form, reflecting the fact that mass is conserved. On the other hand, the mixing
ratio, defined as concentration divided by the density ρ (the sum of all concentrations), will
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satisfy the advective form. These mixing ratios are constant along the characteristics (ξ(t), t)
given by ξ′(t) = a(ξ(t), t). The two forms are equivalent if the velocity field is divergence
free, that is

∑
(∂ak/∂xk) = 0, which means that the fluid is incompressible and that the

density is constant. Even if this holds, a numerical discretization of the advective form will
in general give rise to a scheme that does not conserve mass. In air pollution modelling one
usually encounters the conservative form, also due to the fact that chemical reactions are most
frequently defined in terms of concentrations. 3
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6. Positive time discretizations

Consider a linear semi-discrete system w′(t) = Aw(t), where A satisfies

aij ≥ 0 for i 6= j, aii ≥ −α for all i, (6.1)

with α > 0. As we saw in Section 4, this guarantees positivity of the system, irrespective of the
value of α. Of course, we want to maintain positivity when time discretization is performed.
As introduction, we first consider the explicit (forward) and implicit (backward) Euler time
discretizations.

Application of the forward Euler method to the linear system gives wn+1 = wn + τAwn,
that is,

wn+1 = (I + τA)wn.

It is easily seen that I + τA ≥ 0 (inequality componentwise) provided that 1 + τaii ≥ 0 for all
i. This will hold if the step size is restricted such that ατ ≤ 1.

The backward Euler method gives wn+1 = wn + τAwn+1, and this can be written as

wn+1 = (I − τA)−1wn.

Suppose that
A has no eigenvalues on the positive real axis. (6.2)

Then I − τA is invertible for all τ > 0, and so the Backward Euler relation has a unique
solution. In fact, this solution will also be positive. The conditions (6.1),(6.2) imply

(I − τA)−1 ≥ 0 for all τ > 0.

The proof of this statement will be given in Lemma 6.3 for a nonlinear case.
With these results for the forward and backward Euler method it is also possible to derive

positivity results for certain other simple schemes. For example, the trapezoidal rule

wn+1 = wn +
1

2
τAwn +

1

2
τAwn+1

can be viewed as a combination of two half steps with the forward and backward Euler
method, respectively, and thus positivity is guaranteed for τα ≤ 2. We shall return to this
when discussing non-linear systems. For linear systems there exists a nice, complete theory,
the results of which will be presented next.

In the results we shall use rational functions with matrix arguments, see Section 2.

6.1. Positivity results of Bolley & Crouzeix

Consider a one-step method of order p and stability function R. Application to the linear
semi-discrete system w′(t) = Aw(t) will give

wn+1 = R(τA)wn.

The rational function R is said to be absolutely monotonic on an interval [−γ, 0] if R and all
its derivatives are nonnegative on this interval. Let γR be the largest γ for which this holds.
If there is no γ > 0 such that R is absolutely monotonic on [−γ, 0], we set γR = 0.
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We consider in the following the class Mα consisting of all matrices satisfying (6.1),(6.2)
with fixed α > 0. The following theorem is due to Bolley & Crouzeix (1978). We elaborate
the proof somewhat because it gives insight in the occurrence of the derivatives of R.

Theorem 6.1. R(τA) ≥ 0 for all A ∈ Mα iff ατ ≤ γR.

Proof. Let µ = ατ and write τA as −µI + N with N = µI + τA. We have the following
expansion

R(τA) =
∑

j≥0

1

j!
R(j)(−µ)N j .

The validity of this series expansion for µ ≤ γR can be demonstrated in the following way:
(i) by the absolute monotonicity it can be shown that the power series (for scalar, complex
arguments) has a radius of convergence larger than µ,
(ii) by using the Perron-Frobenius theorem for nonnegative matrices it can be shown that
ρ(N) ≤ µ.

For this technical (but interesting) part of the proof we refer to Bolley & Crouzeix (1978).
Here we simply assume that the expansion is valid. Then, sufficiency of the condition ατ ≤ γR

follows directly from the fact that N ≥ 0.
To prove necessity, consider the first order upwind discretization for ut+ux = 0, u(0, t) = 0,

giving the semi-discrete system w′(t) = Aw(t) with

A =
1

h








−1
1 −1

. . .
. . .

1 −1








=
1

h
(−I + E) ∈ R

m×m,

where E denotes the backward shift operator on R
m. Taking µ = τ/h, we have τA = −µI+µE

and therefore

R(τA) = R(−µ)I + µR′(−µ)E +
1

2
µ2R′′(−µ)E2 + · · · + 1

(m − 1)!
µm−1R(m−1)(−µ)Em−1.

This is a lower triangular matrix with elements R(j)(−µ) for j = 0, 1, ..., m − 1. Thus we see
that in order to have R(τA) ≥ 0 for arbitrarily large m, it is necessary to have R(j)(−µ) ≥ 0
for all j ≥ 0. 2

Of course we would like to have large γR, preferably γR = ∞ in which case we will have
unconditional positivity. This can only hold for implicit methods, where R is not a polynomial.
We already mentioned that it holds for the backward Euler method, see also Lemma 6.3. One
might hope to find more accurate methods with this property, but Bolley & Crouzeix (1978)
showed that

γR = ∞ =⇒ p ≤ 1,

and therefore the backward Euler method is the only well-known method with γR = ∞. (A
proof of this last result is based on a characterisation already given by Bernstein in 1928, see
also Hairer & Wanner (1991. p. 188).)
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It is easy to see that, for 0 ≤ θ ≤ 1,

R(z) = (1 + (1 − θ)z)/(1 − θz) =⇒ γR = 1/(1 − θ).

This is relevant to the θ-methods, considered in Section 3. As a further result we have

R(z) = 1 + z +
1

2
z2 + · · · + 1

p!
zp =⇒ γR = 1.

For the calculation of this bound one can use, in a repeated fashion, the fact that if 0 < γ ≤ 1
and P is a polynomial with P (0) = 1, 0 ≤ P ′(z) ≤ 1 for z ∈ [−γ, 0), then also 0 ≤ P (z) ≤ 1
for z ∈ [−γ, 0). This is relevant to well-known Runge-Kutta methods up to order p = 4. A
table of values of γR for Padé approximations can be found in Hairer & Wanner (1991, p.
188), mainly based on previous work of Kraaijevanger (see loc. cit.).

Note. The threshold factors γR also occur in the study of contractivity ‖R(τA)‖ ≤ 1 in
the max-norm or the sum-norm, for problems satisfying ‖etA‖ ≤ 1 for all t ≥ 0, see Spijker
(1983). As an example we mention that if ‖A+αI‖∞ ≤ α, then ‖R(τA)‖∞ ≤ 1 provided that
τα ≤ γR.

As a generalization, we now consider the linear system with source term

w′(t) = Aw(t) + g(t), (6.3)

with A ∈ Mα and g(t) ≥ 0 for all t ≥ 0. Application of a one-step method (say, Runge-Kutta
or Rosenbrock type) will then lead to a recursion

wn+1 = R(τA)wn +
s∑

j=1

Qj(τA)τg(tn + cjτ), (6.4)

Therefore positivity is ensured if

R(τA) ≥ 0 and Qj(τA) ≥ 0, j = 1, 2, ..., s.

Example. As an example, we consider the explicit trapezoidal rule, which consists of the
implicit trapezoidal rule with Euler predictor,

w̄n+1 = wn + τF (tn, wn),

wn+1 = wn + 1
2τF (tn, wn) + 1

2τF (tn+1, w̄n+1),
(6.5)

and the related method, consisting of the implicit midpoint rule with Euler predictor,

w̄n+1/2 = wn + 1
2τF (tn, wn),

wn+1 = wn + τF (tn+1/2, w̄n+1/2).
(6.6)

Both methods are of order 2 and they have the same stability function R(z) = 1 + z + 1
2z2.

Application of the explicit trapezoidal rule (6.5) to the inhomogeneous system (6.3) gives

wn+1 = R(τA)wn +
1

2
(I + τA)τg(tn) +

1

2
τg(tn+1),
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and thus positivity is ensured for ατ ≤ 1. For (6.6) we get

wn+1 = R(τA)wn +
1

2
τ2Ag(tn) + τg(tn+1/2),

and for this method we get the step size restriction ατ ≤ 0, that is τ = 0, if we insist on
positivity with arbitrary g(t) ≥ 0. Under the mild, extra condition 2g(tn+1/2) − g(tn) ≥ 0 we
will again have positivity for ατ ≤ 1.

Note that for the implicit trapezoidal rule and implicit midpoint rule the requirement for
positivity is ατ ≤ 2. Although this is better than what we get for the explicit counterparts, it
is not comparable to the difference in stability requirements between the implicit and explicit
schemes. 3

We note that Bolley and Crouzeix also derived positivity results for linear multi-step
methods with arbitrary nonnegative starting values. The conditions for this are very restrictive.
For example, with the BDF2 method

wn+2 =
4

3
wn+1 −

1

3
wn +

2

3
F (tn+2, wn+2)

one never has w2 ≥ 0 for arbitrary w0, w1 ≥ 0, due to the presence of the factor −1
3 in the

formula. It seems more reasonable to consider this method with a starting procedure, say
w1 = w0 + τF (t1, w1). It was shown by M. van Loon (1996, private communications) that the
resulting scheme is then positive for linear systems (6.3) under the restriction τα ≤ 1/2. Van
Loon did prove this by considering the recursion

(I − 2

3
τA)(2wn+2 − wn+1) =

2

3
(2wn+1 − wn) +

1

3
(wn+1 + 2τAwn+1) +

4

3
τg(tn+2),

(I − τA)(2w1 − w0) = w0 + τAw0 + 2τg(t1).

By induction it can be shown that 2wn+2 ≥ wn+1 ≥ 0. Results of this kind for general
multistep methods seem unknown.

6.2. Nonlinear positivity

Consider a general, nonlinear ODE system

w′(t) = F (t, w(t)).

The counterpart of condition (6.1) is: there is an α > 0 such that

v + τF (t, v) ≥ 0 for all t ≥ 0, v ≥ 0 and ατ ≤ 1. (6.7)

This guarantees of course positivity for the forward Euler method. Further we assumed for
linear systems that A has no eigenvalues on the positive real axis, so that the implicit relations
for backward Euler have a unique solution. As nonlinear counterpart we will now assume

for any v ≥ 0, t ≥ 0, τ > 0 the equation u = v + τF (t, u)
has a unique solution that depends continuously on τ , v.

(6.8)
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This means that the backward Euler method is well defined. It also implies unconditional
positivity.

Lemma 6.3. Conditions (6.7),(6.8) imply positivity for the backward Euler scheme for any
step size τ > 0.

Proof. For given t, v and with τ variable, we consider u = v + τF (t, u) and we call this
solution u(τ). We have to show that v ≥ 0 implies u(τ) ≥ 0 for all positive τ . By continuity
it is sufficient to show that v > 0 implies u(τ) ≥ 0. This is true (even u(τ) > 0), for, if we
assume that u(τ) > 0 for τ ≤ τ0 but ui(τ0) = 0, then

0 = ui(τ0) = vi + τ0Fi(t, u(τ0)).

According to (6.7) we have Fi(t, u(τ0)) ≥ 0 and thus vi + τ0Fi(t, u(τ0)) > 0, which is a
contradiction. 2

Note. A sufficient condition for (6.8) is that F is continuously differentiable and

‖(I − τF ′(t, v))−1‖ ≤ C for any v ∈ R
M , t ≥ 0, τ > 0,

with C some positive constant and F ′(t, v) the Jacobi matrix (∂Fi(t, v)/∂vj). Existence and
uniqueness of the solution then follows from Hadamard’s theorem, and by the implicit function
theorem this solution depends continuously on τ, t and v, see for instance Ortega & Rheinboldt
(1970), p.128 and p.137.

A theory for general Runge-Kutta methods is lacking at present. However, following an
idea of Shu & Osher (1988) for explicit methods, it is easy to derive results for a class of
diagonally implicit methods. We consider methods of the Runge-Kutta type, with internal
vectors w1n, w2n, ..., ws+1,n. To compute wn+1 from wn, we set w1n = wn,

win =
i−1∑

j=1

[

pijwjn + τqijF (tn + cjτ, wjn)
]

+ τriF (tn + ciτ, win), i = 2, 3..., s + 1, (6.9)

giving the next approximation wn+1 = ws+1,n. Here the parameters pij , qij , ri and cj define
the method, with

∑i−1
j=1 pij = 1.

Theorem 6.4. If all parameters pij , qij , ri with 1 ≤ j < i ≤ s + 1 are nonnegative, then
method (6.9) will be positive for any F satisfying (6.7),(6.8) under the step size restriction

ατ ≤ min
i,j

pij

qij

(convention: pij/0 = +∞ for pij ≥ 0). For explicit methods, with all ri = 0, we only have to
assume that F satisfies (6.7). For implicit methods we also need (6.8).

Proof. The proof follows by induction with respect to i, from the above results for the explicit
and implicit Euler method. 2
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Example. For the explicit trapezoidal rule (6.5) we can write the second stage as

wn+1 =
1

2
wn +

1

2
w̄n+1 +

1

2
τF (tn+1/2, w̄n+1).

Therefore, we have nonlinear positivity for ατ ≤ 1, the same condition as for linear systems.
With the midpoint discretization (6.6) we can write the second stage as

wn+1 = (1 − θ)wn − 1

2
θτF (tn, wn) + θw̄n+1/2 + τF (tn+1/2, w̄n+1/2)

with arbitrary θ ∈ R, but we cannot achieve a form (6.9) with all pij , qij ≥ 0. In fact we
already saw for the linear inhomogeneous equations that we cannot have positivity if only
(6.7) and (6.8) are assumed. 3

Example. The classical 4-th order Runge-Kutta method reads

w1n = wn, win = wn + ciτF (tn + ci−1τ, wi−1,n) (i = 2, 3, 4),

wn+1 = w1n +
∑4

i=1 biτF (tn + ciτ, win),






(6.10)

with c1 = 0, c2 = c3 = 1
2 , c4 = 1 and b1 = b4 = 1

6 , b2 = b3 = 1
3 . The stability function of this

method is

R(z) = 1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4,

and thus we have for linear homogeneous systems,

w′(t) = Aw(t), A ∈ Mα =⇒ positivity for ατ ≤ 1.

Further the rational functions Qj in (6.4) are found to be

Q1(z) =
1

6
(1 + z +

1

2
z2 +

1

4
z3), Q2(z) =

1

6
(2 + z +

1

2
z2), Q3(z) =

1

6
(2 + z), Q4(z) =

1

6
.

(Actually, Q2 and Q3 should be taken together since c2 = c3.) It follows that we have for
linear inhomogeneous equations,

w′(t) = Aw(t) + g(t), A ∈ Mα, g(t) ≥ 0 =⇒ positivity for ατ ≤ 2/3.

This bound is determined by Q′′
1.

This Runge-Kutta method cannot be written in the form (6.9) with nonnegative coefficients
pij , qij , and therefore we get no result for nonlinear positivity. (A proof for the nonexistence
of nonnegative pij , qij can be obtained, in a roundabout way, from the contractivity results of
Kraaijevanger (1991)). 3

Note. More general results on nonlinear positivity of Runge-Kutta methods can be found in
Horvath (1998). These results are closely related to Kraaijevanger (1991) where contractivity
in arbitrary norms is considered.
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6.3. Application to a diffusion equation

As an illustration we consider the parabolic initial-boundary value problem

ut = uxx, u(0, t) = u(1, t) = 0, u(x, 0) =

{
0 for 0 < x < 1

2 ,
1 for 1

2 ≤ x < 1,

with discontinuities at x = 1
2 and 1 for t = 0. Space discretization with 2-nd order central

differences gives approximations wi(t) ≈ u(xi, t) by

w′(t) =
1

h2









−2 1

1 −2
. . .

. . .
. . . 1
1 −2









w(t), wi(0) =

{
0 for 1 ≤ i < 1

2m,
1 for 1

2m ≤ i ≤ m,

with xi = ih and h = 1/(m + 1). Application of backward Euler and the trapezoidal rule
(Crank-Nicolson) with τ = h = 1/50 gives the following Figure 6.1. Note that a sufficient
condition for positivity of the Crank-Nicolson scheme is τ/h2 ≤ 1, which is clearly not satisfied
here.

Figure 6.1. Discontinuous diffusion solutions with backward Euler (left) and Crank-Nicolson (right).

In practice, problems with positivity are not very often encountered with parabolic equa-
tions. The solutions for such problems are in general rather smooth and then accuracy takes
care of negative values. Also in the discontinuous example presented here negative values can
be avoided by starting the Crank-Nicolson scheme with small τ and then gradually increasing
the time step.

Note. The condition τ/h2 ≤ 1 for positivity in the above example is obtained from The-
orem 6.1, which was formulated for arbitrary matrices A ∈ Mα. For the above matrix
A = h−2tridiag(1,−2, 1) this condition is a bit too strict. Matlab experiments show that for
this particular matrix the actual upper bound on τ/h2 is approximately 1.17, so this is pretty
close to the general bound from Theorem 6.1. For the Crank-Nicolson scheme with period-
icity conditions it can be proven that the scheme will be positive provided that τ/h2 ≤ 1.5,
see Dautray & Lions (1993, p. 50). We also note that Bolley & Crouzeix (1978) showed the
condition of Theorem 6.1 to be necessary for matrices of the type A = −µI +ǫ tridiag(1,−2, 1)
with µ > 0 and with ǫ > 0 sufficiently small.
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6.4. Application to advection with limiters

For the advection equation ut + aux = 0 with a > 0, the discretization (5.1),(5.2) with limiter
(5.5) leads to a semi-discrete system of the form

w′
i(t) = αi(w(t))

(

wi−1(t) − wi(t)
)

with
0 ≤ αi(w) ≤ a

h
(1 + µ),

see Section 5. Condition (6.7) is satisfied with constant α = (a/h)(1 + µ). Therefore, with
the explicit trapezoidal rule (6.5) positivity is known to hold if the Courant number ν = aτ/h
satisfies

(1 + µ)ν ≤ 1.

Taking µ large gives a slightly better accuracy, especially near peaks, see Table 5.3 and the
Figures 6.2 (left picture the same as Figure 5.1). This is also to be expected since taking large
µ means that the limiter is less often applied. However, the above theoretical result predicts
that we then need smaller time steps, that is, more computer time. Therefore the choice µ = 1
seems a good compromise.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
Figure 6.2a. Limiter with mu = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
Figure 6.2b. Limiter with mu = 3

The dependence on µ of the maximal allowable Courant number was confirmed in numerical
experiments (Hundsdorfer et al. (1995)). These numerical experiments were further not very
conclusive. For example with µ = 1 and the classical Runge-Kutta method positive values
were obtained in 1 space dimension up to ν = 1.37, whereas in 2 dimensions this method
always gave negative results. Furthermore, little difference was found between the methods
(6.5) and (6.6). With µ = 1 both these methods did give positive results up to ν = 1 in 1D,
and ν ≈ 2

3 in 2D. The theoretical bound for positivity with the explicit trapezoidal rule (6.5)
is ν = 1

2 .

54



So, the general theory seems to have some relevance for this specific advection discretiza-
tion, but it is not able to give very accurate bounds. Based on theoretical and experimental
observations, the explicit trapezoidal rule (6.5) seems a good choice for the time integration
of advection with limiters.

Remark. Application of the forward Euler method to the flux-limited advection discretization
gives very peculiar results. The scheme does satisfy a maximum principle if (1 + µ)ν ≤ 1, but
smooth initial profiles are turned into blocks or staircases.

→

The reason for this is the instability of forward Euler for the underlying 3-th order dis-
cretization, see Figure 4.3 and the remark thereafter. With limiting we get the interesting
nonlinear phenomenon: instability combined with maximum principle. In particular this
shows that for nonlinear systems boundedness is not sufficient for having stability. 3
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7. Boundary conditions and spatial accuracy

Consider the advection-diffusion equation

ut + aux = duxx for t ≥ 0, 0 ≤ x ≤ 1 (7.1)

with given initial profile u(x, 0). If d > 0 we need boundary conditions at x = 0 and x = 1.
Periodicity conditions do not often occur in practice. It is more common to impose Dirichlet
conditions, where the values at the boundaries are prescribed,

u(0, t) = γ0, u(1, t) = γ1, (7.2)

or, more general, with time dependent boundary values γ0(t) and γ1(t).
On the other hand, for the pure advection problem with d = 0 we need only conditions

at the inflow boundary, that is, at x = 0 if a > 0 and at x = 1 if a < 0. If d > 0 but d ≈ 0
(more precisely, if the Péclet number |a/d| is large), then the Dirichlet condition at the outflow
boundary will give rise to a boundary layer.

Example. Let u(0, t) ≡ 1 and a > 0. Then the advection
equation ut +aux = 0 gives the stationary solution u(x, t) ≡
1.
On the other hand, if we consider the advection-diffusion
equation ut + aux = duxx with u(1, t) ≡ 0 we get the sta-
tionary solution u(x, t) = (ea/d − eax/d)/(ea/d − 1).

A boundary layer of this type will be absent if the Neumann condition ux = 0 is imposed
at the outflow boundary. If a > 0 we then have

u(0, t) = γ0, ux(1, t) = 0. (7.3)

With this condition rapid changes may still occur in the spatial derivatives of u, but u itself
will not show the nearly discontinuous behaviour that arises with Dirichlet conditions.

In practice, finding correct boundary conditions is a difficult task for the modellers, and
much physical insight is needed for systems of equations. Boundary conditions also give rise to
several numerical difficulties, some of which will be shortly addressed in this section. First, our
numerical scheme may ”require” more boundary conditions than the physical model. Secondly,
the von Neumann stability analysis is no longer applicable (even with constant coefficients and
L2-norm). Thirdly, even if there are no boundary layers, a more refined error analysis may be
needed to predict the correct order of convergence of the numerical scheme.

The issue of stability is extensively treated in Richtmyer & Morton (1967, Chapter 6)
and Strikwerda (1989, Chapter 11). Here we shall confine ourselves to a few remarks on
this subject. By means of some examples the issue of accuracy for smooth solutions will be
discussed. Further a brief description will be given of a local grid refinement procedure that
can be used to resolve boundary layers and other sharp gradients.

Note. Another major numerical difficulty with boundary conditions occurs for multi-
dimensional problems when the spatial domain is not aligned with the grid, especially if
this domain has a complicated shape. This is outside the scope of these notes. Also special
fitted schemes that are suited to deal with boundary layers are not considered here. For these
topics we refer to the monograph of Morton (1996).
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7.1. Spatial accuracy

Consider the linear semi-discrete system

w′(t) = F (t, w(t)) = Aw(t) + g(t),

and let wh(t) be the exact PDE solution restricted to the space grid, and σh(t) = w′
h(t) −

F (t, wh(t)) the spatial truncation error. We shall use the stability assumption

‖etA‖ ≤ K for all t ∈ [0, T ] , (7.4)

with moderate K > 0, independent of the mesh width h. As we saw in Section 2, the estimate
‖σh(t)‖ = O(hq) leads to a bound ‖wh(t) − w(t)‖ = O(hq) for the spatial error. Sometimes
this can be improved.

Lemma 7.1. Suppose the stability assumption (7.4) holds, w(0) = wh(0) and we have the
decomposition

σh(t) = Aξ(t) + η(t) with ‖ξ(t)‖, ‖ξ′(t)‖, ‖η(t)‖ ≤ Chr

for 0 ≤ t ≤ T . Then ‖wh(t)−w(t)‖ ≤ C ′hr for 0 ≤ t ≤ T , with C ′ depending on C, K and T .

Proof. Let ε(t) = wh(t) − w(t). Then ε(0) = 0 and

ε′(t) = Aε(t) + σh(t) = A
(

ε(t) + ξ(t)
)

+ η(t).

Hence ε̂(t) = ε(t) + ξ(t) satisfies

ε̂′(t) = Aε̂(t) + ξ′(t) + η(t), ε̂(0) = ξ(0).

In the same way as in section 2, it follows that

‖ε̂(t)‖ ≤ K‖ξ(0)‖ + Kt max
0≤s≤t

‖ξ′(s) + η(s)‖,

and since ‖ε(t)‖ ≤ ‖ε̂(t)‖ + ‖ξ(t)‖, the estimate for ‖ε(t)‖ also follows. 2

Due to negative powers of h contained in A, the assumption of the lemma does not imply
‖σh(t)‖ = O(hr). So, the above result tells us that we can have convergence of order r while
the truncation error has a lower order. We shall consider some simple examples where this
can occur at the boundaries.

Note. Similar phenomena also occur when nonuniform grids are considered. For (technical)
results on this, the interested reader is referred to the paper of Manteuffel & White (1986).
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Example : outflow with central advection discretization

Consider the advection equation ut + ux = 0, for 0 ≤ x ≤ 1, with given inflow condition
u(0, t) = γ0(t) and initial profile u(x, 0). Let h = 1/m and xj = jh for j = 0, 1, ..., m.

| • • • • • • ◦
0 x1 x2 xm xm+1

Second order central discretization gives

w′
j(t) =

1

2h

(

wj−1(t) − wj+1(t)
)

, j = 1, 2, ..., m,

with w0(t) = γ0(t). Here wm+1(t) represents the value at the virtual point xm+1 = 1+h. This
value can be found by extrapolation, for example,

wm+1(t) = θwm(t) + (1 − θ)wm−1(t).

We consider θ = 1 (constant extrapolation) and θ = 2 (linear extrapolation). This last choice
seems more natural; in fact we then apply the 1-st order upwind discretization at the outflow
point.

For the spatial truncation error σh(t) = (σh,1(t), ..., σh,m(t))T we find σh,j(t) = O(h2) for
j < m, whereas at the outflow point

σh,m(t) =
d

dt
u(t, xm) − 1

2h

(

θu(t, xm−1) − θu(t, xm)
)

=

= −1

2
(2 − θ)ux − 1

4
θhuxx + · · ·

∣
∣
∣
∣
(xm,t)

.

So, for the space truncation error we have the bounds

‖σh‖∞ = O(hs), ‖σh‖2 = O(hs+ 1

2 ), ‖σh‖1 = O(hs+1)

in the L∞, L2 and L1 norms, with s = 0 if θ = 1 and s = 1 if θ = 2.
Numerical experiments, however, show that ‖wh(t)−w(t)‖ = O(hs+1) for all three norms.

This is in accordance with Lemma 7.1. We have

A =
1

2h










0 −1
1 0 −1

. . .
. . .

. . .

1 0 −1
θ −θ










, σh =










0
0
...
0
1










Chs + O(hs+1),

with C = −1
2ux(1, t) if θ = 1, and C = −1

2uxx(1, t) if θ = 2. If we ignore the higher order
terms in σh, then Aξ = σh gives

ξj−1 − ξj+1 = 0 (j = 1, 2, ..., m with ξ0 = 0),
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θξm−1 − θξm = 2Chs+1.

Hence ξ = (ξ1, 0, ξ1, 0, ...)T with ξ1 = ±2θ−1Chs+1, the sign depending on the parity of m,
and thus we find ‖ξ‖ = O(hs+1) in the L1, L2 and L∞ norms.

For a complete convergence proof we need stability results. In the present example this is
easy in the L2-norm. Consider the inner product on R

m,

(u, v) = h

m∑

j=1

δjujvj , with δj = 1 for j < m and δm = 1/θ,

and corresponding norm ‖v‖ = (v, v)1/2. We have, for any v ∈ R
m,

(v, Av) = −1

2
v2
m ≤ 0.

Hence, if u′(t) = Au(t) then

d

dt
‖u(t)‖2 =

d

dt
(u(t), u(t)) = 2(u(t), u′(t)) = 2(u(t), Au(t)) ≤ 0,

showing that ‖u(t)‖ is nonincreasing. Consequently ‖etA‖ ≤ 1 for t ≥ 0.
If θ = 1 the norm ‖ · ‖ is the L2-norm. For θ = 2 it is equivalent to the L2-norm,

‖v‖2
2 ≥ ‖v‖2 = ‖v‖2

2 −
1

2
hv2

m ≥ 1

2
‖v‖2

2,

and so in this case (7.4) holds with K =
√

2, in the L2-norm.

Note. The L2-convergence result in the above example is basically due to Gustafsson (1975).
The results in that paper are more general (hyperbolic systems with multi-step time integra-
tion), but the derivations are also much more complicated.

Example : Neumann boundary condition for diffusion

Consider the diffusion test problem ut = uxx with u(0, t) = γ0(t) and ux(1, t) = 0, with the
same grid as above. Second order central differences now give

w′
j(t) =

1

h2

(

wj−1(t) − 2wj(t) + wj+1(t)
)

, j = 1, 2, ..., m,

with w0(t) = γ0(t). The Neumann condition at x = 1 can be discretized as h−1(wm+1(t) −
wm(t)) = 0 or as (2h)−1(wm+1(t) − wm−1(t)) = 0. Thus we set, with parameter θ = 0 or 1,

wm+1(t) = θwm(t) + (1 − θ)wm−1(t).

For a smooth solution it can be assumed that both the differential equation and the
Neumann condition are valid at xm = 1. This implies that ux(1, t) = uxxx(1, t) = · · · = 0.
Inserting the exact solution in the difference scheme, we find a 2-nd order truncation error,
except at xm where

σh,m(t) =
1

2
θuxx(1, t) + O(h2).
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So, if θ = 0 we have an O(h2) truncation error. If θ = 1 we have an inconsistency at
xm = 1, but still we can prove first order convergence: ignoring the O(h2) terms we have
Aξ = σh if

ξj−1 − 2ξj + ξj+1 = 0 (j = 1, 2, ..., m − 1; ξ0 = 0), ξm−1 − ξm =
1

2 − θ
Ch2,

with C = 1
2θuxx(1, t), giving ξj = −j(2 − θ)−1Ch2 for 1 ≤ j ≤ m. Hence ‖ξ‖ = O(h) in the

L1, L2 and L∞ norms.

Stability in the L2-norm can be proven here just as in the previous example. In the present
example we have ‖etA‖∞ ≤ 1, due to diagonal dominance in the rows, as can be seen from the
formula for the logarithmic norm (2.13).

Remark. The choice wm+1 ≡ wm−1 in this example presents itself in a natural way if we
consider, instead of u(x, t) for 0 ≤ x ≤ 1, the function ū(x, t) for 0 ≤ x ≤ 2, defined by

ū(x, t) = u(x, t) for 0 ≤ x ≤ 1,

ū(x, t) = u(1 − x, t) for 1 ≤ x ≤ 2.

For ū we then have ūt = ūxx(0 ≤ x ≤ 2), ū(0, t) = ū(2, t) = γ0(t), and the Neumann condition
at x = 1 is automatically fulfilled due to symmetry around the point x = 1. Discretizing this
extended problem with central differences will give the same symmetry in the semi-discrete
system, so that w̄m+j(t) = w̄m−j(t).

Numerical example: diffusion on cell/vertex centered grids

In the previous two examples the grid was chosen such that the boundaries did coincide with
grid points. If fluxes are prescribed on the boundaries it would be more natural to let the
boundaries coincide with cell vertices. As an example we consider

ut = uxx, u(0, t) = γ0(t), ux(1, t) = γ1(t)

for 0 ≤ x ≤ 1, t ≥ 0 with given initial profile, and we shall present numerical results on
different grids.

Vertex centered grid:

x
1

x
2

x
m

0 1

Let xi = ih with h = 1/m. Using xm+1 = 1 + h as virtual point with value wm+1 such that
1
2h(wm+1 − wm−1) = γ1, we obtain the system







w′
1 = 1

h2 (−2w1 + w2) + 1
h2 γ0,

w′
j = 1

h2 (wj−1 − 2wj + wj+1), j = 2, ..., m − 1,

w′
m = 1

h2 (2wm−1 − 2wm) + 2
hγ1.

The truncation error is O(h2) at all points except at the right boundary where we find σm =
1
3huxxx(1, t) + O(h2).
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Cell centered grid:

x
1

x
2

x
m

0 1

Let xi = (i − 1
2)h with h = 1/m. Now the right boundary condition fits in a natural way

but we have to think about how to implement the Dirichlet condition at the left. Using the
virtual point x0 = −1

2h with virtual value w0 such that 1
2(w0 + w1) = γ0, we now obtain the

semi-discrete system







w′
1 = 1

h2 (−3w1 + w2) + 2
h2 γ0,

w′
j = 1

h2 (wj−1 − 2wj + wj+1), j = 2, ..., m − 1,

w′
m = 1

h2 (wm−1 − wm) + 1
hγ1.

In this case we even have an inconsistency at the left, σ1 = 1
4uxx(0, t) + O(h2), at the right

boundary we get σm = 1
24huxxx(1, t) + O(h2), and elsewhere the truncation errors are O(h2).

The names vertex/cell centered are used here because of the relationship with finite volume
schemes, see Morton (1996, p. 216). We can also combine the grids by taking h = 1/(m + 1

2)
and xj = jh, so that now on both sides the boundary conditions fit naturally. On the left we
get the vertex centered discretization and on the right the cell centered. We shall refer to this
as ”hybrid”.

In the following table the errors on the three grids are given in the max-norm and L2-norm
for the solution u(x, t) = 1 + e−

1

4
π2t cos(1

2πx) at output time T = 1
4 . Obviously there is no

reduction in accuracy. Even with the cell centered case, where the truncation error is only
O(h0) at the left boundary, we find second order convergence in the max-norm. This can be
explained just as in the previous examples (left as exercise). Further it should be noted that
although the rates of convergence seem the same in the three cases, the error constants are
smallest in the hybrid case.

#points m vertex centered cell centered hybrid

L2-error L∞-error L2-error L∞-error L2-error L∞-error

10 .11 10−2 .21 10−2 .12 10−2 .17 10−2 .11 10−3 .19 10−3

20 .26 10−3 .52 10−3 .32 10−3 .42 10−3 .29 10−4 .56 10−4

40 .63 10−4 .13 10−3 .79 10−4 .10 10−3 .76 10−5 .15 10−4

80 .16 10−4 .33 10−4 .20 10−4 .26 10−4 .19 10−5 .39 10−5

TABLE 7.1. Spatial errors with vertex/cell centered grids.

7.2. Local grid refinements

As we saw, boundary conditions may give rise to boundary layers in advection-diffusion prob-
lems with large Péclet numbers. To maintain accuracy in such a situation a refinements of
the grid near that boundary will be needed to be able to represent the solution properly on
the grid.
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Strong spatial gradients may also be caused by local source terms, non-smooth initial
profiles or nonlinear reaction terms. In case the location of these gradients is not known in
advance, a local refinement of the grid should adapt itself to the solution. A relatively simple
procedure of this kind has been derived by Trompert & Verwer (1991). Basically their method
works as follows: for a time step tn 7→ tn+1 one first performs a time step on a coarse grid.
In those regions were one is not satisfied with the solution (for instance if an estimate for
|uxx(x, tn+1)| is too large) the grid is is refined by bisection, and there the step tn 7→ tn+1 is
redone. For this step on a part of the grid, starting values may already be present, otherwise
they are found by interpolation, and likewise for boundary values. For a detailed description
of this process we refer to the paper of Trompert & Verwer (1991). References on related
approaches can also be found in that paper.

As an illustration of grid refinement, we consider the so-called Molenkamp-Crowley test,
which consists of the 2D advection equation

ut + (au)x + (bu)y = 0

with t ≥ 0 and 0 ≤ x, y ≤ 1 and with given velocities

a(x, y) = −2π(y − 1

2
), b(x, y) = 2π(x − 1

2
).

With this velocity field any initial profile is rotated around
the center of the domain. At time t = 1 one rotation will be
completed. Dirichlet conditions are prescribed at the inflow
boundaries. The initial profile is a cylinder with height 1,
radius 0.1 and center (1

2 , 3
4).

Figure 7.1 gives the numerical results after one rotation on a uniform grid with h = 1/80
and with locally refined grids using h = 1/10, 1/20, 1/40, 1/80. Spatial discretization is done
as in Section 5 (limiter with µ = 1). At the boundaries quadratic extrapolation is used to find
missing values outside the domain. In the interior, at the mesh interfaces, linear extrapolation
is used. Time integration is done with the classical 4-th order Runge-Kutta method with
sufficiently small time steps, so that the temporal errors are not visible. The solution on the
locally refined grid has the same quality as the solution on the overall fine grid.

Figure 7.1. Rotating cylinder in Molenkamp test.
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Application of local grid refinements to a smog prediction model is discussed in the thesis of
van Loon (1996). The model is used at RIVM to give a smog forecast for several days, using
meteo data from a whether prediction model. The domain covers a large part of Europe,
whereas the region of interest is the Netherlands. The domain is taken so large to avoid
influence of boundary conditions, which are not well known. Local grid refinements are used
to improve accuracy in the region of interest, without introducing too many grid points.

Figure 7.2 gives a numerical prediction (5 day period, ending at 24-7-1989, 14:00 MET)
for the ozone concentrations over Europe in µg m−3. The coarse grid solution, with 52 × 55
cells, is given in the left picture. For the picture on the right 4 levels of refinement were used
in the central region, giving higher ozone concentrations over the Netherlands and southern
England. The locally refined solution corresponds better with actual observations of that date,
see van Loon (1996).

Figure 7.2. Computed O3 distribution. Coarse grid (left) and with 4 levels refinement (right).

Note. A code based on this refinement procedure for general parabolic problems in 2D or
3D has been written by J. Blom. The code is easy to use and it can be obtained at the URL
”www.cwi.nl/ gollum” under the headings VLUGR2 and VLUGR3.
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8. Boundary conditions and temporal accuracy

Surprisingly, boundary conditions may also have a negative impact on the temporal accuracy.
For standard one-step methods, of the Runge-Kutta type, this phenomenon will usually only
manifest itself for high accuracies. As an illustration we consider

ut + ux = u2 for 0 ≤ x ≤ 1, 0 ≤ t ≤ 1/2, (8.1)

with solution u(x, t) = sin2(π(x − t))/(1 − t sin2(π(x − t))). We assume that u(x, 0) is given,
together with either the inflow Dirichlet condition

u(0, t) = sin2(πt)/(1 − t sin2(πt)), (8.2)

or the periodicity condition
u(x, t) = u(x ± 1, t). (8.3)

For a numerical experiment, we consider space discretization for ux with 4-th order central
differences, see Section 4. With the Dirichlet conditions (8.2) we use 3-th order differences (4
point stencil) at points near the boundaries. In view of the results of the previous section, we
then still expect a 4-th order spatial error. Time discretization is done with the classical 4-th
order Runge-Kutta method. We consider τ, h → 0 with fixed Courant number τ/h = 2.

Bound. cond. h L2-error L∞-error

Dirichlet (8.2) h = 1/ 40 0.18 10−3 0.30 10−3

h = 1/ 80 0.13 10−4 (3.80) 0.24 10−4 (3.57)
h = 1/160 0.86 10−6 (3.90) 0.19 10−5 (3.75)
h = 1/320 0.56 10−7 (3.96) 0.12 10−6 (3.91)
h = 1/640 0.35 10−8 (3.98) 0.79 10−8 (3.96)

Periodic (8.3) h = 1/ 40 0.17 10−3 0.21 10−3

h = 1/ 80 0.11 10−4 (3.98) 0.14 10−4 (3.98)
h = 1/160 0.67 10−6 (3.99) 0.85 10−6 (3.99)
h = 1/320 0.42 10−7 (4.00) 0.53 10−7 (4.00)
h = 1/640 0.26 10−8 (4.00) 0.33 10−8 (4.00)

TABLE 8.1. Spatial errors (and estimated orders) with Dirichlet and periodicity conditions.

Numerical results are given in Table 8.1 for the spatial errors at time t = 1/2 in L2 and
L∞ norms, together with the estimated orders, showing 4-th order convergence for both cases
(8.2) and (8.3). Table 8.2 gives the errors if we use the Runge-Kutta method. Now, with
Dirichlet conditions there is a clear order reduction, we get approximately order 2.5 in the
L2-norm and order 2 in the L∞-norm.
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Bound. cond. τ = 2h L2-error L∞-error

Dirichlet (8.2) τ = 1/ 20 0.76 10−3 0.13 10−2

τ = 1/ 40 0.68 10−4 (3.48) 0.16 10−3 (2.96
τ = 1/ 80 0.95 10−5 (2.84) 0.46 10−4 (1.83)
τ = 1/160 0.17 10−5 (2.52) 0.12 10−4 (1.98)
τ = 1/320 0.30 10−6 (2.48) 0.29 10−5 (1.99)

Periodic (8.3) τ = 1/ 20 0.75 10−3 0.11 10−2

τ = 1/ 40 0.55 10−4 (3.76) 0.87 10−4 (3.72)
τ = 1/ 80 0.37 10−5 (3.90) 0.59 10−5 (3.88)
τ = 1/160 0.24 10−6 (3.95) 0.38 10−6 (3.95)
τ = 1/320 0.15 10−7 (3.98) 0.24 10−7 (3.97)

TABLE 8.2. Errors (and estimated orders) for RK4, τ = 2h, with Dirichlet and
periodicity conditions.

It should be noted that the results of Table 8.1 were also found numerically with the
4-th order Runge-Kutta method, but there a very small time step was chosen, and it was
experimentally verified that temporal errors were negligible.

In this section we want to explain the result of Table 8.2. This will be done in a general
framework, also including implicit methods.

Throughout the section a given norm ‖ · ‖ on R
m is considered and the following notation

will be used: for v ∈ R
m depending on τ , h, we write v = O(ταhβ) if it holds that ‖v‖ ≤ Cταhβ

with C > 0 independent of τ and h. So, in particular v = O(τα) means that no negative powers
of h are hidden in the bound. The same notation is also used for matrices. If it is necessary
to specify the norm we write ‖v‖ = O(ταhβ).

8.1. Local error analysis

Consider a linear semi-discrete system in R
m,

w′(t) = Aw(t) + g(t), w(0) = w0, (8.4)

with a smooth solution so that w(k)(t) = O(1) for all derivatives arising in the analysis. If the
underlying PDE problem has non-homogeneous boundary conditions, these boundary data
are incorporated in g(t), together with genuine source terms. We assume for the moment that
w(t) = wh(t), that is, spatial errors are neglected. Application of a one-step method, say
Runge-Kutta type, will lead to a recursion

wn+1 = R(τA)wn +
s∑

j=1

Qj(τA)τg(tn + cjτ), (8.5)

with stability function R and rational functions Qj determined by the method, see also Sec-
tion 6. If we insert the exact solution into (8.4), we get a local error δn,

w(tn+1) = R(τA)w(tn) +
s∑

j=1

Qj(τA)τg(tn + cjτ) + δn. (8.6)
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Note that this δn is the error which is made in one single step, that is, if we have wn = w(tn)
then δn = w(tn+1) − wn+1.

Using g(t) = w′(t) − Aw(t) we can express δn as a Taylor series in terms of the exact
solution w and its derivatives,

δn =
∑

k≥0

1

k!
Hk(τA)τkw(k)(tn) (8.7)

with rational functions

H0(z) = 1 − R(z) + z
s∑

j=1

Qj(z), Hk(z) = 1 +
s∑

j=1

(zck
j − kck−1

j )Qj(z) for k ≥ 1.

The Taylor expansion can, of course, be truncated at any level τk with a remainder term pro-

portional to τk+1, involving derivatives w
(k+1)
i of the components i = 1, ..., m at intermediate

points in [tn, tn+1].
We assume in the following that the integers p and q are such that

H0(z) = H1(z) = · · · = Hq(z) ≡ 0 (8.8)

and
the method has order p. (8.9)

The first condition means that the method is exact if w(t) is a polynomial of degree q or less.
In the second condition the order refers to the standard concept for ODEs, and so this means
that δn = O(τp+1) provided that A = O(1), the non-stiff case. Note that for semi-discrete
PDEs we will have A ∼ h−k with k = 1 for advection and k = 2 for diffusion, and thus the
non-stiff estimate is not applicable. We do have q ≤ p and

Hk(z) = O(zp+1−k), z → 0 for q + 1 ≤ k ≤ p. (8.10)

(This can be seen by considering the scalar equation with A = λ, |λ| = 1, w(t) = 1
k! t

k and
n = 0.)

In general, we can formulate assumptions such that Hk(τA) = O(1), but this only gives
the estimate δn = O(τ q+1). For local error bounds applicable to semi-discrete PDEs property
(8.10) does not necesserily lead to higher order estimates.

Example. For the classical Runge-Kutta method, see Section 6, we have p = 4, q = 1 and

H2(z) =
1

48
z3.

Therefore, the leading error term in (8.7) is given by

δ∗n =
τ2

96
[τA]3w′′(tn).

For stability with this explicit method we have to impose a step size restriction such that
τA = O(1), which leads to the local error bound δ∗n = O(τ2). If we know, in addition, that
Aw′′(t) = O(1) then we get the bound

δ∗n =
1

96
τ3[τA]2[Aw′′(tn)] = O(τ3).

66



Likewise, if A2w′′(t) = O(1), then δ∗n = O(τ4), and so on. However, whether Akw′′(t) = O(1)
is true or not will depend on the boundary conditions. 3

Example. Condider the familiar example, arising from 1-st order upwind advection with
inflow Dirichlet condition,

A =
1

h








−1
1 −1

. . .
. . .

1 −1








∈ R
m×m,

and consider a vector v = (vj) ∈ R
m with vj = ψ(xj), xj = jh, for some fixed, smooth function

ψ, for instance ψ = utt. Then

Av = −1

h
ψ(0)








1
0
...
0








+








ψx(x1)
ψx(x2)

...
ψx(xm)








+ · · · ,

and therefore Av = O(1) in L2 and L∞ norms iff ψ(0) = 0. Otherwise we will have ‖Av‖2 ∼
h−1/2 and ‖Av‖∞ ∼ h−1.

In case that ψ(0) = 0, we have

A2v = −1

h
ψx(0)








1
0
...
0








+








ψxx(x1)
ψxx(x2)

...
ψxx(xm)








+ · · · ,

and thus we see that for having A2v = O(1) in L2 and L∞ norms we need ψ(0) = ψx(0) = 0.
Likewise for higher powers of A.

On the other hand, for

B =
1

h








−1 1
1 −1

. . .
. . .

1 −1








∈ R
m×m,

and ψ a smooth periodic function we get simply

Bv = (ψx(xj)) + O(h), B2v = (ψxx(xj)) + O(h), · · · .

Higher order discretizations of advection and diffusion, with Dirichlet or Neumann bound-
ary conditions, or with periodicity conditions, can be considered in a similar way. 3

In view of the above, the result of Table 8.2 for the periodic case (8.3) does not come as a
surprise. With periodicity conditions we get local errors of O(τp+1) and thus global errors of
O(τp).
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Also the fact that with Dirichlet conditions a lower order of convergence was observed is
no longer surprising. Note however that the results for the Dirichlet case (8.2) are still not well
explained. Since (8.2) gives an inhomogeneous Dirichlet condition, the above suggests that
we will have ‖δn‖∞ = O(τ2) and ‖δn‖2 = O(τ2.5) for the local errors. In Table 8.2, however,
the accumulated global errors are given.

8.2. Global error analysis

Consider a recursion

εn+1 = Sεn + δn (n = 0, 1, ..., N), ε0 = 0,

with stability assumption ‖Sn‖ ≤ K for all n = 0, 1, ..., N . Here δn and εn will stand for the
local and global errors, respectively.

Lemma 8.1. Suppose that
δn = (I − S)ξn + ηn

with ‖ξn‖ ≤ Cτ r, ‖ηn‖ ≤ Cτ r+1 and ‖ξn+1 − ξn‖ ≤ Cτ r+1 for all n. Then there is a C ′ > 0,
depending on C, K and T = Nτ , such that ‖εn‖ ≤ C ′τ r for all 0 ≤ n ≤ N .

Proof. We have
εn+1 = Sεn + (I − S)ξn + ηn, ε0 = 0.

Introducing ε̂n = εn − ξn, we get

ε̂n+1 = Sε̂n + ηn − (ξn+1 − ξn), ε̂0 = ξ0.

This gives in the standard way ε̂n = O(τ r), and thus also εn = O(τ r), with constants deter-
mined by C, K and T . 2

We note that the decomposition of the local error δn, as used in this lemma, can also be
shown to be necessary for having εn = O(τ r) in case the δn are constant, see Hundsdorfer
(1992).

The above lemma will be applied with εn = w(tn) − wn. By subtracting (8.5) from (8.6),
we see that these global errors satisfy

εn+1 = R(τA)εn + δn, ε0 = 0, (8.11)

with local errors δn given by (8.6).
To understand the behaviour of the errors it sufficient to consider the leading error term

in δn. The contribution of the other terms to the global error is found in a similar way. So,
we consider here

δn =
1

(q + 1)!
Hq+1(τA)τ q+1w(q+1)(tn). (8.12)

Define, for α ≥ 0,
ϕα(z) = (1 − R(z))−1Hq+1(z)z−α.

Theorem 8.2. Consider the recursion (8.11),(8.12). Assume ‖R(τA)n‖ ≤ K for all n, and

‖ϕα(τA)‖ = O(1), Aαw(q+j)(t) = O(1) for j = 1, 2, (8.13)
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uniformly in t ∈ [0, T ]. Then εn = O(τ q+1+α) for nτ ≤ T .

Proof. This is a consequence of Lemma 8.1. Take ηn = 0 and

ξn =
1

(q + 1)!
τ q+1+αϕα(τA)

(

Aαw(q+1)(tn)
)

.

2

To study the assumptions of the theorem, consider the discrete L2-norm. Let S be the
stability region of the method, and let D ⊂ S. We assume that A is diagonalizable, A =
V ΛV −1, with cond(V ) = K = O(1) and Λ = diag(λ1, ..., λm) such that

τλj ∈ D ⊂ S. (8.14)

Then we have stability, ‖R(τA)n‖ ≤ K for all n. If we assume in addition that

|ϕα(z)| ≤ C for all z ∈ D, (8.15)

then ‖ϕα(τA)‖ = O(1).

To apply this result we have to chose some suitable region
D ⊂ S. We want the point 0 to be on its boundary, so that
the result can be applied for a step size interval (0, τ0]. For
this we need boundedness of ϕα(z) near z = 0. This holds
for α ≤ p − q − 1, due to (8.10). Further we can take D
arbitrary in S, except for points z 6= 0 on the boundary of
S where R(z) = 1.

Example. For the classical Runge-Kutta method we have

ϕα(z) = − 1

48

z2−α

1 + 1
2z + 1

6z2 + 1
24z3

,

which is bounded near 0 if α ≤ 2. The L2-order 2.5 result of Table 8.2 follows if we can show
that Aαw′′(t) = O(1) for α up to 1/2. This seems difficult to proof. An alternative is to take
α = 1, write the local error as

δn =
(

I − R(τA)
)

ϕ1(τA) τ2.5
(

τ0.5Aw′′(tn)
)

,

and then use the fact that for τ/h constant we will have ‖τ0.5Aw′′(tn)‖2 = O(1). We also note
that the order 2 convergence in the max-norm in Table 8.2 indicates that ‖ϕ0(τA)‖∞ = O(1).
3

Example. The implicit midpoint rule,

wn+1 = wn + τF (tn+1/2,
1

2
wn +

1

2
wn+1), (8.16)

gives the form (8.5) with s = 1, c1 = 1
2 and

R(z) =
1 + 1

2z

1 − 1
2z

, Q1(z) =
1

1 − 1
2z

.
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We have p = 2, q = 1 and H2(z) = −1
4z/(1 − 1

2z). The local error

δn = −1

8
(I − 1

2
τA)−1τA τ2w′′(tn) + O(τ3)

will give rise to local order reduction unless Aw′′(t) = O(1). For example, for the parabolic
initial-boundary value problem ut = uxx + f(t) with time-dependent Dirichlet conditions one
can observe ‖δn‖2 = O(τ2.25) and ‖δn‖∞ = O(τ2), see Verwer (1986). However, by noting
that

δn = −1

8

(

I − R(τA)
)

τ2w′′(tn) + O(τ3),

we see that the global error will show nicely an O(τ2) behaviour if we have stability, even in
case Aw′′(t) 6= O(1). 3

Example. For the trapezoidal rule,

wn+1 = wn +
1

2
τF (tn, wn) +

1

2
τF (tn+1, wn+1), (8.17)

we get s = 2, c1 = 0, c2 = 1 and

R(z) =
1 + 1

2z

1 − 1
2z

, Q1(z) = Q2(z) =
1
2

1 − 1
2z

.

Here we have p = q = 2, so no order reduction will take place. 3

8.3. The total space-time error

For simplicity, the spatial errors were neglected in this section. These errors can be simply
included in the analysis. If we insert wh(t), the restriction of the PDE solution to the spatial
grid Ωh, into (8.5), we obtain

wh(tn+1) = R(τA)wh(tn) +
s∑

j=1

Qj(τA)τg(tn + cjτ) + ρn,

with ρn the local error in space and time. Using w′
h = Awh + g + σh to eliminate the terms

g(tn + cjτ), we get

ρn =
∑

k≥q+1

1

k!
Hk(τA)τkw

(k)
h (tn)

︸ ︷︷ ︸

δn

+
s∑

j=1

Qj(τA)τσh(tn + cjτ)

︸ ︷︷ ︸

γn

.

The contribution of γn to the global error can be studied in the same way as for δn.
Suppose

σh(t) = Aξ(t) + η(t) with ξ(t), ξ′(t), η(t) = O(hβ),

see Lemma 7.1. Then

γn =
s∑

j=1

τAQj(τA)ξ(tn) + O(τhβ)
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assuming boundedness of the rational expressions Qj(τA) and τAQj(τA). Since
∑s

j=1 zQj(z) =
−(1 − R(z)), we get

γn = −(I − R(τA))ξ(tn) + O(τhβ).

Application of Lemma 8.1 with r = 1 shows that the local errors γn will give an O(hβ)
contribution to the global errors wh(tn) − wn.

Notes. The first analysis on order reduction is due to Crouzeix (1975, thesis) for implicit
Runge-Kutta methods applied to parabolic problems, see also Brenner, Crouzeix & Thomée
(1982). For the presentation of the results on the local error in this section the latter paper
was closely followed. Similar results for nonlinear equations can be found in Lubich & Oster-
mann (1993). More recently, it was shown by Lubich & Ostermann (1995) that for parabolic
problems and strongly A-stable methods, the classical order of convergence p will still be valid
in the interior of the spatial domain.

The occurrence of order reduction for explicit methods and hyperbolic equations was first
discussed in Sanz-Serna et al. (1987). In that paper also some examples are given where
this temporal order reduction is avoided by a transformation of the problem. For example,
a problem with inhomogeneous, time dependent Dirichlet conditions can be transformed to a
problem with homogeneous conditions, and this will increase the temporal accuracy. A more
general discussion on this subject, with numerical examples, can be found in Pathria (1997).

As we saw, there is no order reduction for the trapezoidal rule. In fact, order reduction
never occurs for linear multistep methods, due to the fact that in such methods no lower order
intermediate vectors are used. This is no longer true if such methods are used in a usual
predictor-corrector fashion.
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9. Time splitting methods

If we consider advection, diffusion combined with chemistry,

∂

∂t
u +

d∑

k=1

∂

∂xk

(

aku
)

=
d∑

k=1

∂

∂xk

(

dk
∂

∂xk
u
)

+ f(u, x, t),

for a vector u(x, t) = (u1(x, t), u2(x, t), ..., us(x, t))T containing concentration values of s chem-
ical species, one might want to apply different time stepping methods to the different parts of
the equations. For example, the chemistry can be very stiff, which calls for an implicit ODE
method. On the other hand, if the advection is discretized in space with a flux-limiter, then
explicit methods seem much more suitable for that part of the equation. Moreover, use of an
implicit method to the full equation will lead to a huge algebraic system, with coupling over
the species as well as over the space.

In this section we shall discuss some methods were the equation is split into several parts,
which are all solved independently on the time intervals [tn, tn+1]. Such methods are usually
called (time) splitting methods or fractional step methods. In case the splitting is such that
different physical processes are separated, the term ”operator splitting” is also used. If a multi-
dimensional problem is split into 1-dimensional sub-problems, this is often called ”dimensional
splitting”.

9.1. First order splitting

Consider an ODE system, linear for simplicity,

w′(t) = Aw(t),

with A = A1 + A2, arising for example from a linear PDE with homogeneous boundary
conditions or periodicity conditions. We have

w(tn+1) = eτAw(tn). (9.1)

If we are only able, or willing, to solve the ”sub-problems” w′(t) = A1w(t) and w′(t) = A2w(t),
then (9.1) can be approximated by

wn+1 = eτA2eτA1wn, (9.2)

which is the simplest splitting method. In actual computations the terms eτAk will, of course,
be approximated by some suitable ODE method.

Replacing (9.1) by (9.2) will introduce an error, the so-called splitting error for this par-
ticular splitting. Inserting the exact solution into (9.2) gives w(tn+1) = eτA2eτA1w(tn) + τρn

with local truncation error ρn. Note that τρn is the error introduced per step. We have

eτA =
(

I + τ(A1 + A2) +
1

2
τ2(A1 + A2)

2 + · · ·
)

,

eτA2eτA1 =
(

I + τ(A1 + A2) +
1

2
τ2(A2

1 + 2A2A1 + A2
2) + · · ·

)

.
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Hence the local truncation error equals

1

τ

(

eτA − eτA2eτA1

)

w(tn) =
1

2
τ [A1, A2]w(tn) + O(τ2), (9.3)

with [A1, A2] = A1A2 − A2A1 the commutator of A1 and A2. We see that (9.2) will be a 1-st
order process, unless A1 and A2 commute. Note that we assume here tacitly that terms like
A1A2w(t) are O(1), which seems reasonable only if there are no boundary conditions or the
PDE solution satisfies certain compatibility conditions, see Section 8.

For general nonlinear ODE systems

w′(t) = F1(t, w(t)) + F2(t, w(t)),

we can apply (9.2) if the terms etAk are interpreted as solution operators. Written out, we
solve subsequently

d
dtw

∗(t) = F1(t, w
∗(t)) for tn ≤ t ≤ tn+1 with w∗(tn) = wn,

d
dtw

∗∗(t) = F2(t, w
∗∗(t)) for tn ≤ t ≤ tn+1 with w∗∗(tn) = w∗(tn+1),

giving wn+1 = w∗∗(tn+1) as the next approximation. If wn = w(tn) we now get the local
truncation error

1

2
τ
[∂F1

∂w
F2 −

∂F2

∂w
F1

]

(tn, w(tn)) + O(τ2),

similar to (9.3). This formula can be derived by Taylor expansions of w∗∗(tn+1) and w∗(tn+1)
around t = tn.

Note. The structure of the global error of (9.2) becomes transparent by using the Baker-
Campbell-Hausdorff formula,

eτA2eτA1 = eτÃ

with
Ã = A + 1

2τ [A2, A1] + 1
12τ2

(

[A2, [A2, A1]] + [A1, [A1, A2]]
)

+

+ 1
24τ3[A2, [A1, [A1, A2]]] + O(τ4).

(9.4)

This formula can be derived by power series developments of eτA1eτA2 and eτÃ and comparing
the terms with the same powers of τ . The calculation of the terms in Ã quickly become
cumbersome if done in a straightforward fashion, but it can also be done in a recursive way,
see Sanz-Serna & Calvo (1994) and the references given there. Using Lie formalism, a similar
formula can also be obtained for nonlinear autonomous equations.

From formula (9.4) we can reobtain the truncation error (9.3), but we can also apply it

in a global fashion, using (eτA2eτA1)n = etnÃ. Hence, when applied with constant step size
τ , the splitting process (9.1) will solve the modified equation w′(t) = Ãw(t), rather than the
original problem.
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9.2. Strang splittings and higher order

In (9.2) one starts in all steps with A1. Interchanging the order of A1 and A2 after each step
will lead to more symmetry and better accuracy. Carrying out two half steps with reversed
sequence gives the following splitting, due to Strang (1968),

wn+1 =
(

e
1

2
τA2e

1

2
τA1

)(

e
1

2
τA1e

1

2
τA2

)

wn = e
1

2
τA2eτA1e

1

2
τA2wn. (9.5)

By a series expansion and some tedious calculations it follows that the local truncation error
is given by

1

24
τ2

(

[A2, [A2, A1]] − 2[A1, [A1, A2]]
)

w(tn) + O(τ4). (9.6)

This can also be found by repeated application of formula (9.4). Due to symmetry, the
truncation error will only contain even order terms.

If we work with constant step sizes, then (9.5) will require almost the same amount of
computational work as (9.2), since for constant τ we can write the total process (9.5) as

wn = e
1

2
τA2eτA1eτA2 · · · eτA1e

1

2
τA2w0.

In general, with variable step sizes it will be more expensive, of course.
Generalization to nonlinear systems is straightforward, we get

d
dtw

∗(t) = F2(t, w
∗(t)) for tn ≤ t ≤ tn+1/2 with w∗(tn) = wn,

d
dtw

∗∗(t) = F1(t, w
∗∗(t)) for tn ≤ t ≤ tn+1 with w∗∗(tn) = w∗(tn+1/2),

d
dtw

∗∗∗(t) = F2(t, w
∗∗∗(t)) for tn+1/2 ≤ t ≤ tn+1 with w∗∗∗(tn+1/2) = w∗∗(tn+1),

giving wn+1 = w∗∗∗(tn+1) as the approximation on the new time level. The local truncation
error now contains many terms. If we assume that the equation is autonomous, then Taylor
expansion leads to the following expression for this truncation error, see LeVeque (1982),

1

6
τ2

[ 1

4

∂

∂w

(∂F2

∂w
F2

)

F1 −
1

2

∂

∂w

(∂F2

∂w
F1

)

F2 +
1

4

∂

∂w

(∂F1

∂w
F2

)

F2−

−1

2

∂

∂w

(∂F1

∂w
F1

)

F2 +
∂

∂w

(∂F1

∂w
F2

)

F1 −
1

2

∂

∂w

(∂F2

∂w
F1

)

F1

]

(w(tn)) + O(τ4).

An other 2-nd order splitting, also due to Strang (1963), is given by

wn+1 =
1

2

(

eτA1eτA2 + eτA2eτA1

)

wn. (9.7)

The truncation error for this splitting is given by

− 1

12
τ2

(

[A1, [A1, A2]] + [A2, [A2, A1]]
)

w(tn) + O(τ3). (9.8)

The splitting (9.7) is, however, more expensive than (9.2) and will also require more computer
memory. On the other hand, the factors eτA1eτA2 and eτA2eτA1 can be computed in parallel.
For nonlinear problems the same considerations hold.
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With regards to stability of the splittings, assume that we have ‖etAk‖ ≤ 1 for t ≥ 0 and
k = 1, 2. Then it follows trivially that we have ‖wn+1‖ ≤ ‖wn‖ in the splitting processes (9.2),
(9.5) and (9.7). In the same way we get for these splittings

‖etAk‖ ≤ etωk (k = 1, 2, t > 0) =⇒ ‖wn+1‖ ≤ eτω‖wn‖ with ω = ω1 + ω2.

General stability results for these splittings, under the assumption that ‖etAk‖ ≤ K for t ≥ 0,
seem unknown. On the other hand, in practice the first order splitting and Strang splittings
appear to be very stable. In general it is more the accuracy that needs improvement.

The above splitting methods fit in the more general form

wn+1 =
s∑

i=1

αi

( r∏

j=1

eτβijA1eτγijA2

)

wn (9.9)

with α1 + · · · + αs = 1. If we assume again that ‖etAk‖ ≤ 1 for t ≥ 0, k = 1, 2 and if all
coefficients αi, βij , γij ≥ 0 we obtain as above the stability estimate ‖wn+1‖ ≤ ‖wn‖. One
could try to find suitable parameter choices that give higher order processes, but it was shown
by Sheng (1989) that for having order p > 2 some of the coefficients must be negative. More
recently, the result of Sheng was refined by Goldman & Kaper (1996), who showed that if
p > 2 and all αi > 0 then minβij < 0 and min γij < 0, and thus a step with negative time is
necessary for both A1 and A2. The proof of these results are long and technical. Therefore
we only discuss here briefly two examples of higher order splittings.

Examples. Let

Sτ = e
1

2
τA2eτA1e

1

2
τA2

be the 2-nd order Strang splitting operator. By using local Richardson extrapolation, one
obtains the 4-th order splitting

wn+1 =
(4

3
(S 1

2
τ )

2 − 1

3
Sτ

)

wn,

with a negative weight −1/3. Because of this negative weight the simple stability considera-
tions considered above no longer hold. In fact, it seems unknown for what kind of problems
this scheme will be stable or unstable. (Using global extrapolation at the end point t = T
might be beneficial for stability, but then constant step sizes have to be used.)

Another 4-th order splitting, derived by Yoshida (1990) and Suzuki (1990), reads

wn+1 = Sθτ S(1−2θ)τ Sθτ wn,

with θ = (2 − 3
√

2)−1 ≈ 1.35. Here we have 1 − 2θ < 0, so that a step with negative time has
to be taken.

For partial differential equations with boundary conditions such splittings with negative
time steps seem of limited value. We note, however that they are frequently used for time
reversible problems, which arise for instance with certain mechanical problems, see Sanz-Serna
& Calvo (1994). 3
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9.3. Multi component splittings and examples

If A = A1 + A2 + A3 then the first order splitting (9.2) can be generalized to

wn+1 = eτA3eτA2eτA1wn.

Likewise, the Strang splitting (9.5) leads to the 2-nd order formula

wn+1 = e
1

2
τA3e

1

2
τA2eτA1e

1

2
τA2e

1

2
τA3wn.

Note that this is just a repeated application of (9.5): first approximate eτA by e
1

2
τA3eτ(A1+A2)e

1

2
τA3 ,

and then approximate eτ(A1+A2) in the same fashion.
Application to more components and nonlinear systems carries over in the same way.

Remark. Repeated application of (9.7) leads to rather complicated formulas. For linear
equations, with A = A1 + A2 + A3, the formula

wn+1 =
1

2

(

eτA1eτA2eτA3 + eτA3eτA2eτA1

)

wn,

gives also a 2-nd order truncation error. Probably (not verified!) this generalization remains
of 2-nd order for nonlinear equations (this has to be verified separately since this is not a
repeated application of a 2-nd order splitting). Many more variants are possible, of course.

We proceed with a brief description of some concrete examples for splittings, and their
advantages. Obviously, for combined problems with more than two components, the advan-
tages can also be combined. The disadvantage of splitting is, of course, the introduction of a
splitting error on top of the errors that will be made when solving the sub-problems.

Example (”operator splitting”). For the advection-reaction equation

ut +
d∑

k=1

(aku)xk
= f(u, x, t) ∈ R

s,

splitting of the advection and reaction terms has obvious computational advantages. We can
then use an explicit method for the advective terms and an implicit method for the reaction.
Further, in the advection sub-step there will be only coupling in space, whereas in the reaction
sub-step we will have only coupling between the chemical species at the same place, and so
there much parallelism.

The truncation error of the 1-st order splitting is

1

2
τ
[∑

k

(akfxk
) +

∑

k

(ak)xk
(f − fuu)

]

+ O(τ2).

There will be no splitting error if the velocity field is divergence-free,
∑

k(∂ak/∂xk) = 0, and
the reaction term does not depend explicitly on the space variable, (∂f/∂xk) = 0 (k = 1, ..., d).
If this does not hold, we can use Strang splitting to obtain 2-nd order accuracy. 3
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Example (”dimension splitting”). Solving the 2D advection equation

ut + (au)x + (bu)y = 0

with finite differences in space and explicit time stepping, will lead to a CFL condition for
stability of the type

τ

∆x
|a| + τ

∆y
|b| ≤ C0,

with C0 determined by the method. If we split the equation into an x-part and a y-part, while
using the same discretizations, we get a stability restriction

max
( τ

∆x
|a|, τ

∆y
|b|

)

≤ C0,

which allows larger time steps. Moreover, this splitting also allows the use of tailored 1-D
schemes of the Lax-Wendroff type, for which good multi-dimensional extensions are difficult
to derive.

The leading term in the truncation error of the 1-st order splitting now becomes

1

2
τ
(

(a(bu)y)x − (b(au)x)y

)

=
1

2
τ
(

−(aybu)x + (abxu)y

)

,

and this will vanish if ay = bx = 0. If it does not, one should use Strang splitting. 3

Example (”dimension splitting”). Consider the diffusion equation

ut = (dux)x + (euy)y,

with 2-nd order central differences to discretize the diffusion operators and implicit time
stepping. Here splitting of the x-part and y-part makes the implicit relations much easier to
solve. For example, setting e = 0 in the first sub-step, leads to a number of uncoupled 1D
tri-diagonal systems.

With 1-st order splitting the leading term in the truncation error now reads

1

2
τ
(

(d(euy)xy)x − (e(dux)xy)y

)

,

which is zero in case dy = ex = 0. 3

9.4. Solving the fractional steps

To solve the sub-steps, one may select a method such as Euler or Trapezoidal Rule. If these
are applied with the same step size τ that is used for the splitting itself, a specific splitting
method arises. Numerous examples can be found in Yanenko (1971), Gourlay & Mitchell
(1972), Mitchell & Griffiths (1980), Marchuk (1990).

For instance, first order splitting combined with backward Euler gives the first order
method

w∗
n+1 = wn + τF1(tn+1, w

∗
n+1),

wn+1 = w∗
n+1 + τF2(tn+1, wn+1).

(9.10)
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If F1 and F2 contain discretized space derivatives in x and y direction, respectively, this method
is called the 1-st order LOD method (locally one dimensional) of Yanenko. It is obvious that
we can generalize this method for F = F1 + F2 + ... + Fs.

The 2-nd order LOD method is obtained by combining Strang splitting with the trapezoidal
rule (or, likewise, the implicit midpoint rule),

w∗
n+1 = wn + 1

2τ
(

F1(tn, wn) + F1(tn + (1
2 + c)τ, w∗

n+1)
)

,

wn+1 = w∗
n+1 + 1

2τ
(

F2(tn + (1
2 − c)τ, w∗

n+1) + F2(tn+1, wn+1))
)

,

w∗
n+2 = wn+2 + 1

2τ
(

F2(tn+1, wn+1) + F2(tn+1 + (1
2 + c)τ, w∗

n+2)
)

,

wn+2 = w∗
n+2 + 1

2τ
(

F1(tn+1 + (1
2 − c)τ, w∗

n+2) + F1(tn+1, wn+2))
)

.

(9.11)

Note that here Strang splitting is applied on the interval [tn, tn+2]. For c we can take for
example c = 0 or c = 1

2 . What is best will depend on the problem, and there is no choice that
seems preferable a priori. This is due to the fact that the intermediate vectors w∗

n+j are not a
consistent approximation to the full problem at some given time level. Again, generalization
to more F -components is straightforward.

An other familiar splitting method is the second order Peaceman-Rachford ADI method
(alternating direction implicit)

w∗
n+1/2 = wn + 1

2τF1(tn, wn) + 1
2τF2(tn+1/2, w

∗
n+1/2),

wn+1 = w∗
n+1/2 + τF1(tn+1/2, wn+1) + 1

2τF2(tn+1, w
∗
n+1/2).

(9.12)

This could be viewed as a Strang splitting with alternative use of forward and backward Euler,
in a symmetrical fashion to obtain second order, but it seems more natural to consider this
ADI method as a method of its own. Note that the intermediate value w∗

n+1/2 is consistent
with the whole equation, unlike with the LOD methods. On the other hand, this ADI method
does not have a natural extension for more than two components Fj . In the next section a
related ADI method is discussed in detail that does allow more components.

With the above splitting methods all sub-problems are treated in the same fashion and
with the same time step. In general, it seems better to solve the fractional steps with a
method that is suited for that particular sub-step, possibly with a sub-time step τ̄ ≤ τ . Here
one may chose, for example, an implicit or explicit Runge-Kutta method, depending whether
the sub-problem w′(t) = Fj(t, w(t)) is stiff or non-stiff, with an appropriate τ̄ .

9.5. Boundary corrections

The major difficulties with splitting methods occur for problems were the boundary conditions
are important. If we consider a PDE problem with boundary conditions, then these are
physical conditions for the whole process and boundary conditions for the sub-steps (which
may have little physical meaning) are missing.

Therefore one may have to reconstruct boundary conditions for the specific splitting under
consideration. For example, consider a linear semi-discrete problem w′(t) = Aw(t)+g(t), were
g(t) contains the given boundary conditions. Suppose that

Av + g(t) =
(

A1v + g1(t)
)

+
(

A2v + g2(t)
)

,
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with gk(t) containing the boundary conditions relevant to Ak. The exact solution satisfies

w(tn+1) = eτAw(tn) +

∫ τ

0
e(τ−s)Ag(tn + s)ds.

If we consider 1-st order splitting, with inhomogeneous terms g̃1, g̃2, then

wn+1 = eτA2eτA1wn + eτA2

∫ τ

0
e(τ−s)A1 g̃1(tn + s)ds +

∫ τ

0
e(τ−s)A2 g̃2(tn + s)ds.

Even with commuting matrices, A1A2 = A2A1, and constant boundary terms we will get a
splitting error if we take g̃k = gk. An exact formula for this case is obtained by choosing

g̃1(tn + s) = e−sA2g1(tn + s), g̃2(tn + s) = e(τ−s)A1g2(tn + s).

Note that this correction for g1 requires a backward time integration with A2, and this may not
be feasible with an implicit ODE method, due to the fact that the implicit algebraic relations
need no longer be well defined with negative step size. One might replace e−sA2 by some
explicit polynomial approximation P (−sA2), but the effect of this on stability and accuracy
is unclear.

As a rule of thumb, it can be said that the treatment of the boundaries should coincide as
much as possible with the scheme in the interior of the domain. Examples for specific LOD
or ADI methods can be found in Mitchell & Griffiths (1980, Chapter 2). A general analysis of
boundary conditions for splitting methods is, at present, still lacking. Therefore we conclude
this subject with an example.

Example. Consider the model advection-reaction equation, already used in Section 8,

ut + ux = u2, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1/2

with given initial value at t = 0 and Dirichlet condition at x = 0, derived from the exact
solution

u(t, x) =
sin(π(x − t))2

1 − t sin(π(x − t))2
.

As before, spatial discretization is performed with 4-th order central differences in the interior
and 3-rd order one-sided approximations at the boundaries. The advection step is solved with
the classical Runge-Kutta method at Courant number τ/h = 2, and the ”reaction” ut = u2

is solved exactly. Since the nonlinear term is nonstiff, splitting is not really necessary in this
example, but for comparison it is instructive to consider the same example as in Section 8.

We consider :
(i) simple splitting (with reaction followed by advection) where in the advection step the given
boundary values are used;
(ii) Strang splitting where after each time step the order of the fractional steps is reversed,
also with the given boundary conditions;
(iii) the same splitting as in (i) but with corrected boundary conditions

u∗∗(t, 0) =
u(t, 0)

1 − (tn+1 − t)u(t, 0)
for t ∈ [tn, tn+1].

79



The errors in the L2-norm, together with the estimated orders of convergence, are given in
the following table.

Simple splitting Strang splitting Corrected boundary

τ = 1/ 20 0.26 10−1 0.14 10−1 0.88 10−3

τ = 1/ 40 0.14 10−1 (0.94) 0.48 10−2 (1.58) 0.91 10−4 (3.27)
τ = 1/ 80 0.72 10−2 (0.96) 0.17 10−2 (1.54) 0.13 10−4 (2.80)
τ = 1/160 0.36 10−2 (0.98) 0.58 10−3 (1.52) 0.22 10−5 (2.57)

TABLE 9.1. Relative L2-errors (and estimated orders) for (4.1) at t = 1/2 with τ = 2h.

Note that the simple splitting with boundary corrections is more accurate than its Strang
type counterpart. With this correction we reobtain an accuracy comparable to that of Table
8.2.

The convergence rate of the scheme with boundary corrections is less than 4, but this is
due to order reduction of the Runge-Kutta method, it is not caused by the splitting procedure.
A similar order reduction can be observed with Strang splitting: in the absence of boundary
conditions it has (at least) order 2, but in the above table an order 1.5 behaviour can be
observed. 3
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10. IMEX, ADI and AF methods

With time splitting by the fractional step approach we have to solve sub-problems that are not
consistent with the full model. As we saw this creates difficulties with boundary conditions,
and similar problems arise with interface conditions. Also, stationary solutions of the problem
are not stationary solutions of the fractional step methods. Moreover in the time splitting
approach multi-step schemes cannot be used in a natural fashion.

In this section some alternatives to time splitting will be briefly reviewed. The methods
considered here are still subject to ongoing research, and we shall refer to recent papers for
proofs of the technical results.

10.1. The θ-IMEX method

Suppose that the semi-discrete system is of the form

w′(t) = F (t, w(t)) = F0(t, w(t)) + F1(t, w(t)) (10.1)

where F0 is a term suitable for explicit time integration, for instance discretized advection,
and F1 requires an implicit treatment, say discretized diffusion or stiff reactions.

We consider the following simple method

wn+1 = wn + τF0(tn, wn) + (1 − θ)τF1(tn, wn) + θτF1(tn+1, wn+1), (10.2)

with parameter θ ≥ 1
2 . Here the explicit Euler method is combined with the implicit θ-method.

Such mixtures of implicit and explicit methods are called IMEX schemes. Note that in contrast
to the time splitting methods there are no intermediate results which are inconsistent with
the full equation.

Insertion of the exact solution in the scheme gives the truncation error

1

τ

(

w(tn+1 − w(tn)
)

− (1 − θ)F (tn, w(tn)) − θF (tn+1, w(tn+1))−

−θ
(

F0(tn+1, w(tn+1)) − F0(tn, w(tn))
)

= (
1

2
− θ)τw′′(tn) + θτϕ′(tn) + O(τ2)

where ϕ(t) = F0(t, w(t)). If F0 denotes discretized advection and nonstiff terms, smoothness of
w will also imply smoothness of ϕ, independent of boundary conditions or small mesh widths
h. Therefore the structure of the truncation error is much more favourable than with the time
splitting methods considered in the preceding section. For example, with a stationary solution
w(t) = w(0) we now have a zero truncation error. However, with methods of this IMEX type
it is stability that needs a careful examination.

Let us consider the scalar, complex test equation

w′(t) = λ0w(t) + λ1w(t), (10.3)

and let zj = τλj , j = 0, 1. In applications to PDEs these λj will represent eigenvalues of the
two components F0 and F1, found by inserting Fourier modes. One would hope that having
|1 + z0| ≤ 1 (stability of the explicit method) and Re z1 ≤ 0 (stability of the implicit method)
would be sufficient to guarantee stability of the IMEX scheme, but this is not so in general.
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Application of the IMEX scheme to this test equation yields wn+1 = Rwn where R = R(z0, z1)
is given by

R =
1 + z0 + (1 − θ)z1

1 − θz1
. (10.4)

Stability for the test equation thus requires |R | ≤ 1.
First, consider the set

D0 = {z0 : the IMEX scheme is stable for any z1 ∈ C
−}. (10.5)

So, here we insist on A-stability with respect to the implicit part. Using the maximum
principle, it follows by some straightforward calculations that z0 = x0 + iy0 belongs to this set
iff

θ2y2
0 + (2θ − 1)(1 + x0)

2 ≤ 2θ − 1.

Plots are given in Figure 10.1. If θ = 1 we reobtain the stability region of the explicit Euler
method, but for smaller values of θ the set start to shrink and for θ = 1

2 it reduces to the line
segment [−2, 0] on the negative axis.

Alternatively, one can insist on using the full stability region of the explicit method S0 =
{z0 : |1 + z0| ≤ 1}, but then z1 has to be restricted to the set

D1 = {z1 : the IMEX scheme is stable for any z0 ∈ S0}. (10.6)

It easily follows that z1 ∈ D1 iff

1 + (1 − θ)|z1| ≤ |1 − θz1|,

see the right plot in Figure 10.1. Again it is only for θ = 1 that we get the stability region of
the implicit θ-method. If θ = 1

2 the set D1 equals the negative real line R
−.
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Figure 10.1. Boundaries of regions D0 (left) and D1 (right) for the θ-IMEX method (10.2) with
θ = 0.5, 0.51, 0.6 and 1.
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Note that the implicit θ-method with θ > 1
2 is strongly A-stable (that is, A-stable with

damping at ∞) whereas the trapezoidal rule, θ = 1
2 , is ”just” A-stable. Apparently, using a

strongly implicit method gives better stability properties within an IMEX formula.
On the other hand, the above criteria are rather strict. For instance, if we take z0 such

that |ρ + z0| ≤ ρ with ρ < 1, then the method with θ = 1
2 will be stable if z1 = x1 + iy1 ∈ C

−

is within the hyperbole ρ2y2
1 + 4ρ2(1− ρ) ≤ 4(1− ρ)(ρ−x1)

2 (exercise). Therefore, the IMEX
method with θ = 1

2 should not be discarded, only extra care should be given to stability when
applying this method.

In the above the values of λ0 and λ1 have been considered as independent, which is a
reasonable assumption if F0 and F1 act in different directions, for instance if F0 ≈ a(∂/∂x)
(horizontal coupling) and F1 ≈ d(∂2/∂z2) (vertical coupling) or F1 a reaction term (coupling
over chemical species).

Different results are obtained if there is a dependence between λ0 and λ1. Then the implicit
treatment of λ1 can stabilize the process so that we do not even need z0 ∈ S0. Consider for
example the 1D advection-diffusion equation ut+aux = duxx with periodicity in space and with
second order spatial discretization. If advection is treated explicitly and diffusion implicitly,
then

z0 = iν sin 2φ, z1 = −4µ sin2 φ (10.7)

with ν = aτ/h, µ = dτ/h2 and 0 ≤ φ ≤ π, see Section 2. A straightforward calculation shows
that |R | ≤ 1 iff

1 − 8(1 − θ)µs + 16(1 − θ)2µ2s2 + 4ν2s(1 − s) ≤ 1 + 8θµs + 16θ2µ2s2

where s = sin2 φ. This holds for all s ∈ [0, 1] iff

ν2 ≤ 2µ and 2(1 − 2θ)µ ≤ 1. (10.8)

So for any θ ≥ 1
2 we now just have the condition ν2 ≤ 2µ, that is a2τ ≤ 2d.

Finally we note that the above IMEX method with θ = 1 could be viewed as a time
splitting method where we first solve v′(t) = F0(t, v(t)) on [tn, tn+1] with forward Euler and
then v′(t) = F1(t, v(t)) with backward Euler. This explains the favourable stability results
with this method. However, the structure of the truncation error is very different from the
time splitting methods. This is due to interference of the first order splitting error with the
first order Euler errors.

In the following subsections we shall consider several generalizations of (10.2). Such gen-
eralizations are necessary for practical problems since the explicit Euler method is not well
suited for advection, and also first order accuracy is often not sufficient. Moreover, we may
want additional splittings of the implicit terms to resolve the implicit relations more efficiently.

10.2. IMEX multi-step methods

As mentioned already, in the time splitting approach multi-step schemes cannot be used in
a natural fashion. Straightforward use of a multi-step scheme with step size τ to solve the
sub-problems v′(t) = Fj(t, v(t)), tn ≤ t ≤ tn+1 leads to inconsistencies since the available past
values wn−1, wn−2, · · · are approximations to the whole problem, not to the particular sub-
problem at hand. Here we shall consider an other approach to combine implicit and explicit
multi-step methods.
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One of the most popular implicit methods is the second order BDF2 method

3

2
wn+1 − 2wn +

1

2
wn−1 = τF (tn+1, wn+1)

where the left hand side is the 2-step backward differentiation formula, hence the name BDF.
Along with w0, the starting value w1 should be known. It can be computed by a one-step
method, for instance Euler. The popularity of this implicit BDF method is due to its stability
and damping properties. These are very useful properties for diffusion equations.

Convection equations are often treated more efficiently by an explicit method, such as

3

2
wn+1 − 2wn +

1

2
wn−1 = 2τF (tn, wn) − τF (tn−1, wn−1),

to which we shall refer as the explicit BDF2 method. The stability region of this explicit
method is plotted in Figure 10.2.

With advection-diffusion-reaction problems,

ut + ∇ · (au) = ∇(d∇u) + f(u),

explicit advection and implicit diffusion-reaction can then be combined through the IMEX
formula

3

2
wn+1 − 2wn +

1

2
wn−1 = 2τF0(tn, wn) + τF0(tn−1, wn−1) + τF1(tn+1, wn+1),

where F0 contains convective terms only and F1 denotes discretized diffusion together with
reaction.

The above can be generalized as follows: consider a fully implicit multistep method

k∑

j=0

αjwn+1−j = τ
k∑

j=0

βj

(

F0(tn+1−j , wn+1−j) + F1(tn+1−j , wn+1−j)
)

, (10.9)

with implicit treatment of advection and diffusion-reaction. We can handle the advection
explicitly by applying an extrapolation formula

ϕ(tn+1) =
k∑

j=1

γjϕ(tn+1−j) + O(τ q) (10.10)

with ϕ(t) = F0(t, w(t)). This leads to the method

k∑

j=0

αjwn+1−j = τ
k∑

j=1

β∗
j F0(tn+1−j , wn+1−j) + τ

k∑

j=0

βjF1(tn+1−j , wn+1−j), (10.11)

with new coefficients β∗
j = βj + β0γj . Methods of this implicit-explicit multistep type were

introduced by Crouzeix (1980) and Varah (1980).

Accuracy of the IMEX multistep methods is easy to establish.
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Theorem 10.1. Assume the implicit multistep method has order p and the extrapolation
procedure has order q. Then the IMEX method has order r = min(p, q).

Proof. With ϕ(t) = F0(t, w(t)), the local truncation error can be written as

1

τ

k∑

j=0

(

αjw(tn+1−j) − τβjw
′(tn+1−j)

)

+ β0

(

ϕ(tn+1) −
k∑

j=1

γjϕ(tn+1−j)
)

= Cτpw(p+1)(tn) + O(τp+1) + β0C
′τ qϕ(q)(tn) + O(τ q+1),

with constants C, C ′ determined by the coefficients of the multistep method and the extrapo-
lation procedure. 2

Note that in this truncation error only total derivatives arise, and therefore the error is not
influenced by large Lipschitz constants (negative powers of the mesh width) in F0 or F1.

Stability results for the IMEX multistep methods are quite complicated, even for the simple
test problem (10.3). We consider here two classes of 2-step IMEX methods. Let S0,S1 be the
stability regions of the explicit and implicit method, respectively.

The first class is based on the BDF2 method,

3
2wn+1 − 2wn + 1

2wn−1 = 2τF0(tn, wn) − τF0(tn−1, wn−1)+

+ θτF1(tn+1, wn+1) + 2(1 − θ)τF1(tn, wn) − (1 − θ)τF1(tn−1, wn−1)
(10.12)

with parameter θ ≥ 0. The order is 2 and the implicit method is A-stable for θ ≥ 3
4 . With

θ = 1, F0 = 0 we reobtain the fully implicit BDF2 method. If θ = 3
4 the implicit method is

”just” A-stable (equivalent with the trapezoidal rule).
We also consider the following class of IMEX methods, based on the two step Adams

formulas,

wn+1 − wn = 3
2τF0(tn, wn) − 1

2τF0(tn−1, wn−1)+

+ θτF1(tn+1, wn+1) + (3
2 − 2θ)τF1(tn, wn) + (θ − 1

2)τF1(tn−1, wn−1),
(10.13)

again with order 2. Here the implicit method is A-stable if θ ≥ 1
2 . If θ = 1

2 the implicit
method reduces to the trapezoidal rule.

In the Figure 10.2 the stability regions S0 of the explicit methods are plotted together
with the regions D0, defined as in (10.5). We see from the figure that here D0 is really smaller
than S0 and if the implicit method is just A-stable, the region D0 reduces to a line. Formulas
for the boundary of D0 can be found in Frank et al. (1997). In that paper also results on
the set D1, see (10.6), are presented. It seems that, as a rule, if z0 ∈ S0 and z1 < 0, then
the IMEX scheme is stable. Moreover, if the implicit method is strongly A-stable then the
IMEX scheme is stable for z1 in a wedge Wα = {ζ ∈ C : |arg(−ζ)| ≤ α}, with positive angle
α. These results were not proven for arbitrary IMEX schemes, only for some specific schemes
in the above BDF2 and Adams2 class.
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Figure 10.2. Explicit stability regions S0 (dashed) and regions D0 for the IMEX BDF2 methods (left) and
Adams2 methods (right).

With these regions D0, z0 and z1 are considered as independent. As said before, this holds
for example if F0 represents horizontal advection and F1 stands for vertical diffusion plus
reaction (for air pollution problems these are the most relevant terms, the other processes,
such as horizontal diffusion, are small and they can be lumped into F0). Results for 1D
advection-diffusion equations can be found in Varah (1980) and Ascher et al. (1995). More
general stability results of this type, valid for noncommuting operators, are given in Crouzeix
(1980).

10.3. Douglas ADI methods

Suppose we have a decomposition

F (t, v) = F0(t, v) + F1(t, v) + · · · + Fs(t, v). (10.14)

It will be assumed here that the term F0 is nonstiff, or mildly stiff, so that this term can be
treated explicitly. The other terms will be treated implicitly, in a sequential fashion.

The θ-IMEX method regarded at the beginning of this section can be generalized as follows,

v0 = wn + τF (tn, wn),

vj = vj−1 + θτ
(

Fj(tn+1, vj) − Fj(tn, wn)
)

(j = 1, 2, · · · , s),
wn+1 = vs,







(10.15)

with internal vectors vj . In case F0 = 0 this is the first order Douglas-Rachford ADI method if
θ = 1, and the second-order Brian-Douglas ADI method if θ = 1

2 , see Douglas & Gunn (1964)
and Mitchell & Griffiths (1980). This method is also known as the method of Stabilizing
Corrections, see Marchuk (1990). Note that all internal vectors vj are consistent with w(tn+1)
and therefore the accuracy for problems where the boundary conditions are influential is often
better than with the time splitting schemes considered in the previous section. In particular,
stationary solutions w̄ of w′(t) = F (w(t)), that is F (w̄) = 0, are also stationary solutions of
the ADI method, as can be seen by considering consecutive vj .
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Observe that in this ADI method the implicit terms also allow a splitting, which is not
the case with the IMEX multistep methods. However, as with the IMEX methods, stability
of the method should be carefully examined. The most simple test problem is

w′(t) = λ0w(t) + λ1w(t) + · · · + λsw(t). (10.16)

Let zj = τλj , j = 0, 1, ..., s. Then the ADI method yields a recursion wn+1 = Rwn with
R = R(z0, z1, ..., zs) given by

R = 1 +
( s∏

j=1

(1 − θzj)
)−1

s∑

j=0

zj . (10.17)

Obviously, stability for the test problem requires |R | ≤ 1.
Consider the wedge Wα = {ζ ∈ C : |arg(−ζ)| ≤ α} in the left half-plane. We consider

here stability under the condition that zj ∈ Wα, j ≥ 1. If Fj is a discretized advection-
diffusion operator and λj an eigenvalue in the Fourier decomposition, then α < 1

2π means
that advection is not allowed to dominate too much (see Section 2.3). For pure diffusion
we have zj = τλj ∈ W0, the line of non-positive real numbers. As before, z0, z1, . . . , zs are
assumed to be independent of each other.

Theorem 10.2. Suppose z0 = 0 and s ≥ 2, 1 ≤ r ≤ s − 1. For any θ ≥ 1
2 we have

|R | ≤ 1 for all zi ∈ Wα, 1 ≤ i ≤ s ⇐⇒ α ≤ 1

s − 1

π

2
, (10.18)

|R | ≤ 1 for all z1, . . . , zs−r ∈ Wα

and zs−r+1, . . . , zs ≤ 0

}

⇐⇒ α ≤ 1

s − r

π

2
. (10.19)

Proof. Necessity in (10.18) is easy to show: if we take all zj = −teiα, j ≥ 1, then for t → ∞
we get

R = 1 − steiα

θstseisα + O(ts+1)
= 1 − s

θs
t1−seiα(1−s)(1 + O(t−1)),

and consequently Re(R) > 1 if t is sufficiently large and α(1 − s) > 1
2π.

To illustrate necessity in (10.19), consider s = 3 and z3 ≤ 0. Since R is fractional linear in
z3, it follows that we have |R| ≤ 1 for all z3 ≤ 0 iff this holds with z3 equal to 0 or ∞. This
amounts to verification of the inequalities

∣
∣
∣ 1 +

z1 + z2

(1 − θz1)(1 − θz2)

∣
∣
∣ ≤ 1,

∣
∣
∣ 1 − 1

θ(1 − θz1)(1 − θz2)

∣
∣
∣ ≤ 1.

For the first inequality we know from (10.18) that α ≤ 1
2π is necessary and sufficient, but for

the second inequality it can be shown as above that we need α ≤ 1
4π. The proof of the other

results is technical; these can be found in Hundsdorfer (1998,1999). 2

Note that in (10.19), with r = 1 we get the same angles α as for r = 0. Moreover, it is
somewhat surprising that there is no difference between θ = 1

2 and θ = 1. In Hundsdorfer
(1999) also results are given for |1 + z0| ≤ 1, and then the having θ = 1

2 or θ = 1 makes a
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difference. If θ = 1 the above statements remain the same. If θ = 1
2 we now need α = 0, as

we saw already with the θ-IMEX method.
In the following figure the boundary of the stability region |R | ≤ 1 is plotted for two special

choices, namely z0 = 0, zj = z (1 ≤ j ≤ s) and z0 = 0, zj = z (1 ≤ j ≤ s − 1), zs = ∞. Plots
for the method with θ = 1

2 look very similar. Also drawn, as dotted curved lines, are contour
lines of |R | at 0.1, 0.2,,...,0.9. From this it is seen that we have little damping in general. If
there are two zj with large values then |R | will be close to 1. The same holds if we are outside
the region of stability, where we may have |R | > 1 but very close to 1. Consequently, there
may be a very slow instability.
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Figure 10.3. Regions of stability |R | ≤ 1 for θ = 1, z0 = 0, with equal zj = z or zs = ∞. Left picture
s = 2, right picture s = 3.

In conclusion, if we consider α = 1
2π, then the essential condition for stability is z1 ∈ Wπ/2

and z2, . . . , zs ≤ 0, so only one of the implicit term should have eigenvalues that are large in
modulus and not near the negative real axis. If this is violated, instability can be expected.
This instability will be quite slow and therefore difficult to detect before it is too late.

Example. To illustrate the slow onset of instability, we consider the following advection
equation with a simple linear reaction term,

ut = aux + buy + G u, (x, y) ∈ [0, 1]2, 0 ≤ t. (10.20)

The velocities are given by a(x, y, t) = 2π(y − 1
2), b(x, y, t)) = 2π(1

2 − x). Further,

u = u(x, y, t) =

(
u1(x, y, t)
u2(x, y, t)

)

, G =

(
−k1 k2

k1 −k2

)

.

We take k1 = 1. The second reaction constant k2 can be used to vary the stiffness of the
reaction term, and is taken here as 2000. Note that the matrix G has eigenvalues 0 and
−(k1 + k2), and we have a chemical equilibrium if u1/u2 = k2/k1.

The initial condition is chosen as

u1(x, y, 0) = c, u2(x, y, 0) = (1 − c) + 100 k−1
2 exp(−80((x − 1

2)2 − 80(y − 3
4)2),

88



with c = k2/(k1 + k2). After the short transient phase, where most of the Gaussian pulse is
transferred from u2 to u1, this is purely an advection problem, and the velocity field gives a
rotation around the center of the domain. At t = 1 one rotation is completed. The exact
solution is easily found by superimposing the solution of the reaction term onto the rotation
caused by the advection terms.

0
0.5

1

0

0.5

1
0.95

1

1.05

0
0.5

1

0

0.5

1
0.95

1

1.05

0
0.5

1

0

0.5

1
0.95

1

1.05

0
0.5

1

0

0.5

1
-10

0

10

Figure 10.4. Numerical solutions advection-reaction problem (10.20) at t = 1, 2, 3, 4.

Dirichlet conditions are prescribed at the inflow boundaries. At the outflow boundaries we
use standard upwind discretization, in the interior second order central differences are used.
We consider splitting with F1, F2 the finite difference operators for advection in the x and y
direction, respectively, and with F3 defined by the linear reaction term. All three terms are
treated implicitly. The corresponding eigenvalues λ1, λ2 will be close to the imaginary axis
whereas λ3 = 0 or −(k1 + k2). The test has been performed on a fixed 80× 80 grid, and with
τ = 1/160.

The numerical solution of the first component u1 for the scheme with θ = 1
2 is given in in

Figure 10.4 at time t = 1 (top left), t = 2 (top right), t = 3 (bottom left) and t = 4 (bottom
right; different scale). There are some smooth oscillations in the wake of the Gaussian pulse,
but these are caused by the spatial discretization with central differences. The instabilities
occur near the corners where both advection speeds, in x and y direction, are large. The build
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up of the instabilities is very slow, and therefore it will be difficult to detect this with error
estimators. To some extend the slowness of the instability can be attributed to the fact that
they occur near an outflow boundary, but related tests have shown that it is mainly caused
by the fact that we have amplification factors only slightly larger than 1 in modulus.

Finally it should be noted that the advection treatment here, implicit with central dif-
ferences, is only justified for problems with smooth solutions. If steep gradients may arise
some upwinding or flux limiting is to be preferred. The experiment here merely serves as an
illustration of the theoretical results on the stability of the ADI method with s = 3. 3

10.4. Error analysis for the Douglas ADI method

In this subsection an error analysis si prednted for the Douglas ADI method with s ≤ 3. As
usual, we restrict ourselves to linear problems, that is

Fj(t, w) = Ajw + gj(t)

It is assumed that the problem represents a semi-discrete PDE, so the dimension depends on
the mesh width in space h and some of the matrices Aj will contain negative powers of h. For
nonhomogeneous boundary conditions, the terms gj will contain the boundary values relevant
to Aj , which will also lead to negative powers of h.

It is assumed that the problem is such that the scheme is stable and ‖(I−θτAj)
−1‖ ≤ C for

arbitrary θ, τ > 0. The error bounds derived here will not be adversely affected by the mesh
width h in the spatial discretization. In particular, we shal write O(τp) to denote vectors or
matrices whose norm can be bounded by Cτp with C > 0 independent of h. Further, we shall
use throughout the paper the notation Zj = τAj , Z = Z0 + Z1 + · · · + Zs and Qj = I − θZj .

As the starting point, we consider along with (10.15) the perturbed scheme

ṽ0 = w̃n + τF (tn, w̃n) + ρ0,

ṽj = ṽj−1 + θτ
(

Fj(tn+1, ṽj) − Fj(tn, w̃n)
)

+ ρj (j = 1, 2, · · · , s),

ũn+1 = ṽs.







(10.21)

The perturbations ρj may stand for round-off or errors introduced in the solution of the implicit
systems, for instance. We shall use them to derive an expression for the local discretization
errors.

Let en = w̃n − wn, εj = ṽj − vj . Subtraction of (10.15) from (10.21) gives the relations

ε0 = en + Zen + ρ0,

εj = εj−1 + θZj(εj − en) + ρj (j = 1, 2, · · · , s),
en+1 = εs.

We can eliminate the internal quantities εj by using εj − en = Q−1
j (εj−1 − en + ρj), leading to

en+1 = Ren + dn (10.22)

with stability matrix
R = I + Q−1

s · · ·Q−1
2 Q−1

1 Z
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and with dn containing the internal perturbations,

dn = Q−1
s · · ·Q−1

1 (ρ0 + ρ1) + Q−1
s · · ·Q−1

2 ρ2 + · · ·Q−1
s ρs. (10.23)

So, the matrix R determines how an error already present at time tn will be propagated to
tn+1, whereas dn stands for the local error introduced during the step.

Let w̃n = w(tn) so that en = w(tn) − wn is the global discretization error. To derive an
expression for the local discretization error dn we are free to chose the ṽj ; it is only the global
relation (10.22) that matters. Simple expressions for the residuals ρj are obtained by taking
ṽj = w(tn+1) for j = 0, 1, ..., s. Then

ρ0 =
1

2
τ2w′′(tn) + 1

6τ3w′′′(tn) + · · · ,

ρj = −θτ
(

ϕj(tn+1) − ϕj(tn)
)

= −θτ2ϕ′
j(tn) − 1

2
θτ3ϕ′′

j (tn) − · · · , j = 1, ..., s.

Inserting these residuals into (10.23) yields the local discretization error

dn = Q−1
s · · ·Q−1

1 · 1

2
τ2w′′(tn) −

s∑

j=1

Q−1
s · · ·Q−1

j · θτ2ϕ′
j(tn) + O(τ3). (10.24)

Note that boundedness of the Q−1
j factors implies that dn = O(τ2) uniformly in the mesh

width h, and by the stability assumption we obtain at least first-order convergence of the
global errors en independent of h.

If F0 = 0 and θ = 1
2 this estimate can be improved, but then we need to take a closer look

on the error propagation. We shall elaborate this for s ≤ 3, where we have

dn = Q−1
3 Q−1

2 Q−1
1

(
1
4τ2Z1ϕ

′
2(tn) + 1

4τ2(Z1 + Z2 −
1

2
Z1Z2)ϕ

′
3(tn)

)

+ O(τ3). (10.25)

In case s = 2 we can use this formula with Z3 = 0, ϕ3 = 0.
According to the general condition formulated in Section 8, we have second-order conver-

gence if the local error can be decomposed as

dn = (I − R)ξn + ηn with ξn = O(τ2), ηn = O(τ3) and ξn+1 − ξn = O(τ3).

Using this framework, convergence results are now easily obtained.

Theorem 10.3. Let θ = 1
2 , F0 = 0. Consider scheme (10.15) with s = 2 and assume that

A−1A1ϕ
(k)
2 (t) = O(1) for k = 1, 2 and t ∈ [0, T ]. Then en = O(τ2) for tn ∈ [0, T ].

Proof. If s = 2 we have

dn = Q−1
2 Q−1

1
1
4τ2Z1ϕ

′
2(tn) + O(τ3) = (R − I)1

4τ2Z−1Z1ϕ
′
2(tn) + O(τ3).

Thus we can take ξn = Z−1Z1ϕ
′
2(tn) = A−1A1ϕ

′
2(tn) and ηn containing the remaining O(τ3)

terms. 2
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For many splittings with standard advection-diffusion problems we will have ‖A−1A1‖ ≤ 1,
and hence the assumption A−1A1ψ2 = O(1), ψ2 = ϕ′

2, ϕ
′′
2, in this theorem is natural. Fur-

thermore we note that if A is singular, the above can be easily generalized: what we need to
prove second-order convergence is the existence of a vector υ = O(1) such that Aυ = A1ψ2.
In all of the following such generalizations can be made.

Theorem 10.4. Let θ = 1
2 , F0 = 0. Consider scheme (10.15) with s = 3 and assume

that A−1A1ϕ
(k)
j (t) = O(1) (j=2, 3), A−1A2ϕ

(k)
3 (t) = O(1) and A−1A1A2ϕ

(k)
3 (t) = O(τ−1) for

k = 1, 2 and t ∈ [0, T ]. Then en = O(τ2) for tn ∈ [0, T ].

Proof. Since R = I + Q−1
3 Q−1

2 Q−1
1 Z, the local discretization error can be written as

dn = (R − I)Z−1
(

1
4τ2Z1ϕ

′
2(tn) + 1

4τ2(Z1 + Z2 −
1

2
Z1Z2)ϕ

′
3(tn)

)

+ O(τ3).

Note that A−1A1A2ϕ
(k)
3 = O(τ−1) implies Z−1Z1Z2ϕ

(k)
3 = O(1). Thus we can proceed in the

same way as before with ξn containing the O(τ2) terms. 2

Compared to the situation for s = 2, Theorem 10.3, the essential new condition here with
s = 3 is A−1A1A2ψ3 = O(τ−1), ψ3 = ϕ′

3, ϕ
′′
3, that is,

Z−1Z1Z2ψ3 = O(1).

This may hold also if Z−1Z1Z2 6= O(1). As an example, consider Aj to be the standard second-
order difference operator for ∂2/∂xj

2, j = 1, 2, 3 with nonhomogeneous Dirichlet conditions
at the boundaries. Then the matrices Aj commute and ‖A−1Aj‖ ≤ 1 for all h. Further it
holds that Aγ

1Aγ
2ψ3 = O(1) for any γ < 1

4 (with γ = 1
4 we have Aγ

1Aγ
2ψ3 = O(log(h)), see

Hundsdorfer & Verwer (1989). So we can write

Z−1Z1Z2ψ3 = τ2γZ−1Z1−γ
1 Z1−γ

2 [Aγ
1Aγ

2ψ3].

Taking τ ∼ h1+ǫ with ǫ = 1 − 4γ > 0, it follows that

‖Z−1Z1Z2ψ3‖ ∼ τ2γ
( τ

h2

)1−2γ
= O(1).

Thus the conditions in Theorem 10.4 are fulfilled under a step size restriction τ ∼ h1+ǫ with
ǫ > 0 arbitrarily small. In a similar way it can also be shown that if τ ∼ h then the global
errors en can be bounded by τ2 log(τ), convergence with order practically equal to 2. Further
we note that if ϕ′

3, ϕ
′′
3 satisfy homogeneous boundary conditions on the boundaries relevant to

A1 and A2 then no condition on the ratio τ/h is necessary, since then A1A2ψ3 = O(1).
In conclusion, Theorem 10.4 indicates that also with s = 3 we will often have second-order

convergence, although a mild restriction on the step size might be necessary in this case.
For larger values of s a similar analysis could be performed, but verification of the ac-

curacy conditions becomes increasingly technical. For example, if s = 4 we get, in addi-
tion to conditions as in Theorem 10.4, the requirement Z−1Z1Z2Z3ψ4(t) = O(1), that is,
A−1A1A2A3ψ4(t) = O(τ−2). Although this may be fulfilled in many special cases, in general
an order of convergence between 1 and 2 must now be expected.
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Note. The above derivation is taken from Hundsdorfer (2000). A similar analysis was obtained
in Hundsdorfer & Verwer (1989) for the Peaceman-Rachford ADI method and in Hundsdorfer
(1992) for LOD methods. With the LOD method based on Strang splitting very low orders
of convergence may occur (for example 1/2 in the L2-norm), and then boundary corrections
are necessary. Such corrections are given in Mitchell & Griffiths (1980) for ADI and LOD
methods. With the above ADI method boundary corrections give in general somewhat more
accurate results, but it also gives more complicated programs, and as we saw the order of
convergence is in general already 1 or 2 (if F0 = 0, θ = 1

2), which is the same as for fixed
(nonstiff) ODEs.

10.5. Rosenbrock methods with approximate factorization

With the above ADI method we still still are dealing with the explicit Euler method for F0.
To allow a second order explicit method we first consider a linearization of this ADI method.
In the following only autonomous equations are considered.

As starting point we consider the linearized θ-method

wn+1 = wn + (I − θτA)−1τF (wn) (10.26)

where A approximates the Jacobian matrix F ′(wn). This is a so-called Rosenbrock method.
It has order 1 if θ 6= 1

2 and order 2 if θ = 1
2 and A − F ′(wn) = O(τ) .

We consider the form where in the Jacobian approximation the nonstiff term is omitted
and the rest is factorized in approximate fashion, that is

wn+1 = wn + (I − θτAs)
−1 · · · (I − θτA2)

−1(I − θτA1)
−1τF (wn) (10.27)

with Aj ≈ F ′
j(wn). The order of this approximate factorization method is 1 in general. For

second order we need θ = 1
2 and F0 = 0. If the problem is linear this approximate factorization

method is identical to the Douglas ADI method. Hence the linear stability properties are the
same. Approximate factorization methods of the above type were introduced by Beam &
Warming (1976).

A 2-stage generalization of the above approximate factorization method is given by

wn+1 = wn + 3
2k1 + 1

2k2,

Mk1 = τF (tn, wn), Mk2 = τF (tn + cτ, wn + k1) − 2k1,
(10.28)

where M =
∏s

j=1(I−θτAj), Aj ≈ F ′
j(wn) and θ is a free parameter. The order of this method

is 2 (in the classical ODE sense). If F0 = 0 and F1 = F this is a well-known Rosenbrock method
that has the special property that the order is not influenced by the Jacobian approximation.
This Rosenbrock method is A-stable for θ ≥ 1

4 . On the other hand, if F = F0 we now get a
second order explicit Runge-Kutta method.

The above method has been proposed in Verwer et al. (1999), and in that paper the
scheme was applied successfully on some 3D atmospheric transport-chemistry. problems.
There operator splitting was used with F0 advection, F1 diffusion and F2 reaction, and the free
parameter was taken as θ = 1 + 1

2

√
2 to have optimal damping (L-stability). The eigenvalues

of F1 and F2 were close to the negative real axis, and therefore stability problems were not
expected, and indeed did not occur.
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It is for such problems, where the structure of the eigenvalues can be well predicted in
advance, that these approximate factorization methods seem suited. For general applications
values θ in the range [12 , 1] seem more suitable than θ = 1 + 1

2

√
2, because the latter value

gives relatively large error constants.
The above Rosenbrock methods are formulated here for autonomous problems. A nonau-

tonomous problem w′(t) = F (t, w(t)) can be written as v′(t) = G(v(t)) with v = (t, w)T

and G(v) = (1, F (t, w))T , and so the methods can be applied to this artificial autonomous
problem. Then t is formally also considered as an unknown, but it is easily seen that the
approximation tn found with this method still equals nτ . When reformulated on the original
level, in terms of wn, the methods will now also involve approximations to the derivatives
Ft(t, w). For example, with Aj ≈ ∂wFj(tn+θ, wn) ∈ R

m×m, bj ≈ ∂tFj(tn+θ, wn) ∈ R
m and

Bj =

(
1 0 · · · 0

(I − θτAs)
−1θτbj (I − θτAs)

−1

)

∈ R
(m+1)×(m+1),

the factorized Rosenbrock scheme (10.26) then reads
(

tn+1

wn+1

)

=

(
tn
wn

)

+ Bs · · ·B2B1

(
τ

τF (tn, wn)

)

.

We will have tn+1 = tn + τ , as it should be, and the computation of wn+1 can be written in
the more transparent recursive form

f0 = F (tn, wn), fj = (I − θτAj)
−1(θbj + fj−1) (1 ≤ j ≤ s), wn+1 = wn + τfs.

Note. It is also possible to linearize a multistep method and then use approximate factor-
ization. Such methods can be found in Warming & Beam (1979). Runge-Kutta methods of
the IMEX type have been studied in Ascher et al. (1997); if such methods are applied in a
linearized form, they are similar to the above factorized Rosenbrock methods with s = 1.

Remark. Instead of the above techniques, one could also use a well-known fully implicit
method and then try to modify the Newton process such that the computational ease is
comparable to the IMEX or approximate factorization methods. The advantage is that if the
iteration converges, then the theoretical properties of the fully implicit method are valid.

Consider a generic implicit relation

wn+1 = Wn + θτF (wn+1), (10.29)

where Wn contains the information up to tn. This may be for instance Backward Euler
(θ = 1, Wn = wn), the Trapezoidal Rule (θ = 1

2 , Wn = wn + 1
2τF (tn, wn)) or the BDF2

method (θ = 2
3 , Wn = 4

3wn − 1
3wn−1). Then the Newton iteration to solve the implicit

relation will look like

ui+1 = ui − M−1
(

ui − θτF (ui) − Wn

)

, i = 0, 1, 2, ... (10.30)

with initial guess u0. Standard modified Newton would be M = I − θτA with A ≈ F ′(v0).
For systems of multi-dimensional PDEs this leads to a very big linear algebra problem that
has to be solved by a preconditioned conjugate gradient or multigrid method for example.
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As an alternative one can consider approximate factorization inside the Newton process,

M =
s∏

j=1

(I − θτAj) (10.31)

with Aj ≈ F ′
j(v0), but now we have to look at convergence of the iteration.

When applied to the scalar test equation this iteration process has a convergence factor

S = 1 −
( s∏

j=1

(1 − θzj)
)−1(

1 − θ
s∑

j=0

zj

)

(10.32)

and for the iteration to converge we need |S | < 1. This looks very similar to the stability
factor with the Douglas ADI method. Indeed, the statements given previously for |R | ≤ 1
with the zj in wedges are also valid for the convergence factor, see Hundsdorfer (1999).

In the next figure the boundaries of the convergence region are plotted for special choices
of zj with z0 = 0, similar to Figure 10.3. The dotted curved lines are the contour lines for |S |
with all zj equal. If the zj assume large negative values, then |S | is close to 1 and thus the
convergence will be very slow. Moreover divergence may occur if s ≥ 3 and two or more of
the zj are close to the imaginary axis.
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Figure 10.5. Regions of convergence |S | < 1 for θ = 1 with equal zj = z or zs = ∞. Left picture s = 2,
right picture s = 3.

In conclusion it can be said that the convergence of such a modified Newton iteration with
approximate factorizations is often very poor, so it is not an approach that is recommended
for general equations. Of course, there are special cases, especially with smooth solutions (no
high Fourier harmonics), where this approach may work well. However the class of problems
where the iteration does not diverge seems close to the class where the Rosenbrock schemes
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with approximate factorizations are be stable, see Figures 10.3 and 10.5. In those cases the
simpler Rosenbrock schemes with approximate factorizations will be more efficient, and with
such Rosenbrock schemes smoothness of the solution is not required.

10.6. Numerical illustration

In this section some numerical illustrations are given for the schemes applied to 2D advection-
diffusion-reaction equations. We shall refer to the 1-stage scheme (10.26) as ROS1 and to
the 2-stage scheme (10.28) as ROS2, and for both schemes parameter values θ = 1

2 and 1 are
considered.

We consider here the following 2D equation, on spatial domain Ω = [0, 1]2 and t ∈ [0, 1],

ut + α(ux + uy) = ǫ(uxx + uyy) + γu2(1 − u), (10.33)

with traveling wave solution

u(x, y, t) =
(

1 + exp(a(x + y − bt) + c)
)−1

. (10.34)

Here a =
√

γ/4ǫ determines the smoothness of the solution, b = 2α +
√

γǫ is the velocity
of the wave and c = a(b − 1) a shift parameter. Initial and Dirichlet boundary conditions
are prescribed so as to correspond with this solution. Due to the time-dependent boundary
conditions, the semi-discrete problem is non-autonomous and the Rosenbrock methods are
applied to the extended autonomous form mentioned in Section 10.5.

For this scalar test example splitting is not really necessary, but the structure of the
equations is similar to many real-life problems where splitting cannot be avoided with present
day computer (memory) capacities. In Verwer et al. (1999) application the ROS2 method can
be found for a large scale 3D problem from atmospheric dispersion.

Reaction-diffusion test. First we consider the above test equation with α = 0. To give an
illustration of the convergence behaviour of the various methods we take γ = 1/ǫ = 10, which
gives a relatively smooth solution.

For this smooth problem the spatial derivatives are discretized with standard second order
finite differences. Let D(x)(t, u) = A(x)u+ g(x)(t) stand for the finite difference approximation
of ǫuxx with the associated time-dependent boundary conditions for x = 0 and x = 1. Likewise
D(y)(t, u) approximates ǫuyy with boundary conditions at y = 0, y = 1. Further, G(t, u)
represents the reaction term γu2(1 − u) on the spatial grid. We consider the following two
splittings with s = 3 and F0 = 0,

(A) · · · F1 = D(x), F2 = D(y), F3 = G,

and
(B) · · · F1 = G, F2 = D(x), F3 = D(y).

Since the reaction term in (10.33) with γ = 10 is not stiff, we also consider here the case where
this term is taken explicitly,

(C) · · · F0 = G, F1 = D(x), F2 = D(y).
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The spatial grid is uniform with mesh width h in both directions. The errors in the L2-norm
are calculated at output time T = 1 with τ = h = 1/N , N = 10, 20, 40, 80. In the Figure 10.6
these errors are plotted versus τ on a logarithmic scale. The results for the ROS1 scheme are
indicated by dashed lines with squares if θ = 1 and circles if θ = 1

2 . Likewise, the results for
the ROS2 scheme are indicated by solid lines with squares if θ = 1 and circles if θ = 1

2 .
For comparison, results of the well-known fractional step (LOD) method of Yanenko (1971)

are included, indicated by dotted lines with stars. With this method fractional steps are taken
with the implicit trapezoidal rule vj = vj−1 + 1

2τFj(tn, vj−1) + 1
2τFj(tn+1, vj), with v0 = wn.

After each step the order of the Fj is interchanged to achieve symmetry and second order (in
the classical ODE sense), see formula (9.11) with c = 1

2 . If an explicit term F0 is present, the
implicit trapezoidal rule is replaced by its explicit counterpart for the fractional step with F0.
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Figure 10.6. L2-errors versus τ = h for the splittings (A), (B) and (C). Methods
ROS1 (dashed lines) and ROS2 (solid lines) with θ = 1

2
(circles) and θ = 1 (squares).

Results for Yanenko’s method are indicated with stars.

It is known that Yanenko’s method needs boundary corrections to obtain second-order
convergence for initial-boundary value problems, otherwise order of convergence can be lower,
see Hundsdorfer (1992). In the present test we get convergence with order 1

2 approximately.
The test was repeated with boundary corrections, but still the results were less accurate than
with the second-order ROS schemes. Finally we note that boundary corrections were also
attempted on the scheme (1.3), similar to formula (101) in Mitchell & Griffiths (1980). In the
above test this did lead to smaller errors, reduction with a factor ranging between 1.2 and 2, but
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the convergence behaviour did not change fundamentally. Since boundary corrections have to
be derived for each individual problem, it is a favourable property of the stabilizing correction
schemes that such corrections are not necessary to get a genuine second-order behaviour.

Advection-diffusion-reaction test. To illustrate the improved stability behaviour of the 2-stage
scheme ROS2 over ROS1 if a substantial explicit term is present, we now consider the test
equation with a advection term with α = −1 that will be taken explicitly. Further we choose
γ = 100 and ǫ = 0.01, 0.001 which gives solutions that have a steep gradient, relative to the
mesh widths used here.

The splitting is such that F0 contains the convective terms, F1, F2 diffusion in x and y di-
rection, respectively, and F3 the nonlinear reaction term. The convective terms are discretized
with third-order upwind-biased differences (4-point stencil). For the diffusion terms standard
second-order differences are used as before.

The results with ǫ = 0.01 are given in the Figures 10.7, 10.8. In the plots of Figure 10.7
the solutions h = 1/40 and τ = 1/80 are found, represented as contour lines at the levels 0.1,
0.2,...,0.9, with solid lines for the numerical solution and dotted lines for the exact solution.
Quantitative results are given in Figure 10.8, where the L2-errors are plotted as function of
the time step for a 40 × 40 and 80 × 80 grid with τ = h, 1

2h and so on. As in Figure 10.6
results for ROS1 are indicated with dashed lines, for ROS2 with solid lines, and with squares
if θ = 1 and circles if θ = 1

2 .
It is obvious that the 2-stage schemes ROS2 give much better results than the correspond-

ing 1-stage schemes ROS1. To achieve a level of accuracy comparable to the ROS2 schemes
we need much smaller time steps with the ROS1 schemes, see Figure 10.8. This is primar-
ily due to the more stable treatment of the explicit advection term with the ROS2 schemes.
The explicit 2-stage Runge-Kutta method underlying ROS2 is stable for third-order advection
discretization up to Courant number 0.87 (experimental bound). On the other hand, some
of the eigenvalues associated with this discretization are always outside the stability region
of the explicit Euler scheme. In this test it is the (implicit) diffusion part that provides a
stabilization for the smaller step sizes. (In fact, for ǫ = 0.01 similar results were obtained with
second order central advection discretization, but not anymore with ǫ = 0.001). Further we
note that instabilities do not lead to overflow since the solutions are pushed back to the range
[0,1] by the reaction term, but the resulting numerical solutions are qualitatively wrong.

Decreasing the value of the diffusion coefficient ǫ gives a clearer distinction between the
methods. Results with ǫ = 0.001 are given in the Figures 10.9 and 10.10. The grids chosen are
80× 80 and 160× 160, since the 40× 40 grid gives quite large spatial errors with this small ǫ.
The results are essentially the same as above: the 1-stage schemes ROS1 need much smaller
time steps than the ROS2 schemes to obtain reasonable solutions.

For more realistic problems, with stiff reaction terms, nonlinear advection discretizations
with flux limiters are recommended to avoid oscillations, and this fits easily into the present
framework, see Verwer et al. (1999) for instance.
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Figure 10.7 Contour lines for ǫ = 0.01 with h = 1/40, τ = 1/80.
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Figure 10.8. L2-errors versus time step τ on 40 × 40 grid (left) and 80 × 80 grid
(right) for ǫ = 0.01. Various methods indicated as in Figure 10.6.

99



0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

SC1, θ = 1

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

SC1, θ = 1/2

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

SC2, θ = 1

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

SC2, θ = 1/2

Figure 10.9 Contour lines for ǫ = 0.001 with h = 1/80, τ = 1/160.
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Figure 10.10. L2-errors versus time step τ on 80 × 80 grid (left) and 160 × 160 grid
(right) for ǫ = 0.001. Various methods indicated as in Figure 5.1.
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11. Appendices on ODE methods

For the solution of initial value problems for systems of ODEs there are many sophisticated
and efficient computer codes, usually based on Runge-Kutta methods or linear multi-step
methods. Here we give some examples of such methods, together with a few properties. As a
rule of thumb: for problems on sufficiently large time intervals where the step sizes need not
be changed too drastically, linear multi-step methods seem more efficient, whereas if we either
have short integration intervals (for instance, in a splitting method) or if the step sizes need
frequent and big adjustments, then the Runge-Kutta methods seem to be preferable. Good
general references on ODE methods are provided by the books of Hairer, Nørsett & Wanner
(1987), Hairer & Wanner (1991) and Lambert (1991).

For convenience we only consider methods with fixed step sizes, but it should be emphasized
that in many applications variable step sizes are crucial to obtain an efficient code. The exact
solution of the ODE problem

w′(t) = F (t, w(t)), w(0) = w0

will be approximated in the points tn = nτ , n = 0, 1, 2, · · ·, with τ > 0 being the step size.
The numerical approximations are wn ≈ w(tn).

11.1. Appendix A : Runge-Kutta methods

When solving the differential equation w′(t) = F (t, w(t)) with a Runge-Kutta method, one
obtains a new approximation wn+1 by first computing intermediate approximations wni ≈
w(tn + ciτ), i = 1, 2, . . . , s, where the integer s is called the number of stages used in the
method. The general form of a Runge-Kutta method is

wn+1 = wn + τ
s∑

i=1

biF (tn + ciτ, wni) (A.1a)

wni = wn + τ
s∑

j=1

aijF (tn + cjτ, wnj), i = 1, . . . , s, (A.1b)

with n = 0, 1, 2, · · ·. Here aij and bi are coefficients defining the particular method and
ci =

∑s
j=1 aij . The method is explicit if aij = 0 for j ≥ i, since then the internal vectors

wn1, wn2, . . . , wns can be computed one after another from an explicit relation. A Runge-
Kutta method can be represented in a compact way by the array

c A

bT
=

c1 a11 · · · a1s
...

...
...

cs as1 · · · ass

b1 · · · bs

The method is said to have order p if w(t1)−w1 = O(τp+1) whenever w(0) = w0 and F is
sufficiently smooth. This means that the local discretization error, that is, the error introduced
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in one step of the time-integration method, is of O(τp+1). The global discretization-error
w(tn) − wn is formed by n such local errors and will be of O(τp) if w0 = w(0), the function
F is sufficiently smooth and tn ≤ T . Thus a method of order p is convergent of order p when
applied to a fixed, smooth ODE problem.

The order of a Runge-Kutta method is, of course, determined by its coefficients aij , bi, ci.
By making Taylor developments of w(t1) and w1 in powers of τ , and requiring that these
developments are identical up to O(τp) one obtains the order conditions for the coefficients.
The conditions for p = 1, 2, 3, 4 are summarized in the following table, with C = diag(ci) and
e = (1, 1, . . . , 1)T .

order p order conditions

1 bT e = 1

2 bT c = 1/2

3 bT c2 = 1/3 bT Ac = 1/6

4 bT c3 = 1/4 bT CAc = 1/8
bT Ac2 = 1/12 bT A2c = 1/24

The derivation of higher order methods is quite complicated and involve many order conditions.
A systematic approach consists of the use of Butcher trees, see Butcher (1987) or Hairer et al.
(1987).

The stage order q is the minimal order over all internal stages, that is, q is such that
w(ciτ) − w0i = O(τ q+1) for i = 1, . . . , s whenever w(0) = w0 and F is sufficiently smooth.
Although we are not interested in accuracy of the intermediate vectors, this stage order has
some relevance for the accuracy of the approximations wn for semi-discrete systems arising
from PDEs with boundary conditions. For any reasonable method it holds that q ≤ p, and
for many methods q is substantially smaller than p.

Example A.1. The most simple explicit method is the forward Euler method. Two well-
known second order explicit Runge-Kutta methods are given by the arrays

0
1 1

1/2 1/2

0
1/2 1/2

0 1

The first method is called the explicit trapezoidal rule. A typical example of an explicit
method with a higher order is the following method with p = s = 4

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6
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In fact, this method used to be called the method of Runge-Kutta. We shall refer to it as the
classical 4-th order method. Any explicit Runge-Kutta method has stage order q = 1, since
the second stage is the forward Euler method with step size τa21 (the first stage is trivial,
wn1 = wn). 3

Example A.2. Some simple implicit methods are :

(i) the backward Euler method (p = q = 1)

1 1

1
,i.e., wn+1 = wn + τF (tn+1, wn+1),

(ii) the implicit midpoint rule (p = 2, q = 1)

1/2 1/2

1
,i.e., wn+1 = wn + τF (tn +

1

2
τ,

1

2
wn +

1

2
wn+1),

(iii) the trapezoidal rule (p = q = 2)

0 0 0
1 1/2 1/2

1/2 1/2

,i.e., wn+1 = wn +
1

2
F (tn, wn) +

1

2
F (tn+1, wn+1).

Generalizations of the above methods are the collocation methods, see Hairer et al. (1987),
which have high order and good stability properties, but a full matrix A. 3

With implicit methods the internal vectors have to be solved from a system of algebraic
equations, usually by a Newton type iteration. If A is a full matrix the dimension of this
system is ms, where m is the dimension of the differential equation. A compromise is found
in the diagonally implicit methods where A is lower triangular so that we can first solve w1n,
then w2n, and so on.

Example A.3. Two classes of diagonally implicit methods, with a parameter θ > 0, are

θ θ
1 − θ 1 − 2θ θ

1/2 1/2

,

0 0
2θ θ θ
1 b1 b2 θ

b1 b2 θ

b1 = 3
2 − θ − 1

4θ
b2 = −1

2 + 1
4θ

Both methods have order p = 3 if θ = 1
2 ± 1

6

√
3, and p = 2 for other θ values. The first

method has stage order q = 1 since the first stage consists of a backward Euler step, whereas
the second method has q = 2 (its first nontrivial stage is a trapezoidal rule step). 3

Implicit methods are more expensive per step than explicit ones. Yet, implicit methods
are often used, for instance for parabolic problems and stiff chemistry problems, because of
their superior stability properties.
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The stability function

The stability properties of ODE methods are, to a large extend, determined by the behaviour
of the methods on the scalar, complex test equation

w′(t) = λw(t).

Let z = τλ. Application of a Runge-Kutta to the test equation gives

wn+1 = R(z)wn,

with a rational function R, the so-called stability function. For the general Runge-Kutta
method (A.1) this function can be found to be

R(z) = 1 + zbT (I − zA)−1e (A.2)

where e = (1, 1, . . . , 1)T . By considering (I − zA)−1 in terms of determinants it follows that
for explicit methods R(z) is a polynomial of degree ≤ s. For implicit methods it is a rational
function with degree of both denominator and numerator ≤ s.

If the Runge-Kutta method has order p , then

R(z) = ez + O(zp+1), z → 0.

This can be seen by considering he scalar test equation with w0 = w(0) and |λ| = 1, since we
then know that w(t1) − w1 = O(τp+1) but also w(t1) − w1 = eτ − R(τ).

The stability region of the method is defined as the set

S = {z ∈ C : |R(z)| ≤ 1}.

If S encloses the whole left-half plane C
−, then the method is said to be A-stable. Explicit

methods cannot be A-stable.
The exact solution of the test equation satisfies w(tn+1) = eτλw(tn), so the solution does

not grow in modulus if Reλ ≤ 0. For an A-stable method, the numerical approximations have
the same property no matter how large the step size is chosen. According to the maximum
modulus principle, A-stability is equivalent to saying that R has no poles in C

− and |R(it)| ≤ 1
for all real t.

The stability function of an explicit method with p = s (possible for s ≤ 4) equals

R(z) = 1 + z +
1

2
z2 + · · · + 1

s!
zs.

For s = 1, 2, 4, respectively, this gives the stability functions of the forward Euler method,
the second order methods of Example A.1 and the classical 4-th order Runge-Kutta method.
Pictures of the stability regions for the above stability functions with s = 1, 2, 3, 4 are given in
Figure A.1. Pictures for some higher order methods can be found in Hairer & Wanner (1991)

The trapezoidal rule has the stability function

R(z) =
1 + 1

2z

1 − 1
2z

,
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which is the same as for the implicit midpoint rule. The stability region for this R is precisely
the left-half plane. Note that |R(∞)| = 1 so there is no damping at infinity. The stability
function of the backward Euler method is

R(z) =
1

1 − z
,

and this method is A-stable with |R(∞)| = 0.
The two diagonally implicit methods of Example A.3 have the same stability function

R(z) =
1 + (1 − 2θ)z + (1

2 − 2θ + θ2)z2

(1 − θz)2
,

and the methods are A-stable iff θ ≥ 1
4 . Thus for the two θ values leading to order 3 only

θ = 1
2 + 1

6

√
3 gives A-stability. Further, R(∞) = 0 if θ = 1 ± 1

2

√
2.
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Figure A.1. Stability regions for explicit RK methods.
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Rosenbrock methods

With the implicit Runge-Kutta methods one has to solve at each step a system of nonlinear
algebraic equations. Usually this is done with a modified Newton iteration, where the Jacobian
is held fixed during the iteration. Test results in Hairer & Wanner (1991) show that for low
accuracy requirements, good results can also be obtained with Rosenbrock methods. The
simplest methods of this type can be viewed as linearizations of implicit Runge-Kutta methods.
Here we give two examples of Rosenbrock methods, see Dekker & Verwer (1984), Hairer &
Wanner (1991) for more general formulas. In the following, let J(t, v) stand for the Jacobian
matrix (∂Fi(t, v)/∂vj).

Example A.4. Application of one Newton iteration to the implicit Runge-Kutta method
wn+1 = wn + τF (tn+θ, (1 − θ)wn + θwn+1) leads to the scheme

wn+1 = wn + (I − θτJn)−1τF (tn+θ, wn),

where Jn ≈ J(tn+θ, wn). We can regard this as a method in its own, rather than a special
implementation of the Runge-Kutta method. By a Taylor series expansion it is seen that the
order of this method is 2 if θ = 1

2 and Jn −J(tn+θ, wn) = O(τ). Otherwise the order is 1. The
stability function of this method is given by

R(z) =
1 + (1 − θ)z

1 − θz
,

and hence the method is A-stable for any θ ≥ 1
2 . 3

Example A.5. Consider the method

wn+1 = wn +
(

b1f1 + b2f2

)

,

(I − θτJn)f1 = τF (tn, wn), (I − θτJn)f2 = τF (tn + cτ, wn + cf1) − (2θc)τJnf1,

where b1 + b2 = 1, b2 = 1/(2c), and θ, c are free parameters. The stability function of this
method is the same as with the diagonally implicit Runge-Kutta methods of Example A.3,

R(z) =
1 + (1 − 2θ)z + (1

2 − 2θ + θ2)z2

(1 − θz)2
,

independent of c. An interesting feature of this Rosenbrock method is the fact that its order
is 2 regardless of Jn, see Dekker & Verwer (1984). Of course, to obtain good stability the Jn

should be related to the exact Jacobian.
For implementation the above method can be written in the slightly more efficient form

wn+1 = wn +
(

(b1 + 2b2c)g1 + b2g2

)

,

(I − θτJn)g1 = τF (tn, wn), (I − θτJn)g2 = τF (tn + cτ, wn + cg1) − 2cg1,

with the correspondence g1 = f1, g2 = f2−2cf1. In this form one matrix-vector multiplication
is saved.

3
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CFL restrictions

Stability restrictions for the advection equation ct + cx = 0 are called CFL restrictions (after
Courant, Friedrichs and Lewy). The relevant eigenvalues in a von Neumann analysis for the
standard advection discretizations of order 1,2,3 and 4 are

λa,1 = ν
(

e−iφ − 1
)

, (A.3a)

λa,2 =
ν

2

(

e−iφ − eiφ
)

, (A.3b)

λa,3 =
ν

6

(

−e−2iφ + 6e−iφ − 3 − 2eiφ
)

, (A.3c)

λa,4 =
ν

12

(

−e−2iφ + 8e−iφ − 8eiφ + e2iφ
)

, (A.3d)

with φ ∈ [0, 2π] and ν = τ/∆x the Courant number. The CFL restriction on ν is such that
these eigenvalues are in the stability region. These restrictions are given in the following table
for the standard explicit Runge-Kutta methods up to order 4. The values have been obtained
experimentally.

RK1 RK2 RK3 RK4

λa,1 1 1 1.25 1.39
λa,2 0 0 1.73 2.82
λa,3 0 0.87 1.62 1.74
λa,4 0 0 1.26 2.05

TABLE A.2. Stability restrictions on ν = τ/∆x for advection.

Stability restrictions for diffusion equation ct = cxx are obtained in a similar way. The
relevant eigenvalues for the standard diffusion discretizations of order 2 and 4 are

λd,2 = µ
(

e−iφ − 2 + eiφ
)

, (A.4a)

λd,4 =
µ

12

(

−e−2iφ + 16e−iφ − 30 + 16eiφ − e2iφ
)

, (A.4b)

where now µ = τ/(∆x)2. The corresponding stability restrictions are given in the next table.
Since a restriction on τ/(∆x)2 leads to a very small time step, diffusion equations are usually
solved with implicit methods (or very special explicit methods with large interval [−β, 0] ∈ S,
see van der Houwen & Sommeijer (1980)).

RK1 RK2 RK3 RK4

λd,2 0.5 0.5 0.62 0.69
λd,4 0.37 0.37 0.47 0.52

TABLE A.3. Stability restrictions on µ = τ/(∆x)2 for diffusion.

Remark. All sorts of combinations are possible, of course. For ct + acx = dcxx with second
order central differences we get eigenvalues 2µ(cos φ − 1) + iν sin φ with µ = dτ/(∆x)2 and
ν = aτ/∆x. The forward Euler method can be shown to be stable under the condition

ν2 ≤ 2µ ≤ 1.
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11.2. Appendix B : Linear multistep methods

To solve an ODE w′(t) = F (t, w(t)) it is, on the one hand, quite natural to consider one-
step methods where for the computation of wn+1 ≈ w(tn+1) only the previous approximation
wn is needed; after all, also the exact value w(tn+1) is completely determined by w(tn). On
the other hand, it seems wasteful not to use any past information, since available values
wn, wn−1, . . . could be used with little cost to obtain already a reasonable approximation
wn+1, by extrapolation for example.

In this section we consider the important class of linear multistep methods

k∑

j=0

αjwn+j = τ
k∑

j=0

βjF (tn+j , wn+j) (B.1)

for n = 0, 1, . . . , yielding wn+k ≈ w(tn+k) from already computed wn+k−1, . . . , wn. We shall
refer to (B.1) as a linear k-step method. The method is explicit if βk = 0 and implicit
otherwise. Formula (B.1) can be scaled, since multiplication of all coefficients αj , βj with a
same factor will leave the computational scheme unchanged. Usually, scaling is used to set
αk = 1 or β0 + β1 + · · · + βk = 1. We shall assume in the following that αk > 0.

A linear k-step method needs k starting values w0, w1, . . . , wk−1 to perform the first step in
(B.1). Only the initial value w0 = w(0) is given. The other starting values can be computed
with a Runge-Kutta method. An other possibility is to use a linear 1-step method to compute
w1, then a linear 2-step method for w2, and so on, until all necessary starting values for (B.1)
have been found.

If we insert the exact solution in (B.1), we obtain

k∑

j=0

αjw(tn+j) = τ

k∑

j=0

βjw
′(tn+j) + τrn+k

with residual term τrn+k. Usually, rn+k is called the truncation error. The linear multistep
method is said to have order p if rn+k = O(τp) for all sufficiently smooth w. By a Taylor
series expansion around t = tn it follows that

τrn+k = C0w(tn) + τC1w
′(tn) + τ2C2w

′′(tn) + · · ·

with

C0 =
k∑

j=0

αj , Ci =
1

i!
(

k∑

j=0

αjj
i − i

k∑

j=0

βji
i−1) for i ≥ 1.

Thus the method has order p if the order conditions

k∑

j=0

αj = 0,
k∑

j=0

αjj
i = i

k∑

j=0

βji
i−1 for i = 1, 2, . . . , p (B.2)

are satisfied.
We give a few examples of well-known multistep methods. More examples can be found

in Hairer et al. (1987) and Lambert (1991).
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Example B.1. The 2-step method

wn+2 − wn = 2τF (tn+1, wn+1)

is called the explicit midpoint rule. Its order is 2 and the method is often used for special
classes of problems arising from hyperbolic PDEs. We shall see that it has rather poor stability
properties for more general problems. 3

Example B.2. Adams methods are characterized by

αk = 1, αk−1 = −1, αj = 0 (0 ≤ j ≤ k − 2)

and with βj chosen such that the order is optimal.
Explicit Adams methods, also called Adams-Bashforth methods, have order k.The method

with k = 1 is simply the forward Euler method. The 2 and 3-step methods read

wn+2 − wn+1 =
3

2
τFn+1 −

1

2
Fn,

wn+3 − wn+2 =
23

12
τFn+2 −

16

12
τFn+1 +

5

12
τFn

where Fj stands for F (tj , wj) .
The implicit Adams methods are also known as Adams-Moulton methods. The order is

k + 1. The method with k = 1 is the trapezoidal rule, and for k = 2, 3 we get

wn+2 − wn+1 =
5

12
τFn+2 +

8

12
τFn+1 −

1

12
τFn,

wn+3 − wn+2 =
9

24
τFn+3 +

19

24
τFn+2 −

5

24
τFn+1 +

1

24
τFn.

The Adams methods are usually applied in a predictor-corrector fashion, that is, first we
compute a predictor w̄n+k from the explicit k-step method and this value is inserted in the
right hand side of the implicit k-step method. The method thus obtained is explicit and has
order k + 1, but it is no longer a genuine linear k-step method. It falls in the wider class
of so-called multistep Runge-Kutta methods, with the prediction w̄n+k playing the role of an
internal vector. For k = 1 this procedure gives a 2-stage Runge-Kutta method, the so-called
explicit trapezoidal rule, see Example A.1. 3

Example B.3. Backward differentiation formulas, usually called BDFs or BDF methods,
have

βk = 1, βj = 0 (0 ≤ j ≤ k − 1)

and the αj are chosen such that the order is optimal, namely order k. The 1-step BDF method
is the Backward Euler method. For k = 2, 3 the BDF methods read

3

2
wn+2 − 2wn+1 +

1

2
wn = τFn+2,

11

6
wn+3 − 3wn+2 +

3

2
wn+1 +

1

3
wn = τFn+3.

Due to their favourable stability properties the BDF methods are well suited to solve parabolic
problems with smooth solutions. The BDF methods were introduced by Curtiss and Hirschfelder
in 1952 and their popularity can be attributed to a large extent to Gear (1971). 3
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Stability properties

When studying solutions of linear recursions of the type
∑k

j=0 γkwn+j = 0 it is convenient

to consider the characteristic polynomial π(ζ) =
∑k

j=0 γkζ
k. Let ζ1, ζ2, . . . , ζk be the zeros of

this polynomial, with multiple zeros repeated. The general solution of the linear recursion can
then be written as

wn = c1n
ν1ζn

1 + c2n
ν2ζn

2 + · · · + ckn
νkζn

k

with constants ci determined by the starting values, and with νi = 0 if ζi is a simple zero and
νi = 0, νi+1 = 1, . . . , νi+l = l if ζi = · · · = ζi+l is a root of multiplicity l +1. The characteristic
polynomial is said to satisfy the root condition if

|ζi| ≤ 1 for all i , and |ζi| < 1 if ζi is not simple.

It is easily seen from the formula for the general solution that this condition is equivalent with
boundedness of the sequence {wn} for arbitrary starting values.

Now, consider a linear multistep method (B.1) applied to the test equation

w′(t) = λw(t)

and let z = τλ. Then we obtain the recursion

k∑

j=0

(αj − zβj)wn+j (B.3)

with characteristic polynomial πz(ζ) =
∑k

j=0(αj − zβj)ζ
j . Defining

ρ(ζ) =
k∑

j=0

αjζ
j , σ(ζ) =

k∑

j=0

βjζ
j

we have πz(ζ) = ρ(ζ) − zσ(ζ).
The stability region S ⊂ C of the method is defined as the set consisting off all z such that

{wn} is bounded for any choice of starting values w0, . . . , wk−1. We have

z ∈ S ⇔ πz satisfies the root condition

The method is called zero-stable if 0 ∈ S. This is equivalent to saying that ρ(ζ) satisfies the
root condition. It is clear that methods which fail to be zero-stable are not suited as numerical
methods for solving differential equations since such a method will not even integrate the trivial
equation w′(t) = 0 properly. Zero-stability reduces the attainable order of linear multistep
methods to p = k for explicit methods and p = 2⌊(k + 2)/2⌋ for the implicit ones (the 1-st
Dahlquist barrier, see Dahlquist (1956) or Hairer et al. (1987)). For example, consider the
class of explicit methods

wn+2 − (1 + α0)wn+1 + α0wn =
1

2
τ(3 − α0)Fn+1 −

1

2
τ(1 + α0)Fn.

If α0 = 0 this gives the explicit Adams method with p = 2. Taking α0 = −5 we obtain a
method of order 3, but this method is not zero-stable. Nice numerical illustrations for the
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unstable behaviour of this 3-th order method can be found for instance in Hairer et al. (1987)
and Lambert (1991).

For the computation of the stability region of a linear multistep method, observe that on
the boundary ∂S one of the roots of the characteristic polynomial must have modulus 1. Since
πz(ζ) = 0 iff z = ρ(ζ)/σ(ζ), it follows that any point on ∂S is of the form

ρ(eiθ)/σ(eiθ) with 0 ≤ θ ≤ 2π.

Example B.4. For the explicit midpoint rule we find that

ρ(eiθ)/σ(eiθ) = (e2iθ − 1)/2eiθ =
1

2
(eiθ − e−iθ) = i sin(θ).

By considering the characteristic polynomial πz(ζ) = ζ2 − 2zζ − 1 and the roots

ζ1,2 = z ±
√

1 + z2,

it easily follows that the stability region is

S = {z ∈ C : Rez = 0, |z| < 1},

so this is merely a line segment on the imaginary axis. 3

The form of this stability region is a bit unusual since no r exists such that the disc
Dr = {z ∈ C : |z + r| ≤ r} is contained in the stability region. Pictures of the stability regions
of several Adams and BDF methods can be found in Gear (1971) and Hairer & Wanner (1991),
and for these methods Dr ∈ S for r sufficiently small.

To define stability concepts stronger than zero-stability it is useful to include the point
z = ∞ in our considerations. We shall say that ∞ ∈ S if σ(ζ) satisfies the root condition.
Observe that the roots of πz tend to the roots of the polynomial σ for z → ∞ (this is easily
seen by dividing πz(ζ) by z).

A linear multistep method is called A-stable if its stability domain contains {z ∈ C̄ :
Rez ≤ 0 or z = ∞}. In contrast to the Runge-Kutta methods, there are not many linear
multistep methods that are A-stable (the order of such methods is at most 2 , the 2-nd
Dahlquist barrier, see Dahlquist (1963) or Hairer & Wanner (1991)). Therefore we look at less
demanding properties, allowing high order, which are still useful for semi-discrete PDEs.

A linear multistep method is said to be A(α)-stable if its stability domain contains the
infinite wedge {z ∈ C̄ : z = 0,∞ or |arg(−z)| ≤ α}.
Example B.5. The BDF methods are A(α)-stable for k ≤ 6 with angle α depending on k :

k 1 2 3 4 5 6 7

α 90◦ 90◦ 88◦ 73◦ 51◦ 18◦ -

For k ≥ 7 the methods are no longer zero-stable. Since the angle α for the 6-step method is
rather small, the BDF methods are in general only used with k ≤ 5. 3

The Adams methods of example B.2 all have bounded stability domains and thus these
methods are not A(α)-stable. The stability domains for the Adams-Bashforth (AB) methods
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with k = 2, 3 are given in the top pictures of Figure B.1. These are rather small. The
Adams-Moulton (AM) methods are implicit but still have a bounded stability regions. For
this reason the Adams methods are usually implemented in a predictor-corrector fashion,
where the explicit formula is inserted into the right hand side of the implicit formula. The
stability regions of these methods with k = 2, 3 are given in the bottom pictures of Figure
B.1, with fat lines for the predictor-corrector methods (ABM) and thin lines for the implicit
ones. Pictures for higher order Adams methods and other multi-step methods can be found
in Hairer & Wanner (1991).
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Figure B.1. Stability regions for Adams methods.
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Remark. It is often convenient for the analysis to write recursion (B.3) in a one-step form.
First, observe that (B.3) is equivalent to

wn+k = −
k∑

j=0

αj − zβj

αk − zβk
wn+j .

We can formulate this as a one-step recursion in a higher dimensional space by introducing

Wn = (wn+k−1, . . . , wn)T .

Then (B.3) can be written as
Wn+1 = R(z)Wn (B.4)

where

R(z) =







r1(z) r2(z) · · · rk(z)
1 0

. . .
. . .

1 0







, ri(z) = −αk−i − zβk−i

αk − zβk
. (B.5)

This matrix is called the companion matrix of the muti-step method. From the equivalence
of these recursions it is clear that z ∈ S iff the matrix R(z) is power bounded.

For linear m-dimensional systems w′(t) = Lw(t) we obtain in the same way Wn+1 =
R(Z)Wn with Z = τL and

R(Z) =







r1(Z) r2(Z) · · · rk(Z)
I O

. . .
. . .

I O







.

CFL restrictions

Below stability restrictions are given for the advection and diffusion discretizations that were
considered in the previous subsection for Runge-Kutta methods. The multi-step methods
considered are the 2 and 3-step Adams-Bashforth (AB) schemes and the Adams-Moulton
schemes using Adams-Bashforth as predictor (ABM). The layout of the tables is the same as
in the Tables A.2 and A.3 with Runge-Kutta methods.

AB2 ABM2 AB3 ABM3

λa,1 0.5 0.98 0.27 0.79
λa,2 0 1.20 0.72 1.17
λa,3 0.58 1.02 0.39 0.80
λa,4 0 0.87 0.52 0.85

TABLE B.2. Stability restrictions on ν = τ/∆x for advection.

AB2 ABM2 AB3 ABM3

λd,2 0.25 0.6 0.13 0.48
λd,4 0.18 0.44 0.10 0.36

TABLE B.3. Stability restrictions on µ = τ/(∆x)2 for diffusion.
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d’ évolution paraboliques. Numer. Math. 35 , pp. 257-276.

G. Dahlquist (1956), Convergence and stability in the numerical integration of ordinary dif-
ferential equations. Math. Scand. 4, pp. 33-53.

G. Dahlquist (1963), A special stability problem for linear multistep methods. BIT 3, pp.
27-43.

G. Dahlquist (1975), Error analysis for a class of methods for stiff nonlinear initial value
problems. Numerical Analysis, Dundee 1975. Springer Lecture Notes in Mathematics 506, pp.
60-74.

R. Dautray, J.-L. Lions (1993), Mathematical Analysis and Numerical Methods for Science
and Technology 6 - evolution problems II. Springer Verlag, Berlin.

K. Dekker, J.G. Verwer (1984), Stability of Runge-Kutta Methods for Stiff nonlinear Differ-
ential Equations. CWI Monograph 2, North-Holland, Amsterdam.

J.L.M. Dorsselear, J.F.B.M. Kraaijevanger, M.N. Spijker (1993), Linear stability analysis in
the numerical solution of initial value problems. Acta Numerica 1993, pp. 199-237.

114



J. Douglas, J.E. Gunn (1964), A general formulation of alternating direction methods. Numer.
Math. 6, pp. 428-453.

J. Frank, W. Hundsdorfer, J.G. Verwer (1997), On the stability of implicit-explicit linear
multistep methods. Appl. Num. Math. 25 , pp. 193-205.

A. Friedman (1970), Foundations of Modern Analysis. Holt, Rinehart & Winston, Inc., New
York.

C.W. Gear (1971), Numerical Initial Value Problems in Ordinary Differential Equations. Pren-
tice Hall.

D. Goldman, T.J. Kaper (1996), Nth-order operator splitting schemes and nonreversible sys-
tems. SIAM J. Numer. Anal. 33, pp. 349-367.

G.H. Golub , C.F. van Loan (1996), Matrix Computations, third edition. John Hopkins Univ.
Press, Baltimore.

A.R. Gourlay, A.R. Mitchell (1972), On the structure of alternating direction implicit (A.D.I.)
and locally one dimensional (L.O.D.) difference methods. J. Inst. Maths. Applics. 9, pp.
80-90.

D.F. Griffiths, J.M. Sanz-Serna (1986), On the scope of the method of modified equations.
SIAM J. Sci. Comput. 7, pp. 994-1008.

B. Gustafsson (1975), The convergence rate for difference approximations to mixed initial
boundary value problems. Math. Comp. 29, pp. 396-406.

E. Hairer, S.P. Nørsett, G. Wanner (1987), Solving Ordinary Differential Equations I – nonstiff
problems, Springer Series in Computational Mathematics 8, Springer Verlag, Berlin.

E. Hairer, G. Wanner (1991), Solving Ordinary Differential Equations II – stiff and differential-
algebraic problems. Springer Series in Computational Mathematics 14, Springer Verlag, Berlin.

C. Hirsch (1988), Numerical Computation of Internal and External Flows 1: fundamentals
and numerical discretization. John Wiley & Sons, Chichester.

R.A. Horn, C.R. Johnson (1985), Matrix Analysis. (1991), Topics in Matrix Analysis. Cam-
bridge University Press.
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