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Abstract

A nonlocal diffuse interface model, based on the Nakazawa-Ohta density functional theory for triblock

copolymers, is used to study bubble assemblies in ternary systems. The model has three parameters weighing

three types of long range interaction and two parameters that fix the total area of each constituent. As

the parameters vary, a large number of morphological phases appear as stable stationary states. One open

question related to the polarity direction of double bubble assemblies is answered numerically. Moreover, it

is shown that the average size of bubbles in a single bubble assembly depends on the sum of the minority

constituent areas and the long range interaction coefficients. One further identifies the ranges for area

fractions and the long range interaction coefficients for double bubble assemblies.

Keywords: Diffuse interface model, Nakazawa-Ohta density functional, Triblock copolymers,

Morphological phases, Long range interaction

1. Introduction

Block copolymers have generated much interest in materials science in recent years due to their remark-

able ability for self-assembly into nanoscale ordered structures [1, 2, 3]. This ability can be exploited to

create materials with desired mechanical, optical, electrical, and magnetic properties [1, 2, 3]. There have

been many experimental and theoretical studies focusing on this subject [4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

Self-consistent field theory derived from a microscopic description of interacting polymer chains is one suc-

cessful theoretical approach for the study of block copolymers [5, 6, 7, 8, 9, 10, 11]. However, this method

is computationally demanding because of the heavy calculation of path integrals for the chain conforma-

tion [14, 15]. There is a need for efficient methods to model the self-assembly for block copolymers at the

mesoscale level. The density functional theory (DFT) [16, 17] is a very promising approach to modeling

such phenomena and it is customarily referred to as cell dynamics simulation [12, 13].

In this paper, we consider the Ohta-Nakazawa model introduced in [17], which describes the ternary
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system such as ABC type triblock copolymers by a free energy functional written as follows:

E(φ1, φ2) =

∫
D

[ ε
2

(
|∇φ1|2 + |∇φ2|2 +∇φ1 · ∇φ2

)
+

1

2ε
WT (φ1, φ2)

]
dx

+

2∑
i,j=1

γij
2

∫
D

[
(−4)

− 1
2 (f(φi)− ωi)× (−4)

− 1
2 (f(φj)− ωj)

]
dx. (1.1)

where 0 < ε � 1 is an interface parameter, indicating that the system is in the strong segregation regime

[13]. D ⊂ Rn, n = 2, 3 is a spatial domain, and φi = φi(x) (i = 1, 2) are phase field labeling functions which

represent the density of A and B species, respectively. The concentration of C species can be implicitly

represented by 1 − φ1(x) − φ2(x) since the system is assumed to be incompressible [16]. WT (φ1, φ2) is of

the form of

WT (φ1, φ2) := W (φ1) +W (φ2) +W (1− φ1 − φ2),

where W (s) = 18(s2 − s)2. Note that WT (φ1, φ2) is a triple-well potential having three minima at (1, 0, 0),

(0, 1, 0) and (0, 0, 1), which correspond to the phase separation between the A,B,C species. The first

integral in (1.1) describes the short-range interaction which accounts for the interfacial free energy of the

system and favors large domains with minimum surface area.

The second integral term in (1.1) indicates the long range interaction between the chain molecules with

γij being the strength of such interactions. The long range interaction coefficients γij form a symmetric

two by two matrix γ = [γij ]. For triblock copolymers, the matrix γ is positive definite [18]; for homopoly-

mer/diblock copolymer blends γ has one positive eigenvalue and one zero eigenvalue [19]. In our work, we

study the effect of γ in a wide range, including positive definite and non-positive definite cases. The new

introduced term

f(φi) = (φ2
i − 2φi)

2, i = 1, 2 (1.2)

is adapted to mimic φi, i = 1, 2 as the indicator for the A and B species, respectively. ωi ∈ (0, 1), i = 1, 2

are the relative volume of the A and B species, respectively, which indicate that the Ohta-Nakazawa model

is usually associated with volume constraints:∫
D

f(φi)dx = ωi|D|, i = 1, 2. (1.3)

The negative square root of −∆ is defined in Section 3 in details.

The importance of the new introduced term f(φi) is due to two reasons. Firstly, heuristically, with such

a function, we have not only f(0) = 0, f(1) = 1 which resembles the behavior of φi, but also that

f ′(0) = 0, f ′(1) = 0. (1.4)

These will lead to a more localized ‘boundary force’ near the A-C, B-C and A-B interfaces. On the other

hand, if taking f(s) = s, then f ′(s) = 1 will induce a local surface tension force against a global long-range

repulsive force. To balance such two forces, the φi has to sacrifice to lose the desired tanh profile and

results in either unphysical negative values in the proximity of the interface (see [20]) or values not equal

0 or 1 away from the interface [20]. Secondly, since the new f(φi) results in a much better tanh profile,
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consequently the new model will describe the interfacial structures more accurately and lead to a better

estimate of the free energy.

To minimize the free energy (1.1), we can consider the L2 gradient flow dynamics

∂φi
∂t

= − δE
δφi

= ε4φi +
ε

2
4φj −

1

2ε

∂WT

∂φi

− γii(−4)−1(f(φi)− ωi)f ′(φi)− γij(−4)−1(f(φj)− ωj)f ′(φi)− λi(t)f ′(φi) (1.5)

in which i, j = 1, 2 and j 6= i. Here λi(t) is some appropriate time-dependent Lagrange multiplier associated

with the volume constraints (1.3). On the other hand, to see how the volume constraints (1.3) play a role

in the energy minimization, we can alternatively incorporate the penalty term in (1.1) and change it into

an unconstrained one:

Epenalty(φ1, φ2) =

∫
D

[ ε
2

(
|∇φ1|2 + |∇φ2|2 +∇φ1 · ∇φ2

)
+

1

2ε
WT (φ1, φ2)

]
dx

+

2∑
i,j=1

γij
2

∫
D

[
(−4)

− 1
2 (f(φi)− ωi)× (−4)

− 1
2 (f(φj)− ωj)

]
dx

+

2∑
i=1

Mi

2

(∫
D

f(φi)dx− ωi|D|
)2

, (1.6)

and consider the corresponding penalized L2 gradient flow dynamics:

∂φi
∂t

= −δEpenalty

δφi
= ε4φi +

ε

2
4φj −

1

2ε

∂WT

∂φi

− γii(−4)−1(f(φi)− ωi)f ′(φi)− γij(−4)−1(f(φj)− ωj)f ′(φi)

−Mi

(∫
D

f(φi)dx− ωi|D|
)
f ′(φi). (1.7)

Throughout this paper, we will focus on the penalized L2 gradient flow (1.7) to study the configurations of

minimizers of (1.6).

As ε → 0, the free energy (1.1) Γ-converges to the strong segregation limit (sharp interface limit)

[21, 22, 23, 24, 25, 26]

J (Ω1,Ω2) =
1

2

3∑
i=1

PD(Ωi) +

2∑
i,j=1

γij
2

∫
D

[
(−∆)−1/2(χΩi − ωi)× (−∆)−1/2(χΩj − ωj)

]
dx, (1.8)

where Ωi ⊂ D denotes the region covered by the i-th constituent and the measure of Ωi is fixed at

|Ωi| = ωi|D|. (1.9)

PD(Ωi) denotes the perimeter of Ωi in D which is defined as the total variation of the function χΩi (see

(2.1) for the definition) and χΩi is the characteristic function of Ωi, that is, χΩi(x) = 1 if x ∈ Ωi and 0 if

x ∈ D \ Ωi.

We address small volume-fraction asymptotical analysis (ωi � 1) of the sharp interface model. We

then design and implement stable and accurate numerical methods for solving the penalized L2 gradient

flow equation (1.7). Our methods couple a linear operator splitting technique and spectral discretization

3



which leads to a stabilized numerical scheme for (1.7). We apply our model and numerical methods to the

triblock copolymer systems with ωi � 1, from which we find patterns such as hexagonal double bubble

assemblies, square single bubble assemblies and double bubble and single bubble coexisting states. We

perform quantitative studies on these numerical results and verify them theoretically through the sharp

interface approach.

The rest of the paper is organized as follows. In Section 2, we perform asymptotical analysis for the sharp

interface model. In Section 3, we describe our numerical methods for solving the gradient flow dynamic

equations of the penalized phase field free energy functional. In Section 4 we present numerous equilibrium

configurations as parameters vary. Moreover, we provide quantitative studies and verify them theoretically.

Section 5 gives the conclusion and future directions.

2. Sharp Interface Model: Asymptotical Analysis

A function f ∈ L1(D) is said to have bounded variation in D if
∫
D
|∇f | <∞, where∫

D

|∇f | := sup

{∫
D

f div g dx : g = (g1, · · · , gn) ∈ C1
c (D,Rn), and |g(x)| ≤ 1 for x ∈ D

}
,

is the total variation of f and C1
c (D,Rn) denotes the space of all C1-mappings from D to Rn that are

compactly supported inside D; cf. [27, 28, 29]. If f ∈W 1,1(Ω), then∫
D

|∇f | =
∫
D

|gradf |dx,

where gradf = (f1, · · · , fn) and f1, · · · , fn are the generalized derivatives of f . Then the space BV (D) is

defined as the space of all functions in L1(D) with bounded variation. It is a Banach space with the norm

||f ||BV (D) := ||f ||L1 +

∫
D

|∇f |.

If Ω is Lebesgue measurable, then the perimeter of Ω in D is defined by the total variation of the function

χΩ [27, 28, 29], that is,

PD(Ω) :=

∫
D

|∇χΩ| = sup

{∫
Ω

div g dx : g ∈ C1
c (D,Rn), |g(x)| ≤ 1

}
. (2.1)

A stationary point (Ω1,Ω2) of J (1.8) consists of two disjoint subsets Ω1 and Ω2 of D, each bounded

by piecewise smooth curves. It satisfies the following equations:

κ1 + γ11IΩ1 + γ12IΩ2 = λ1 on ∂Ω1 ∩ ∂Ω3 (2.2)

κ2 + γ12IΩ1 + γ22IΩ2 = λ2 on ∂Ω2 ∩ ∂Ω3 (2.3)

κ0 + (γ11 − γ12)IΩ1 + (γ12 − γ22)IΩ2 = λ1 − λ2 on ∂Ω1 ∩ ∂Ω2 (2.4)

T1 + T2 + T0 = ~0 at ∂Ω1 ∩ ∂Ω2 ∩ ∂Ω3 (2.5)

Ti ⊥ ∂D at ∂Ωi ∩ ∂Ω3 ∩ ∂D, i = 1, 2 (2.6)

T0 ⊥ ∂D at ∂Ω1 ∩ ∂Ω2 ∩ ∂D. (2.7)
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The equation (2.2) holds on ∂Ω1 ∩ ∂Ω3 which is the interface between Ω1 and Ω3. On the left side of

(2.2) κ1 is the curvature of this interface with respect to the normal vector that points inward into Ω1. The

IΩi ’s are shorthand notations:

IΩi = (−∆)−1(χΩi − ωi), i = 1, 2, (2.8)

which we call inhibitors. The equations (2.3) holds on the interface between Ω2 and Ω3 and the curvature

κ2 is measured with respect to the normal vector pointing into Ω2; the equation (2.4) holds on the interface

between Ω1 and Ω2 and the curvature κ0 is measured with respect to the normal vector pointing into Ω1. On

the right sides of these equations there are unknown constants λ1 and λ2. These are Lagrange multipliers

associated with the constraints |Ωi| = ωi|D|, i = 1, 2.

The three interfaces, ∂Ω1 ∩ ∂Ω3, ∂Ω2 ∩ ∂Ω3 and ∂Ω1 ∩ ∂Ω2, may meet at a common point in D, which

is termed a triple junction point. In (2.5) T1, T2 and T0 are unit tangent vectors at triple junction points:

T1 is inward pointing and tangent to ∂Ω1 ∩ ∂Ω3, T2 is inward pointing and tangent to ∂Ω2 ∩ ∂Ω3, and T0

is inward pointing and tangent to ∂Ω1 ∩ ∂Ω2. The equation (2.5) is equivalent to the condition that at any

triple junction point the three interfaces meet at 120 degrees.

In the case that an interface meets the domain boundary ∂D, the equations (2.6) and (2.7) assert that

it does so perpendicularly. Here T1, T2 and T0 are again unit tangent vectors of ∂Ω1 ∩ ∂Ω3, ∂Ω2 ∩ ∂Ω3 and

∂Ω1 ∩ ∂Ω2 respectively.

It is convenient to introduce a fixed m ∈ (0, 1) and a small η so that

ω1|D| = η2m and ω2|D| = η2(1−m). (2.9)

The area constraints (1.9) now take the form

|Ω1| = η2m and |Ω2| = η2(1−m). (2.10)

Instead of ω1 and ω2, η becomes one parameter. The fixed number m measures the relative size of |Ω1| vs

|Ω2| since |Ω1|
|Ω2| = m

1−m .

In two dimension, currently only three types of stationary assembly were known for ternary systems:

the double bubble assembly [30], the core-shell assembly [31] and the single bubble assembly [32]. In a

double bubble assembly each component is a perturbed double bubble where one of the bubbles is made of

type-A constituent and the other of type-B constituent and in a single bubble assembly each component is

a perturbed single bubble made of either type-A or type-B constituent; see Figure 2.1. In our earlier work,

we have shown the existence of a double bubble assembly and the existence of a single bubble assembly.

Here we list the results as follows. One can refer to [32, 30] for detailed proofs.

Theorem 2.1. [32] Let D be a bounded and sufficiently smooth domain in R2. For m ∈ (0, 1), K1,K2 ∈ N,
δ > 0, and B > 0, there exists η0 = η0(D,m,K1,K2, δ, B) > 0 so that if

1. 0 < η < η0,

2. each entry γij > 0 and each diagonal entry γii ∈
(

1+δ
ρ3i log 1

ρi

, 12−δ
ρ3i

)
, where ρ1 = η( m

K1π
)1/2 and ρ2 =

η( 1−m
K2π

)1/2,

3.
max {γij}
min {γij} < B,
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Figure 2.1: Left: schematic for a single bubble assembly of type-A (red) constituent and type-B (yellow) constituent. Right:
schematic for a double bubble assembly.

then J admits a stable stationary assembly of K1 perturbed single bubbles of type-A and K2 perturbed single
bubbles of type-B, satisfying (2.2), (2.3), and (2.10).

Moreover, the radii of the type-A single bubbles in the assembly are close to ρ1 and the radii of the type-B
single bubbles are close to ρ2. If

γij
|γ|
→ Γij as η → 0,

the centers of the type-A single bubbles are ξ∗,11 , ..., ξ∗,K1

1 , and the centers of the type-B single bubbles are

ξ∗,12 , ..., ξ∗,K2

2 , then (ξ∗,11 , ..., ξ∗,K1

1 , ξ∗,12 , ..., ξ∗,K2

2 ) is close to a minimum of the function

Fs(ξ
1
1 , ..., ξ

K1
1 , ξ1

2 , ..., ξ
K2
2 ) =

Γ11m
2

K2
1

( K1∑
k=1

R(ξk1 , ξ
k
1 ) +

K1∑
k=1

K1∑
l=1,l 6=k

G(ξk1 , ξ
l
1)
)

+
2Γ12m(1−m)

K1K2

K1∑
k=1

K2∑
l=1

G(ξk1 , ξ
l
2)

+
Γ22(1−m)2

K2
2

( K2∑
k=1

R(ξk2 , ξ
k
2 ) +

K2∑
k=1

K2∑
l=1,l 6=k

G(ξk2 , ξ
l
2)
)
.

Theorem 2.2. [30] Let D be a bounded and sufficiently smooth domain in R2. For m ∈ (0, 1), K ∈ N,
ι ∈ (0, 1], there exists η0 = η0(D,m,K, ι) > 0, σ̃ = σ̃(D,m,K, ι) > 0, and σ = σ(D,m,K, ι) > 0, so that if

1. 0 < η < η0,

2. σ̃
η3 log 1

η

≤ λ̄(γ) ≤ ¯̄λ(γ) < σ
η3 ,

3. ι¯̄λ(γ) ≤ λ̄(γ),
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then J admits a stable stationary assembly of K perturbed double bubbles satisfying (2.2) - (2.5) and (2.10).
Each perturbed double bubble is bounded by three smooth curves that meet at two triple junction points.

Moreover, all the perturbed double bubbles in the solution have almost the same size and shape. If the
perturbed double bubbles in the solution are located at points ξ∗,1, ξ∗,2, ..., ξ∗,K , then ξ∗,1, ξ∗,2, ..., ξ∗,K is close
to a minimum of the function

Fd(ξ
1, ξ2, ..., ξK) =

K∑
k=1

R(ξk, ξk) +

K∑
k=1

K∑
l=1,l 6=k

G(ξk, ξl).

The smoothness condition on D in Theorem 2.1 and Theorem 2.2 is to ensure that (−∆)−1 is well

defined; any C2,α domain meets the requirement [33, Section 6.7]. Note that in Theorem 2.1, ρ1 and ρ2

are the average radii of the type-A and type-B discs respectively; in Theorem 2.2, λ̄(γ) and ¯̄λ(γ) are two

eigenvalues of γ. |γ| is the operator norm of γ. The definition of functions Fs and Fd involve G and R. Here

G is the Green’s function of −4 operator on D with either periodic or homogeneous Neumann boundary

condition. The function G(x, y) as a function of x for each y ∈ D solves

−4G(·, y) = δ(· − y)− 1

|D|
,

∫
D

G(x, y)dx = 0. (2.11)

One can write G as a sum of two terms:

G(x, y) =
1

2π
log

1

|x− y|
+R(x, y). (2.12)

The first term 1
2π log 1

|x−y| is the fundamental solution of the Laplace operator; the second term R is the

regular part of the Green’s function, a smooth function of (x, y) ∈ D ×D. In the case that D is the unit

disc,

G(x, y) =
1

2π
log

1

|x− y|
+

1

2π

[ |x|2
2

+
|y|2

2
+ log

1

|xy − 1|

]
− 3

8π
, (2.13)

where y is the complex conjugate of y and D is viewed as a subset of C, so we have a closed formula for

both Fs and Fd.

The primary difference of Theorem 2.1 and Theorem 2.2 lies on the matrix γ. In Theorem 2.1, all the

entires of γ should be positive and comparable. The matrix γ can be positive definite or not. In Theorem

2.2, the matrix γ should be positive definite and the two eigenvalues of γ need to be comparable.

When (Ω1,Ω2) is a stationary single bubble assembly found in Theorem 2.1, the free energy in the strong

segregation limit J (Ω1,Ω2) (1.8) becomes:

J (S1, S2) =

2∑
i=1

Ki∑
i=1

(
2πrki +

γiiπ

4
(rki )4 log

1

rki

)
+

2∑
i=1

Ki∑
i=1

γiiπ
2

2
(rki )4

(
1

8π
+R(ξki , ξ

k
i )

)

+

2∑
i=1

Ki∑
k,l=1
k 6=l

γiiπ
2

2

(
rki
)2 (

rli
)2
G(ξki , ξ

l
i) + γ12π

2
K1∑
k=1

K2∑
l=1

(rk1 )2(rl2)2G(ξk1 , ξ
l
2) +O(|γ|η6). (2.14)

Here (S1, S2) is an assembly of perturbed single bubbles at equilibrium. An assembly of perfect single

bubbles is used as an approximation solution, and then one proves that small and suitable perturbations of

the single bubbles will turn the assembly to an equilibrium of the nonlocal system. Thus the existence of
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single bubble assemblies is theoretically established [32]. The free energy (2.14) gives rise to (4.2) up to the

leading order which is used to verify the relationship (4.1) in Section 4.2.

When (Ω1,Ω2) is a stationary double bubble assembly found in Theorem 2.2, the free energy in the

strong segregation limit J (Ω1,Ω2) (1.8) reads:

J (D1, D2) = η

Kb∑
k=1

2∑
i=0

aki l
k
i + η4 log

1

η

Kb∑
k=1

2∑
i,j=1

γijw
k
i w

k
j

4π

+η4
Kb∑
k=1

2∑
i,j=1

γij
2

∫
Bki

∫
Bkj

1

2π
log

1

|x̂− ŷ|
dx̂dŷ + η4

Kb∑
k=1

2∑
i,j=1

γij
2
wki w

k
jR(ξk, ξk)

+η4
Kb∑
k,l=1
k 6=l

2∑
i,j=1

γij
2
wki w

l
jG(ξk, ξl) + o(|γ|η4). (2.15)

Here the equilibrium (D1, D2) is an assembly of perturbed double bubbles. Each double bubble is built

from an exact double bubble (Bk1 , B
k
2 ) whose three radii are lki , i = 0, 1, 2 and two areas are wk1 and wk2 .

There is a transformation

T k : x̂→ ηeiθk x̂+ ξk

that maps (Bk1 , B
k
2 ) to (T (Bk1 ), T (Bk2 ) in the domain and (D1, D2) is a perturbation of ∪Kbk=1(T (Bk1 ), T (Bk2 )).

In T k, ξk and θk are the center and the direction of the double bubble respectively. The free energy (2.15)

results in (4.4) up to the leading order which is used to verify the two-thirds law (4.5) in Section 4.2.

3. Numerical Methods

In this section we describe our numerical methods for solving the Equation (1.7) in two dimension (2D).

Our computational domain is taken as D = [−Lx, Lx]× [−Ly, Ly] in R2.

3.1. Notations

Let D =
∏d
i=1[−Xi, Xi) ⊂ Rd, d = 2, 3 be a periodic domain. Denote the space consisting of periodic

functions in Hs(D), s ≥ 0 as Hs
per(D). We define the subspaces

H̊s
per(D) :=

{
u ∈ Hs

per(D) :

∫
D

u(x)dx = 0

}
(3.1)

consisting of all functions of u ∈ Hs
per(D) with zero mean. We use ‖ · ‖Hs to represent the standard Sobolev

norm. When s = 0, Hs(D) = L2(D) and we take 〈·, ·〉 as the L2 inner product and ‖ · ‖Hs = ‖ · ‖L2 .

We define the inverse Laplacian (−∆)−1: L̊2
per(D)→ H̊1

per(D) as

(−∆)−1g = u⇐⇒ −∆u = g.

or in term of Fourier series:

(−∆)−1g =
∑

k∈Z3\{0}

|k|−2ĝ(k)eik·x̃, (3.2)
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where

ĝ(k) =

∫
D

f(x)e−ik·x̃dx, with x̃ = (πx1/X1, · · · , πxd/Xd).

Note that the definition (3.2) can be extended to any function g ∈ L2
per(D) because of the removal of the

zero-th mode.

3.2. Linear splitting and semi-discrete scheme

We adopt an analogous linear splitting scheme which has been used in designing stabilized numerical

methods for the classic Allen-Cahn equation [34, 35, 36, 37, 20]. We rewrite ∂WT

∂φi
as

∂WT

∂φi
= κφi +

[
∂WT

∂φi
− κφi

]
. (3.3)

Plug (3.3) into (1.7), we get an equivalent formulation

∂φi
∂t

= ε4φi −
κ

2ε
φi +Bi(φ1, φ2), i = 1, 2, (3.4)

where

Bi(φ1, φ2) =
ε

2
4φj −

1

2ε

(
∂WT

∂φi
− κφi

)
− γii(−4)−1(f(φi)− ωi)f ′(φi)− γij(−4)−1(f(φj)− ωj)f ′(φi), (3.5)

in which i, j = 1, 2 and j 6= i.

We choose a time step ∆t > 0 and set tn = n∆t, (n = 0, 1, · · · ). For a given function φi(x), we denote

by φni an approximation of φi(x) at time tn. We use the semi-implicit splitting scheme to discretize the

time variable for Equations (3.4):

φn+1
i − φni

∆t
= ε4φn+1

i − κ

2ε
φn+1
i +Bi(φ

n
1 , φ

n
2 ), (3.6)

for i = 1, 2. In our numerical simulation, we take κ = 72.

3.3. Spectral spatial discretization with periodic boundary condition

Consider our rectangular domain D ⊂ R2

D = {−Lx < x < Lx,−Ly < y < Ly}

with periodic boundary condition for some positive numbers Lx and Ly. Let Nx, Ny be even integers. We

discretize D by a rectangular mesh which is uniform in each direction as follows:

xjk = (xj , yk) = (−Lx + jhx,−Ly + khy)

for 0 ≤ j ≤ Nx, 0 ≤ k ≤ Ny, hx = 2Lx/Nx, hy = 2Ly/Ny. Let φni,jk ≈ φi(xj , yk, tn) = φi(xjk, tn)

denote the approximate solution at grid xjk and time tn. Denote the approximate solution in array form
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as Φi = (φjk)0:Nx−1,0:Ny−1, and denote its discrete Fourier transform (DFT) by Φ̂i = (φ̂jk)0:Nx−1,0:Ny−1.

Notice that the Laplacian operator ∆ in the spectral space corresponds to the spectrum

λjk = −λ2
x(j)− λ2

y(k),

where

λx(j) =

πj/Lx if 0 ≤ j ≤ Nx/2,

π(Nx − j)/Lx if Nx/2 ≤ j ≤ Nx − 1,

λy(k) =

πk/Ly if 0 ≤ k ≤ Ny/2,

π(Ny − k)/Ly if Ny/2 ≤ k ≤ Ny − 1,

Taking the fast Fourier transform (FFT) [38] on both sides of the equation (3.6) yields

L� Φ̂n+1
i = Φ̂ni +Bi(φ

n
1 , φ

n
2 )
∧

, i = 1, 2, (3.7)

where L� Φ̂n+1
i is given by

L� Φ̂n+1
i = (ljkφ̂

n+1
i,jk )0:Nx−1,0:Ny−1, with ljk = 1 + ελjk∆t+

κ

2ε
∆t.

Then Φ̂n+1
i can be solved from equation (3.7) and Φn+1

i is obtained by performing inverse FFT on Φ̂n+1
i .

4. Numerical Results

The five parameters, γ11, γ12, γ22, ω1, and ω2, play the key roles in pattern formation of ternary

systems. In numerical simulations, the domain D is fixed as [−1, 1]2, the uniform mesh grid in space is fixed

as 512× 512, namely, ∆x = ∆y = 2/512, ε is fixed as 5∆x, M1 = M2 = 10, κ = 72, and the time step ∆t

is 0.001. In each image below, red, yellow and blue colors correspond to A-rich, B-rich and C-rich regions,

respectively.

4.1. Sample equilibria

Figure 4.1: Two characteristic patterns in ternary systems. (a) A ternary system with γ12 = 0 maintains a hexagonal double
bubble assembly. (b) A system with γ12 = 11, 000 yields a single bubble assembly in a square lattice. The snapshots are taken
at time T = 400. γ11 = γ22 = 20, 000, ω1 = 0.10, and ω2 = 0.09 in these simulations.
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Two sample equilibria are presented in Fig. 4.1. Fig. 4.1 (a) shows a double bubble assembly. All double

bubbles grow into the same size and are located hexagonally. The polarity direction of each double bubble,

the direction from center of mass of yellow region to that of red one, in an assembly is unknown theoretically

[30]. Numerical simulations show double bubble assemblies when |γ12| is small, and the polarity directions

of double bubbles in equilibrium configurations are parallel. Fig. 4.1 (b) shows a single bubble assembly.

All yellow bubbles become equal in size, as do red bubbles. Interestingly, they form a square lattice pattern

in which each single bubble is surrounded by four bubbles of the other color. In a binary system, a hexagon

pattern is most stable experimentally [39] and theoretically [40, 41, 16, 42, 43]. For a ternary system, our

numerical simulations show that a square structure can be energetically more favorable than a hexagonal

one. This agrees with experiments [44] and theoretical studies [17, 45, 46].

4.2. Single bubble assemblies

Figure 4.2: (a) Independence of the average red and yellow bubble sizes on the ratio of area fractions ω1/ω2. For (ω1, ω2) =
(0.05, 0.10), (0.09, 0.144), (0.09, 0.12), (0.09, 0.10), (0.09, 0.08), (0.09, 0.072), (0.09, 0.06), (0.10, 0.05), the ratio r1/r2 remains
at 1/1 up to a 3% error. Here γ11 = γ12 = γ22 = 20, 000. (b) Dependence of the average red and yellow bubble sizes on
the long range interaction coefficients γ11 and γ22. For (γ11, γ22) = (20, 000, 60, 000), (20, 000, 50, 000), (10, 000, 20, 000),
(20, 000, 30, 000), (20, 000, 20, 000), (30, 000, 20, 000), (20, 000, 10, 000), numerical simulations agree with the law of r1/r2 =
(γ11/γ22)−1/3. Here γ12 = 20, 000, 20, 000, 10, 000, 20, 000, 10, 000, 20, 000, 10, 000 respectively. (ω1, ω2) = (0.10, 0.05),
(0, 10, 0.05), (0.09, 0.06), (0.10, 0.05), (0.07, 0.07), (0.09, 0.06), (0.09, 0.06) respectively.
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For single bubble assemblies, the average size of red/yellow bubbles does not depend on the ratio of area

fractions, namely, ω1/ω2. In Fig. 4.2 (a), for several (ω1, ω2) and fixed γij = 20, 000, 1 ≤ i, j ≤ 2, the ratio

r1/r2 remains at 1/1 up to a 3% error regardless of the different values of ω1/ω2. Note that (ω1, ω2) has

an impact on the number of red/yellow bubbles, as seen in the insets of Fig. 4.2 (a). On the other hand,

the values of γ11 and γ22 affect r1/r2. In Fig. 4.2 (b), with various (γ11, γ22), the ratio r1/r2 decreases as

γ11/γ22 becomes larger. More precisely, the two ratios satisfy the following law:

r1

r2
=

(
γ11

γ22

)− 1
3

. (4.1)

This relationship can also be verified theoretically. Let K1 be the number of red bubbles and K2 be the

number of yellow bubbles in a single bubble assembly. The full form of the free energy of a single bubble

assembly in the strong segregation limit is (2.14). In an equilibrium state, all red bubbles develop into

approximately the same size; so do yellow bubbles. Let r1 and r2 be the average radii of red and yellow

bubbles, respectively. Up to the leading order, the free energy is

2∑
i=1

Ki

(
2πri +

γiiπ

4
(ri)

4 log
1

ri

)
. (4.2)

Let η2m = ω1|D|, η2(1−m) = ω2|D|, and Γij = η3 log 1
ηγij . Then (4.2) becomes

η

(
2
√
mπK

1
2
1 +

Γ11m
2

4π
K−1

1 + 2
√

(1−m)πK
1
2
2 +

Γ22(1−m)2

4π
K−1

2

)
.

With respect to K1 and K2 the above is minimized at

K1 =

(
Γ11

4

) 2
3 m

π
, K2 =

(
Γ22

4

) 2
3 1−m

π
.

Consequently the average radii of red and yellow bubbles, are

ri = 4
1
3

(
log

1

η

)− 1
3

γ
− 1

3
ii , i = 1, 2, (4.3)

from which (4.1) follows.

4.3. Double bubble assemblies

In some parameter ranges, ternary systems may display double bubble assemblies (see Fig. 4.1 (a)). Let

ω1 = ω2 = 0.09, γ12 = 0, and increase γ11 = γ22 from 200 to 40, 000. The number of double bubbles Kb in

an assembly increases correspondingly as seen in the insets of Fig. 4.3 (a). The increment of Kb obeys the

law Kb ∼ γ2/3
11 . This confirms that the long range interaction favors small domains.

This two-thirds law can be verified theoretically for both symmetric (ω1 = ω2) and asymmetric (ω1 6= ω2)

double bubble assemblies. To this end, consider the strong segregation limit of the free energy E [25]. The

full form of the free energy of a double bubble assembly in the strong segregation limit is (2.15). In an

equilibrium state, all double bubbles have approximately the same shape and size. Let li, i = 0, 1, 2, denote

12



Figure 4.3: (a) Log-log plot of the dependence of the number of double bubbles on γ11 in symmetric double bubble assemblies.
Here γ11 = γ22, γ12 = 0, and ω1 = ω2 = 0.09. As γ11 increases, the number of double bubbles in the assemblies grows
accordingly. For γ11 = 200, 1, 000, 20, 000, 30, 000, 40, 000, the corresponding number of double bubbles are 2, 5, 38, 48 and
60, respectively. (b) The range of γ11/γ22 under which random initials evolve to double bubble assemblies for given ω1 and ω2.
For (ω1, ω2) = (0.09, 0.09), (0.09, 0.09/1.2), (0.09, 0.09/1.4), (0.10, 0.10/1.7), (0.10, 0.05), the ranges of γ11/γ22 are (0.72, 1.3),
(0.57, 0.98), (0.46, 0.73), (0.39, 0.54), and (0.3774, 0.40) respectively. Here γ12 = 0.

the radii of the three arcs of a double bubble whose two areas are m
Kb

and 1−m
Kb

. Let ai, i = 0, 1, 2, denote

the angles associated with these arcs. Up to the leading order, the free energy is

Kb

 2∑
i=0

ailiη +

2∑
i,j=1

γij
4π

(
η4 log

1

η

)
mimj

K2
b

 , (4.4)

where η2m = ω1|D|, η2(1 −m) = ω2|D|, m1 = m, and m2 = 1 −m. If Li, i = 0, 1, 2, are the radii of the

three arcs of a double bubble whose two areas are m and 1 −m, then li = Li/
√
Kb. Let Γij = η3 log 1

ηγij

and rewrite (4.4) as

η

( 2∑
i=0

aiLi

)
K

1
2

b +

 2∑
i,j=1

Γijmimj

4π

K−1
b

 .
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With respect to Kb, this is minimized at

Kb =

(∑2
i,j=1 Γijmimj

2π
∑2
i=0 aiLi

) 2
3

. (4.5)

Fig. 4.3 (b) shows the relationship between γ11/γ22 and ω1/ω2 when double bubble assemblies occur.

The vertical green line for each value of ω1/ω2 indicates the range of γ11/γ22 for which double bubble

assemblies exist. Beyond this range, ternary systems display other patterns such as coexisting single and

double bubbles. The range becomes wider when ω1/ω2 approaches 1. Taking γ11/γ22 to be the middle value

in each range, and plotting it with respect to the ratio ω1/ω2, one finds that it agrees with the graph of

y = x−3/2.

Figure 4.4: The effect of γ12. As γ12 increases, double bubble assemblies change to coexisting single and double bubbles, and
then to single bubble assemblies. When γ12 is negative, nonstandard double bubbles appear. (a) γ12 = 0, (b) γ12 = 8, 000,
(c) γ12 = 10, 000, (d) γ12 = 20, 000, (e) γ12 = 22, 000, and (f) γ12 = −13, 000. The other parameters are γ11 = γ22 = 20, 000,
ω1 = ω2 = 0.09.

4.4. The effect of γ12

As γ12 increases from 0, red and yellow constituents tend to break. In Fig. 4.4(a), γ12 = 0 and all

components are double ones. In Fig. 4.4(b), γ12 = 8, 000, many double bubbles break into single red and

yellow bubbles to yield a coexisting pattern. In Fig. 4.4(c), γ12 = 10, 000, all double bubbles disappear,

the assembly becomes a pure single bubble one. In this case the red and yellow bubbles are well mixed

in an organized way. In Fig. 4.4(d), γ12 = 20, 000, the system still displays a single bubble assembly, but

the red and yellow bubbles are mixed randomly; many single bubbles of the same color gather together.

When γ12 = 22, 000 is even larger in Fig. 4.4(e), red bubbles are completely separated from yellow bubbles

in the assembly. Note that as γ12 increases, the matrix γ changes from being positive definite, to semi-

positive definite, and to indefinite. In Fig. 4.4 (f), a negative γ12 is used. Red and yellow constituents
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Figure 4.5: The numbers of bubbles as γ12 increases from 0 to 10, 000. The other parameters are γ11 = γ22 = 20, 000,
ω1 = ω2 = 0.09.

tend to be more “adhesive”. Nonstandard double bubbles appear in the assembly. In Fig. 4.5, the numbers

of single and double bubbles when γ12 changes from 0 to 10, 000 are recorded. The existence of double

bubble assemblies and single bubble assemblies have been theoretically established recently [30, 32]. There

have been no theoretical studies on assemblies of coexisting single and double bubbles or on assemblies of

nonstandard double bubbles.

5. Conclusion

We explore the dynamics of bubble assemblies via the gradient flow of a nonlocal energy functional

modeling the self-assembly of triblock copolymers in ternary systems with small volume fractions of two

constituents. Here for numerical simulations we focus attention on the diffuse interface approach. Mean-

while, we also use the sharp interface limit, the nonlocal two component isoperimetric functional, to provide

theoretical verification of the quantitative studies. In the diffuse interface model, we introduce the term

f(φ) = (φ2 − φ)2 to localize the ‘boundary force’ near the A-C, B-C and A-B interfaces. In developing the

numerical method for the gradient-flow dynamics, we first adopt a linear splitting scheme to reformulate

the coupled nonlocal Allen-Cahn equations, and then use the semi-implicit scheme to discretize the time

variable and the spectral method to discretize the space variables. In the sharp interface model, we derive

the leading order of the free energy via asymptotical analysis. Numerical simulations answered one open

question from the theoretical study of triblock copolymers: the polarity direction of double bubbles in dou-

ble bubble assemblies should be parallel. Moreover, it is shown both numerically and theoretically that the

average size of red/yellow bubbles in a single bubble assembly does not depend on ω1/ω2, the ratio of the

area fractions of the minority constituents, but rather on γ11 and γ22, as well as ω1 + ω2 and the number

of double bubbles in a double bubble assembly satisfies a two-thirds power law. A relationship between

γ11/γ22 and ω1/ω2 is also identified for double bubble assemblies.

This work can be extended in a number of directions. Morphological patterns in three dimensions

can be studied by the same model. It can also be generalized for quaternary systems, such as tetrablock
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copolymers. Other gradient flows of E, such as a H−1 flow which leads to nonlocal Cahn-Hilliard system

of equations, are also worth studying.

Acknowledgements

X.R. is supported by National Science Foundation, DMS-1714371. Y.Z. is supported by a grant from

the Simons Foundation through Grant No. 357963.

References

[1] F. S. Bats, G. H. Fredrickson, Block copolymers - designer soft materials, Phys. Today 52 (2) (1999)

32.

[2] I. Hamley, Developments in block copolymer science and technology, Wiley, New York, 2004.

[3] I. Botiz, S. Darling, Optoelectronics using block copolymers, Mater. Today 13 (5) (2010) 42–51.

[4] M. Takenaka, et al., Orthorhombic fddd network in diblock copolymer melts, Macromolecules 40 (13)

(2007) 4399–4402.

[5] E. Helfand, Z. Wasserman, Block copolymer theory. 4. narrow interphase approximation, Macro-

molecules 9 (6) (1976) 879–888.

[6] M. Matsen, M. Schick, Stable and unstable phases of a diblock copolymer melt, Phys. Rev. Lett. 72

(1994) 2660.

[7] F. Drolet, G. H. Fredrickson, Block copolymer theory. 4. narrow interphase approximation, Phys. Rev.

Lett. 83 (1999) 4317.

[8] C. A. Tyler, J. Qin, F. S. Bates, D. C. Morse, Scft study of nonfrustrated abc triblock copolymer melts,

Macromolecules 40 (13) (2007) 4654–4668.

[9] Z. Guo, et al., Discovering ordered phases of block copolymers: new results from a generic fourier-space

approach, Phys. Rev. Lett. 101 (2008) 028301.

[10] X. Cheng, et al., Nucleation of ordered phases in block copolymers, Phys. Rev. Lett. 104 (2010) 148301.

[11] Y. Jiang, J. Z. Y. Chen, Influence of chain rigidity on the phase behavior of wormlike diblock copoly-

mers, Phys. Rev. Lett. 110 (2013) 138305.

[12] Y. Oono, Y. Shiwa, Computationally efficient modeling of block copolymer and benard pattern forma-

tions, Mod. Phys. Lett. B 01 (1987) 49.

[13] M. Bahiana, Y.Oono, Cell dynamical system approach to block copolymers, Phys. Rev. A 41 (1990)

6763.

[14] S. Ren, I. Hamley, Cell dynamics simulations of microphase separation in block copolymers, Macro-

molecules 34 (1) (2001) 116–126.

16



[15] X.-F. Wu, Y. Dzenis, Phase-field modeling of the formation of lamellar nanostructures in diblock

copolymer thin films under inplanar electric fields, Phys. Rev. E 77 (2008) 031807.

[16] T. Ohta, K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules 19 (10)

(1986) 2621–2632.

[17] H. Nakazawa, T. Ohta, Microphase separation of abc-type triblock copolymers, Macromolecules 26 (20)

(1993) 5503–5511.

[18] X. Ren, J. Wei, Triblock copolymer theory: free energy, disordered phase and weak segregation, Physica

D 178 (1-2) (2003) 103–117.

[19] R. Choksi, X. Ren, Diblock copolymer/homopolymer blends: derivation of a density functional theory,

Physica D 203 (1-2) (2005) 100–119.

[20] Y. Zhao, et al., A new phase-field approach to variational implicit solvation of charged molecules with

the Coulomb-field approximation, submitted.

[21] E. D. Giorgi, Sulla convergenza di alcune successioni d’integrali del tipo dell’area, Rend. Mat. 6 (8)

(1975) 277–294.

[22] L. Modica, S. Mortola, Un esempio di γ-convergenza., Boll. Un. Mat. Ital. B(5) 14 (1) (1977) 285–299.

[23] L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration

Mech. Anal. 98 (2) (1987) 123–142.

[24] R. Kohn, P. Sternberg, Local minimisers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect.

A 111 (1-2) (1989) 69–84.

[25] S. Baldo, Minimal interface criterion for phase transitions in mixtures of cahn-hilliard fluids, Annales

de l’I.H.P. 7 (2) (1990) 67–90.

[26] X. Ren, J. Wei, On the multiplicity of solutions of two nonlocal variational problems, SIAM J. Math.

Anal. 31 (4) (2000) 909–924.

[27] L. Evans, R. F. Gariepy, Measure theory and fine properties of functions, CRC Press, Boca Raton, FL,

1992.

[28] E. Giusti, Minimal surfaces and functions of bounded variation, Birkhäuser, 1984.
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