
Computers and Mathematics with Applications 71 (2016) 2497–2512

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Generalized local and nonlocal master equations for some
stochastic processes✩

Yanxiang Zhao a, Jiakou Wang b, Yanping Ma c, Qiang Du d,∗

a Department of Mathematics, The George Washington University, Washington, DC 20052, USA
b Citigroup Inc., New York, NY 10013, USA
c Department of Mathematics, Loyola Marymount University, Los Angeles, CA 90045, USA
d Department of Applied Physics and Applied Mathematics, Columbia University, NY 10027, USA

a r t i c l e i n f o

Article history:
Available online 12 November 2015

Keywords:
Nonlocal flux
Stochastic coagulation
Smoluchowski equation
Conservation law
Nonlocal diffusion
Fractional diffusion

a b s t r a c t

In this paper, we present a study on generalized local and nonlocal equations for some
stochastic processes. By considering the net flux change in a region determined by the
transition probability, we derive themaster equation to describe the evolution of the prob-
ability density function. Some examples, such as classical Fokker–Planck equations, mod-
els for Lévy process, and stochastic coagulation equations, are provided as illustrations. A
particular application is a consistent derivation of coupled dynamical systems for spatially
inhomogeneous stochastic coagulation processes.

© 2016 Published by Elsevier Ltd.

1. Introduction

Given a stochastic process Xt , whichmay represent various processes such as the diffusion process, stochastic coagulation
process, or continuous time randomwalk (CTRW), there aremanymethods to derive the evolution equation of its probability
density function (PDF) f = f (x, t), which represents the probability that the system of interest is in the state x at time t . A
general master equation in differential form may be written as [1]

ft(x, t ′) =

 t

0


Rn


K(x′, x, t − τ)f (x′, τ )− K(x, x′, t − τ)f (x, τ )


dx′dτ , (1.1)

where K is a memory-dependent nonlocal transition kernel [2] for general, and possibly non-Markovian, processes. For
Markov processes which have no memory effect, Eq. (1.1) reduces to

ft(x, t) =


Rn


γ (x′, x, t)f (x′, t)− γ (x, x′, t)f (x, t)


dx′, (1.2)

where γ (x′, x, t) denotes the transition rate from x′ to x at time t . In the discrete time form, (1.2) is often reformulated as

f (x, t)− f (x, t ′) =


Rn


p(x′, t ′; x, t)f (x′, t ′)− p(x, t ′; x′, t)f (x, t ′)


dx′, (1.3)
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where p(x′, t ′; x, t) represents the transition probability (TP) of a particle moving from x′ at time t ′ to x at time t; the first
part of the right hand side represents the incoming flux and the second part is the outgoing flux. Notice that

p(x, t ′; x′, t)dx′
= 1,

the master equation (1.3) can thus be equivalently interpreted as the Chapman–Kolmogorov equation (CKE). There have
been many works on the study of the evolution of Markov processes using the CKE, see for instance [3,4]. In [5], a
nonlinear Fokker–Planck equation (FPE) of Markov processes is derived from the master equation in the gain–loss form by
characterizing the transition probability. Master equations can also be applied to study non-Markov processes. For example,
an equivalence is established between generalized master equations and continuous time random walks in [1]. In general,
for either Markov or non-Markov processes, the master equation is completely determined by the transition kernel. For
example, Taylor expansion of transition probability on CKE can be applied to derive the evolution equation of someMarkov
processes, but such a technique does not apply when there is nonlocal or non-Markovian effect [3,4]. On the other hand, it
is possible to derive the evolution equation from the master equation (1.3) through a Taylor expansion on the PDF instead
of the transition kernel. In this paper, we will mainly focus on the Markov process though our method can be extended to
non-Markov process by taking into account the time integral over memory kernel terms. We present the derivations of the
evolution equations for some Markov stochastic processes from the master equation in gain–loss form (1.3). Our approach
is to consider a nonlocal flux as that in [6–8]. A key ingredient is to obtain an expression of the transition probability (TP)
either explicitly or implicitly that is valid for both the local and nonlocal settings associated with complex transport and
diffusionprocesses.Weverify the derivations in the later sections. A particular application is a consistent derivation of spatial
inhomogeneous stochastic coagulation process. In what follows, we present the generalized master equation framework in
Section 1.1; then we apply it to some classical stochastic processes in Section 2 and relating stochastic processes involving
nonlocal effect with nonlocal master equations in Section 3; this generalized master equation framework can be unified
under the recently developed nonlocal vector calculus, and the details are given in Section 4; furthermore in Section 5, we
establish rigorously a result on joint stochastic processes and show how the generalized master equation can be applicable
to certain type of coupled dynamical system.

1.1. Generalized master equation framework

To present our approach, let us review the concept of conservation law. Assume f (x, t) is the PDF of a physical quantity
X = Xt such as heat, energy and mass. The total amount of X in a regionΩ ∈ Rn at time t is

x∈Ω
f (x, t) dx.

X is conserved if it is only gained or lost through the domain boundaries without external sources. Let the vector field F(x, t)
be the flux. The conservation law implies that the rate of change of the density plus the divergence of the flux is equal to 0,

∂ f
∂t

+ ∇x · F = 0. (1.4)

The transport equation, the diffusion equation and the wave equation, can be derived from the principle of conservation
law given the explicit form of the flux. Nevertheless, as discussed in [7,8], the flux F adopted in (1.4) is a local notion which
is not always suitable for a general process Xt . On the other hand, it is possible to determine the TP p(x′, t ′; x, t) which
represents the probability that a particle is transferred from x′ at time t ′ to x at time t . In [8], a notion of nonlocal flux was
introduced to account for more general, nonlocal spatial interactions. The discussion here is intended for time-dependent
processes but the principle is similar. We begin by rewriting the conservation law in a gain–loss form. Given a stochastic
process Xt with its PDF f (x, t) representing a conserved physical quantity which is only gained or lost through the domain
boundaries, then the quantity change in this domainΩ from time t ′ to t (t ′ < t) equals the net flux. The generalized equation
of conservation law is written as

x∈Ω
f (x, t) dx −


x∈Ω

f (x, t ′) dx = F (Ω, t ′, t) = F +(Ω, t ′, t)− F −(Ω, t ′, t), (1.5)

where F + and F − represent the incoming flux and outgoing flux in the regionΩ from t ′ to t respectively, and F (Ω, t ′, t)
is the net (nonlocal) flux for the region Ω or between Ω and Ωc (the complement of Ω). More specifically, we write the
incoming flux F +(Ω, t ′, t) in the regionΩ in terms of the TP

F +(Ω, t ′, t) =


x∈Ω


x′∈Ωc

p(x′, t ′; x, t)f (x′, t ′) dx′dx, (1.6)

and the outgoing flux F −(Ω, t ′, t) by

F −(Ω, t ′, t) =


x∈Ω


x′∈Ωc

p(x, t ′; x′, t)f (x, t ′) dx′dx. (1.7)
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Combining these two terms, we have an explicit form of the flux F (Ω, t ′, t):

F (Ω, t ′, t) =


x∈Ω


x′∈Ωc


p(x′, t ′; x, t)f (x′, t ′)− p(x, t ′; x′, t)f (x, t ′)


dx′dx (1.8)

=


x∈Ω


x′∈Rn


p(x′, t ′; x, t)f (x′, t ′)− p(x, t ′; x′, t)f (x, t ′)


dx′dx. (1.9)

Introduce the function F(x, t ′, t) as

F(x, t ′, t) =


x′∈Rn


p(x′, t ′; x, t)f (x′, t ′)− p(x, t ′; x′, t)f (x, t ′)


dx′ (1.10)

and notice that Eq. (1.5) holds for any regionΩ , we have the strong pointwise form of the master equation

f (x, t)− f (x, t ′) = F(x, t ′, t) (1.11)

Note that

x′∈Rn p(x, t ′; x′, t) dx′

= 1, the master equation (1.11) matches with the Chapman–Kolmogorov equation (CKE)

f (x, t) =


x′∈Rn

p(x′, t ′; x, t)f (x′, t ′) dx′. (1.12)

Furthermore, we have the master equation in differential form

ft(x, t) = lim
t ′→t

F(x, t ′, t)
1t

(1.13)

provided the limit exists.
When a stochastic process is homogeneous and symmetric in space and time (take Brownian motion as an example),

namely

p(x′, t ′; x, t) = f (x − x′, t − t ′) = f (x′
− x, t − t ′) = p(x, t ′; x′, t),

the master equation (1.11) is simplified as

f (x, t)− f (x, t ′) =


x′∈Rn

f (x − x′, t − t ′)(f (x′, t ′)− f (x, t ′)) dx′

=

∞
n=1

∂nf (x, t ′)
∂xn

1
n!


x′∈Rn

f (x′
− x, t − t ′)(x′

− x)n dx′

=

∞
n=1

∂nf (x, t ′)
∂xn

1
n!


x̃∈Rn

f (x̃,△t)x̃n dx̃,

where △t = t − t ′. Then we have the master equation in the form

ft(x, t) = lim
△t→0

∞
n=1

∂nf (x, t ′)
∂xn

1
n!

E(Xn
△t)

△t
, (1.14)

where E(Xn
△t) is the n-th order moment of stochastic process Xt at time t = △t . If we can find the moments explicitly, the

evolution equation can be defined accordingly.
In the next section, the formulation (1.5)–(1.13) will be validated by deriving the evolution equations of some stochastic

processes.

2. Master equations for some classical stochastic processes

For a number of stochastic processes studied in the literature, we know that p(x′, t ′; x, t) only depends on the local
points x, x′ and time, and so does the corresponding evolution equation. The derivation of the master equations for these
processes is standard results from textbooks [9,10]. However, to show how the new formulation process (1.5)–(1.13) can
be performed, here we give a complete derivation of the master equation for the one-dimensional Fokker–Planck and Lévy
dynamics as an example.

2.1. Fokker–Planck equations

Consider the following Fokker–Planck equations (for drifted Brownian dynamics)

dXt = v(Xt , t)dt +
√
2σdWt (2.1)
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tracking the position of a diffusing particle in R1 at time t , where σ is a constant andWt is a standard Brownian motion. For
a small time step1t = t − t ′, we approximate the current position by forward Euler method,

Xt = x′
+ v(x′, t ′)1t +

√
2σω, (2.2)

where ω = Wt − Wt ′ ∼ N(0,1t) is Gaussian. Applying Taylor expansion on (2.2), we can further write Xt as

Xt = x′
+ v(x, t ′)1t + (x′

− x)∂xv(x, t ′)1t +
√
2σω, (2.3)

which can be treated as a normal distribution with mean x′
+ v(x, t ′)1t + (x′

− x)∂xv(x, t ′)1t and variance 2σ1t . Then the
TP reads

p(x′, t ′; x, t) =
1

√
2πσ1t

exp


−
|x − x′

− v(x, t ′)1t − (x′
− x)∂xv(x, t ′)1t|2

2σ1t


, (2.4)

and the master equation is

f (x, t) =


p(x′, t ′; x, t)f (x′, t ′) dx′

= I + II + III + O(1t2), (2.5)

where

I =


p(x′, t ′; x, t)f (x, t ′) dx′

= f (x, t ′)

1 − ∂xv(x, t ′)1t


+ O(1t2),

II =


p(x′, t ′; x, t)(x′

− x)∂xf (x, t ′) dx′
= −v(x, t ′)1t∂xf (x, t ′)+ O(1t2),

III =


p(x′, t ′; x, t)

(x′
− x)2

2
∂xxf (x, t ′) dx′

= σ1t∂xxf (x, t ′)+ O(1t2).

by simple calculation. Moving f (x, t ′) in I to the left hand side of (2.5), dividing two sides by1t and taking the limit1t → 0,
we obtain the Fokker–Planck equation

∂t f (x, t) = −∂x


v(x, t)f (x, t)


+ σ∂xxf (x, t). (2.6)

Similar derivation can be applied on many other processes such as Lévy process. The key ingredient in the new
formulation is to find the TP p(x′, t ′; x, t) and then derive the flux function F .

2.2. Lévy process

If X is a one-dimensional Lévy process, then by Lévy–Itô decomposition, it can be decomposed into three independent
parts [11,12]

X(t) = (bt +
√
2σWt)+


|x|<1

xÑ(t, dx)+


|x|≥1

xN(t, dx) (2.7)

where N(dt, dx) is the Poisson random measure, Ñ(dt, dx) = N(dt, dx) − ν(dx)dt is the compensated Poisson random
measure, and ν is the Lévy intensity measure defined on R and concentrated on R \ {0}, satisfying

R\{0}
(x2 ∧ 1)ν(dx) < ∞.

To derive the master equation governing the dynamics of the PDF f (x, t) for the Lévy process in (2.7), we can study the
three independent parts separately. First of all, the drifted Brownian part bt +

√
2σWt make a contribution similar as in

(2.6):

− ∂x(bf (x, t))+ σ∂xxf (x, t). (2.8)

Secondly, the Poisson integration

|x|≥1 xN(t, dx) is a compound Poisson process which can be rewritten as

|x|≥1
xN(t, dx) =


0≤u≤t

1X(u)χ|x|≥1(1X(u)) (2.9)

where χ is the characteristic function, 1X(t) = X(t) − X(t−) is the jump process associated with the Lévy process and
X(t−) is the left limit at the point t . Then the transition rate for this compound Poisson process is

lim
1t→0

1
1t

p(x′, t ′; x, t) = lim
1t→0

1
1t

p(0, 0;1x,1t) = lim
1t→0

1
1t

P(τ < 1t)µ(1x)
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where τ is the waiting time for the compound Poisson process which is exponentially distributed random variable, τ ∼

exp(−λt), with λ = ν({|x| ≥ 1}), and µ is the law for the jump size random variable1X(τ )which is given by [11,12]

µ(B) =
ν({|x| ≥ 1} ∩ B)
ν({|x| ≥ 1})

. (2.10)

Notice that

P(τ < 1t) = 1 − P(τ ≥ 1t) = 1 − exp(−λ1t) = λ1t + O(1t2),

the transition rate becomes

lim
1t→0

1
1t

p(x′, t ′; x, t) = ν(1x).

Hence the right hand side of Eq. (1.13) reads

lim
1t→0

1
1t

F(x, t ′, t) =


|z|≥1

(f (x − z, t)− f (x, t))ν(dz) (2.11)

which is the contribution of the Poisson integral

|x|≥1 xN(t, dx). Thirdly, since the compensated Poisson integral

|x|<1 xÑ(t, dx) is of the form,
|x|<1

xÑ(t, dx) =


|x|<1

xN(t, dx)− t


|x|<1
xν(dx) = I + II,

hence I makes a contribution of the form
|z|<1

(f (x − z, t)− f (x, t))ν(dz), (2.12)

which is similar as (2.11). II is a drift term and makes a contribution of the form

∂xf (x, t)


|z|<1
zν(dz). (2.13)

Finally the combination of (2.8), (2.11), (2.12) and (2.13) yields the master equation for the Lévy process (2.7),

∂t f (x, t) = −∂x(bf (x, t))+ σ∂xxf (x, t)+


R\{0}


f (x − z, t)− f (x, t)+ χ|z|<1z∂xf (x, t)


ν(dz) (2.14)

which is consistent with the results in [13,14]. The above equation gives rise to space-fractional equation. We refer to
[15,16] for further studies. In the case of b = σ = 0 and a symmetric measure ν, wemay view the nonlocal master equation
as a nonlocal diffusion equation, see related discussions in [17,18].

3. Nonlocal equations for stochastic processes

The TPs of stochastic processes involving nonlocal effects depend on the density distribution in part of the entire space
Rn. In this section, we present one example of such a stochastic process, the stochastic coagulation process, whose evolution
equation can also be derived by the master equation (1.11).

3.1. Stochastic coagulation equation

Stochastic coagulation equations [19] are also called as Smoluchowski equations [20] or population balance equations
[21,22], which are often used to describe the rate of change of the concentration in time in a dynamic coagulation process
and have been applied to a wide range of topics, such as aerosol growth, polymerization problems, and the kinetics of
platelet aggregate formation and disaggregation. For example, researchers used them to study the heterotypic aggregation
kinetics of platelets and neutrophils, most notably in the uniform shear field [21,22]. In [23,24], we applied it to model the
polymorphonuclear neutrophils (PMN) and tumor cell adhesion innonuniformshear flow in theparallel-plate flowchamber.

To begin with, we consider the spatially homogeneous coagulation equation. Let N = N(x, t), x ∈ R1 be the particle
volume density function representing the concentration of the particle of volume x at time t . The continuous coagulation
equation reads

Nt(x, t) =
1
2

 x

0
β(y, x − y)N(y, t)N(x − y, t)dy −


∞

0
β(x, y)N(x, t)N(y, t)dy (3.1)
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with an initial condition

N(x, 0) = N0(x) ≥ 0, (3.2)

where β(x, y) is called a coagulation kernel which describes the intensity of aggregation between particles of volumes x
and y. The first term on the right-hand side of Eq. (3.1) indicates the fact that a particle of volume x can only be generated
if two particles of volumes x − y and y (y ≤ x) aggregate. The second term says that each particle of volume x disappears
after aggregating with any other particle. The coagulation kernel β(x, y) is assumed to be non-negative and symmetric,
i.e. β(x, y) ≥ 0 and β(x, y) = β(y, x) for all (x, y). In this paper, we only focus on the coagulation process, and ignore the
fragmentation assumption, namely, the particle volume, as a function of time t , keeps non-decreasing. The complexity of
the system (3.1)–(3.2) is determined by the form of β(x, y).

A discrete version of the coagulation equation describing the rate of change of the concentration N(i, t) of the particles
with i monomers is given by:

∂N(i, t)
∂t

=
1
2

i−1
j=1

β(j, i − j)N(j, t)N(i − j, t)−

∞
j=1

β(i, j)N(i, t)N(j, t)

with an initial condition N(i, 0) = N0(i), (i = 1, 2, 3, . . .). Here β(i, j) is the coagulation kernel in discrete version.
The coagulation equations have various stochastic and deterministic formulations such as Chapman–Kolmogorov

formulation, Marcus–Lushnikov formulation [19,25–27], and conservation law formulation [28] for spatially homogeneous
coagulation equation. Sabelfeld [29] derived the spatially inhomogeneous equation by Lagrange model. In this section, we
will derive the coagulation equation (3.1) from two different approaches—CKE (1.12) and conservation law.

3.2. Chapman–Kolmogorov equation

Coagulation kernel β(u, v) is the incoming flux of particles per unit time for unit concentration. For the spatially ho-
mogeneous case, we assume particles are uniformly distributed, therefore, β(u, v)N(v, t) is the coagulation number per
unit time between the target particle of volume u and other particles of volume v at time t . This leads to the probabilistic
interpretation of the coagulation kernel β(u, v) [25,30,31]. More specifically, for small time1t ,

• β(u, v)1t stands for the probability of occurrence of aggregation per unit volume between particles of volume u and
those of volume v during a time interval of length1t;

• For a target particle of volume u, β(u, v)N(v, t)1t gives the probability of the target particle of volume u adhering to a
particle of volume v in the next infinitesimal time interval (t, t +1t) per unit volume, and β(u, v)N(v, t)dv1t gives the
probability of the target particle of volume u adhering to a particle of volume v to v + dv in the next infinitesimal time
interval (t, t +1t) per unit volume;

• β(u, v)N(u, t)N(v, t)dudv1t presents the average number of aggregations per unit volume between the particles of
volume u to u + du and those of volume v to v + dv during (t, t +1t).

The probability representation of the coagulation kernel reveals the particle interaction theory in the stochastic coagulation
system. It helps us to set up the stochastic coagulation model, and may apply the Monte Carlo method to simulate the
stochastic system.

In a stochastic coagulation system, we focus on one particular particle and track its growth on size. Let Xt be a stochastic
process representing the volume of this particle at time t . This stochastic process is aMarkov process since the growth of the
particle volume at time t +△t only depends on the volume at time t . Let the PDF of this stochastic process be f (x, t). Notice
that f (x, t)1t is the probability that Xt = x during the time interval (t, t + 1t), and 1/x gives the number of particles per
unit volume, so f (x, t)1t/x provides the average number of particles of volume x per unit volume during the time interval
(t, t +1t), which is the same as N(x, t)1t . Hence, f (x, t) and N(x, t) are connected via

N(x, t) = f (x, t)/x. (3.3)

Assume the particle volume Xt = x, then as we discussed in the circular bullets of the preceding paragraph, the probability
that this particle will adhere to a particle of volume y in the next infinitesimal time interval (t, t +1t) is β(x, y)N(y, t)1t .
Hence, the probability that it will be unattached to any particle is 1 −


∞

0 β(x, y)△tN(y, t)dy. If it sticks to a particle of
volume y, then its particle volume will increase to x + y at time t + △t , that is, Xt+△t = x + y. Otherwise, if there is no
coagulation event taking place, Xt+△t will remain being x.

In general, we assume that the particle volume at time t is x. Then the TP of the coagulation process, the probability that
a particle of volume x at t becomes volume x + y at t +1t , is given as:

p(x, t; x + y, t +1t) =


β(x, y)1tN(y, t), y > 0

1 −


∞

0
β(x, z)1tN(z, t)dz, y = 0

0, y < 0

(3.4)
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or in other words

p(x′, t ′; x, t) =


β(x′, x − x′)1tN(x − x′, t), x > x′

1 −


∞

0
β(x′, x̂)1tN(x̂, t)dx̂, x = x′

0. x < x′

(3.5)

where t = t ′ +1t . Therefore, the density function f (x, t +1t) satisfies the CKE (1.12):

f (x, t) =

 x

0
β(x′, x − x′)1tN(x − x′, t)f (x′, t ′)dx′

+


1 −


∞

0
β(x, x̂)1tN(x̂, t)dx̂


f (x, t ′). (3.6)

Rearranging terms yields

f (x, t)− f (x, t ′)
1t

=

 x

0
β(x′, x − x′)N(x − x′, t)f (x′, t ′)dx′

−


∞

0
β(x, x′)f (x, t ′)N(x′, t)dx′. (3.7)

Taking the limit on the left-hand side as1t → 0 and noting the relation (3.3) yields an equation of f (x, t) as follows:

ft(x, t) =

 x

0

β(x′, x − x′)

x − x′
f (x − x′, t)f (x′, t)dx′

−


∞

0

β(x, x′)

x′
f (x, t)f (x′, t)dx′ (3.8)

For the first integral on the right hand side of (3.8), we have x

0

β(x′, x − x′)

x − x′
f (x′, t)f (x − x′, t)dx′

=
1
2

 x

0

β(x′, x − x′)

x − x′
f (x′, t)f (x − x′, t)dx′

+
1
2

 x

0

β(x′, x − x′)

x − x′
f (x′, t)f (x − x′, t)dx′

=
1
2

 x

0

β(x′, x − x′)

x − x′
f (x′, t)f (x − x′, t)dx′

+
1
2

 x

0

β(x′, x − x′)

x′
f (x′, t)f (x − x′, t)dx′

=
x
2

 x

0
β(x′, x − x′)

f (x′, t)
x′

f (x − x′, t)
x − x′

dx′

therefore, Eq. (3.8) becomes

ft(x, t) =
x
2

 x

0
β(x′, x − x′)

f (x′, t)
x′

f (x − x′, t)
x − x′

dx′
−


∞

0

β(x, x′)

x′
f (x, t)f (x′, t)dx′ (3.9)

Divide the two sides of (3.9) by x, and apply the relation (3.3), we have

Nt(x, t) =
1
2

 x

0
β(x′, x − x′)N(x′, t)N(x − x′, t)dx′

−


∞

0
β(x, x′)N(x, t)N(x′, t)dx′ (3.10)

which is exactly the continuous coagulation equation (3.1) except that y is replaced by x′ here.

3.3. Formulations as conservation laws

It is pointed out in [28] that the coagulation equation can be written in terms of the conservation law:

∂

∂t
f (x, t)+

∂

∂x
F(x, t) = 0, (3.11)

where the flux F(x, t) is given by

F(x, t) =

 x

0


∞

x−y

β(y, y′)

y′
f (y, t)f (y′, t)dy′dy. (3.12)

Wewill re-derive the flux formulation and reveal its relationship with (1.12). Recall the original definition of the net flux
in Eq. (1.5). For arbitrary x ∈ R, select the regionΩx = [x,∞) and set F (Ωx, t ′, t) to be the net flux to this regionΩx from
t ′ to t . Notice that the particles monotonically grow on size in the coagulation process, therefore the outgoing flux is zero,
namely F −(Ω, t ′, t) = 0. Therefore we have

F (Ωx, t ′, t) =F +(Ωx, t ′, t)

=


R\Ω


Ω

p(y, t ′; z, t)f (y, t ′) dzdy

=1t
 x

0


∞

x
β(y, z − y)N(z − y, t)f (y, t ′) dzdy. (3.13)
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Dividing1t on both sides of Eq. (1.5) and sending1t → 0 yields
∞

x

∂

∂t
f (x, t)dx =

 x

0


∞

x
β(y, z − y)N(z − y, t)f (y, t) dzdy (3.14)

right hand side of which is exactly the flux F(x, t) in (3.12) by the change of variable y′
= z − y. Taking the first order spatial

derivative on both sides of (3.14), we obtain the evolution equation formulated in conservation law (3.11),

ft(x, t) = −
∂

∂x

 x

0


∞

x
β(y, z − y)N(z − y, t)f (y, t) dzdy. (3.15)

Eq. (3.15) implies the coagulation equation (3.1). Indeed, set

M(x, y) =


∞

x
β(y, z − y)N(z − y, t)f (y, t)dz,

and apply the differentiation rule under the integral sign

∂

∂x

 x

0
M(x, y)dy = M(x, x)+

 x

0

∂

∂x
M(x, y)dy,

consequently

∂

∂x

 x

0


∞

x
β(y, z − y)N(z − y, t)f (y, t) dzdy

=


∞

x
β(x, z − x)N(z − x, t)f (x, t) dz −

 x

0
β(y, x − y)N(x − y, t)f (y, t) dy

=


∞

0
β(x, y)N(y, t)f (x, t) dy −

 x

0
β(x − y, y)N(y, t)f (x − y, t) dy

where the last step is due to the change of variables. Accordingly the conservation law (3.15) becomes

ft(x, t) = −


∞

0
β(x, y)N(y, t)f (x, t) dy +

 x

0
β(x − y, y)N(y, t)f (x − y, t) dy

which is identicalwith (3.8) by noticingN(y, t) = f (y, t)/y. Then the calculation in (3.8)–(3.10) leads us again to the spatially
homogeneous coagulation equation:

Nt(x, t) =
1
2

 x

0
β(x − y, y)N(y, t)N(x − y, t) dy −


∞

0
β(x, y)N(x, t)N(y, t) dy.

4. Nonlocal fluxes, a nonlocal vector calculus and nonlocal conservation laws

In this section, we will review some recently developed theories in nonlocal vector calculus and relate them with our
generalized master equation framework (1.5)–(1.13).

Introducing nonlocal operators like nonlocal gradient, nonlocal divergence and nonlocal curl operators in some recent
works [7,6,8], the standard (local) calculus is generalized into a nonlocal vector calculus, from which the nonlocal fluxes,
nonlocal conservation laws and nonlocal advection–diffusion problems are well established. In what follows we will give a
brief review on the nonlocal calculus and nonlocal conservation laws (see the details in [7,6,8] and the references therein)
and show the connection with our generalized master equation framework (1.5)–(1.13). For the sake of brevity, in this
section, we suppress explicit reference to the time dependence of variables.

4.1. Nonlocal fluxes

For any point x ∈ Rn and an integrable ψ(x, y), the nonlocal flux density at x into Ω̃ is defined as
Ω̃

ψ(x, y)dy, ∀Ω̃ ⊆ Rn. (4.1)

With such a definition, one can easily verify the following equivalent statements:

• ψ(x, y) is an antisymmetric function, i.e., ψ(x, y) = −ψ(y, x);
• there are no self-interactions, i.e.,


Ω̃


Ω̃
ψ(x, y) dydx = 0, ∀Ω̃ ⊆ Rn;

• for regions Ω1,Ω2 ⊂ Rn, both having nonzero volume, one has the nonlocal action–reaction principle:

Ω1


Ω2
ψ(x, y)

dydx +

Ω2


Ω1
ψ(x, y) dydx = 0.
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For any two open regionsΩ1 ⊆ Rn andΩ2 ⊆ Rn both having nonzero volume, the (scalar) interaction or nonlocal flux from
Ω1 intoΩ2 is defined by

Ω1


Ω2

ψ(x, y) dydx. (4.2)

The nonlocal action–reaction principle states that the flux fromΩ1 intoΩ2 is equal and opposite to the flux fromΩ2 intoΩ1.
The flux is nonlocal because the interactionmaybenonzero evenwhen the closures ofΩ1 andΩ2 have an empty intersection,
unlike local flux which is possibly nonzero only when Ω1 and Ω2 have a nonempty common boundary ∂Ω12 = Ω̄1 ∩ Ω̄2.
Special forms of nonlocal fluxes will be illustrated later in the derivation of master equations for joint stochastic processes.
More properties of nonlocal fluxes and comparisons with local fluxes can be found in [8].

4.2. A nonlocal vector calculus

Given the mappings ν(x, y), α(x, y): Rn
× Rn

→ Rk with α being antisymmetric, i.e., α(x, y) = −α(y, x), the action of
the nonlocal divergence operator D on ν is defined as

D(ν)(x) :=


Rn
(ν(x, y)+ ν(y, x)) · α(x, y) dy, x ∈ Rn (4.3)

where D(ν) : Rn
→ R.

Given the mapping u(x) : Rn
→ R, the adjoint operator D∗ corresponding to D is the operator whose action on u is given

by

D∗(u)(x, y) = −(u(y)− u(x))α(x, y), x, y ∈ Rn, (4.4)

where D∗(u) : Rn
× Rn

→ Rk, and we view −D∗ as a nonlocal gradient.
Let 2(x, y) = 2(y, x) : Rn

× Rn
→ Rk×k denote a second-order tensor satisfying 2 = 2T , then

D(2 · D∗u)(x) = −2


Rn
(u(y)− u(x))α(x, y) · (2(x, y) · α(x, y)) dy, x ∈ Rn

where D(2 · D∗u) : Rn
→ R. Let γ = α · (2 · α), and L(u) = −D(2 · D∗u), then for u(x) : Ω → R, the action of the

linear operator L on the function u(x) is simply

Lu(x) := 2

(u(y)− u(x))γ (x, y) dy (4.5)

which is a composition of nonlocal divergence and gradient operators so that if2 is the identity tensor,L can be interpreted
as a nonlocal Laplacian operator.

4.3. Nonlocal conservation laws

LetΩ denote a bounded, open set in Rn. Nonlocal conservation laws have the form

d
dt


Ω̃

q(x, t)dx =


Ω̃

b(x, t)dx − F (Ω̃, Ω̃I; q), ∀Ω̃ ⊆ Ω, t > 0 (4.6)

where q(x, t) is the intensive quantity in some subdomainΩ ⊂ Rn, b(x, t) denotes the source density for q inΩ , Ω̃I is the
interaction region corresponding to Ω̃ , and most importantly D is the flux operator defined as

Fnonloc(Ω1,Ω2; q) :=


Ω1


Ω2

(ν(x, y)+ ν(y, x)) · α(x, y)dydx, Ω1,Ω2 ⊂ Rn (4.7)

which gives the nonlocal flux fromΩ1 intoΩ2. Here the vector ν(x, y) has to be related to q through a constitutive relation.
By takingΩ1 = Ω̃ andΩ2 = Ω̃I, the nonlocal flux can be written as follows:

Fnonloc(Ω̃, Ω̃I; q) =


Ω̃


Ω̃I

(ν(x, y)+ ν(y, x)) · α(x, y)dydx

= −


Ω̃I


Ω̃

(ν(x, y)+ ν(y, x)) · α(x, y)dydx

= −


Ω̃I


Ω̃∪Ω̃I

(ν(x, y)+ ν(y, x)) · α(x, y)dydx, ∀Ω̃ ⊂ Ω,
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so that the conservation laws (4.6) become
Ω̃

∂q
∂t

dx +


Ω̃I

N (ν)dx =


Ω̃


∂q
∂t

+ D(ν)


dx =


Ω̃

b dx, ∀Ω̃ ⊆ Ω, (4.8)

where a nonlocal Gauss theorem [8] has been used, and from which it follows that, because Ω̃ is arbitrary inΩ ,

∂q
∂t

+ D(ν) = b, ∀x ∈ Ω. (4.9)

The interaction vector ν is related to the intensive quantity q through a constitutive relation. If taking ν = κD∗(q), one can
obtain the nonlocal diffusion equation [17,6,7].

∂q
∂t

+ κDD∗(q) = b, ∀x ∈ Ω.

4.4. Generalized master equations as nonlocal conservation laws

Back to our generalizedmaster equation framework (1.5)–(1.13). Comparing (1.5)–(1.13) and (4.6)–(4.9), our generalized
master equation framework can actually be unified to the nonlocal conservation laws by taking the source term b(x, t) = 0
and

ν = 2 · (D∗q)− µq (4.10)

where µ : Rn
× Rn

→ Rk describes the nonlocal convection which is symmetric and translational invariant. Indeed, after
inserting (4.10) into (4.9) and applying the definition of D(ν) in (4.3), the conservation law (4.9) reads

qt(x, t)+


Rn
γ (x, y)q(x, t)− γ (y, x)q(y, t) dy = 0 (4.11)

where the kernel γ : Rn
× Rn

→ R is of the form [7]

γ = 2α · 2α − µ · α. (4.12)

Our generalized master equation in differential form (1.13) is identical to (4.11) when taking γ as the transition rate

γ (x, x′) := lim
1t→0

p(x, t; x′, t ′)
1t

, (4.13)

where the time variable in γ is suppressed as we mentioned before.
On the other hand, for the applications of generalized master equation framework, we rather adopt the pointwise form

(1.11) instead of the differential form (1.13) and (4.9) in most of the examples in this paper because it is easier to find the
transition probability p than the transition rate γ . However, when having the cases where the transition rate can be simply
found, one can easily apply the differential form (1.13) to derive the master equations.

Let X(t) be a finite-range nonsymmetric Markov jump process. More precisely, let X(t) denote the position of a diffusing
particle at time t and u(x, t) be the probability density function. It is a jump process confined inΩ , the jump size is at most
ϵ, and the jumps are not symmetric, namely, the TP p(x′, t ′; x, t) is not symmetric on x and x′. Once the particle leavesΩ , it
will not re-enter. Assume the transition rate exists and only depends on the spatial distance

γ (x′, x) := γ ϵ(x − x′) := lim
1t→0

p(x′, t ′; x, t)
1t

. (4.14)

According to (1.13), it is easy to verify that u(x, t) satisfies

ut(x, t) =


x′∈Ω


γ ϵ(x − x′)u(x′, t)− γ ϵ(x′

− x)u(x, t)

dx′ (4.15)

which is exactly the nonlocal convection–diffusion equation in [7]. Here the γ ϵ(x) is compactly supported when |x| ≤ ϵ so
that the particle jumps on a size of no larger than ϵ.

Additionally, if we consider a Markov jump process X(t) in Rn (without confinement in Ω), where X(t) denotes the
position of a diffusing particle at time t , and assume the transition rate is in the form of Lévy jump intensity

γ (x′, x) := φ(x − x′) ∝ |x − x′
|
−α−n (4.16)

where 0 < α < 1. Then the PDF u(x, t) satisfies a nonlocal fractional diffusion equation [32]:

ut(x, t) =


Rn


u(x′, t)− u(x, t)


γ (x, x′) dx′ (4.17)

and α indicates the nonlocal fractional Laplacian in n dimensions. This is consistent to the derivations given in Section 2.2.
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5. Coupled dynamical system

In this section, we will apply the formulations (1.8)–(1.13) to the system in which two stochastic processes are coupled
together. Based on the results presented in this section, we derive the spatially inhomogeneous coagulation equation, and
also study the gene regulation in a stochastically changing environment.

5.1. Formulation

Let us consider a coupled system Z(t) = (X1(t), X2(t))where X1, X2 are two random processes, and X2 depends on X1 as
follows:

dX2 = V (X2, t)dt + CdX1 (5.1)

where V is a smooth function, and C is a constant independent of X1 and X2. For this coupled system, we can define f (n)q the
n-times joint probability density in q random processes (q = 1, 2) similar as the single random process case [9] by denoting

f (n)q


x(1)1 , . . . , x

(1)
q , t1; . . . ; x

(n)
1 , . . . , x

(n)
q , tn


dx(1)1 . . . dx(1)q . . . dx(n)1 . . . dx(n)q

as the probability that X1(t1) ∈

x(1)1 , x

(1)
1 + dx(1)1


, . . . , Xq(t1) ∈


x(1)q , x

(1)
q + dx(1)q


, . . . , X1(tn) ∈


x(n)1 , x

(n)
1 +

dx(n)1


, . . . , Xq(tn) ∈


x(n)q , x

(n)
q + dx(n)q


. For instance, if f (2)2 (x′

1, x
′

2, t
′
; x1, x2, t) is the two-times joint PDF describing the

random system (X1, X2), the two-times joint probability density of the random process X2 alone reads

f (2)1 (x′

2, t
′
; x2, t) =


f (2)2 (x′

1, x
′

2, t
′
; x1, x2, t)dx′

1dx1,

where and hereafter the integration domain for each variable is Rn and is omitted for the sake of brevity. In other words,
we can obtain the joint probability density of the assigned random processes by integrating over the other processes.
Additionally, we may express the TP in the following way:

Definition 5.1. For a coupled system of random processes (X1(t), X2(t)), we denote by p(x′

1, x
′

2, t
′
; x1, x2, t) the TP of

(X1, X2) from t ′ to t , which is defined by

p(x′

1, x
′

2, t
′
; x1, x2, t) =

f (2)2 (x′

1, x
′

2, t
′
; x1, x2, t)

f (1)2 (x′

1, x
′

2, t ′)
=

f (2)2 (x′

1, x
′

2, t
′
; x1, x2, t)

f (2)2 (x′

1, x
′

2, t ′; x1, x2, t)dx1dx2
.

What is more, since we are considering the coupled system (X1(t), X2(t)) with one-way dependence (5.1) between X1 and
X2, the joint (or transition) probability density in X2 conditioned by X1 is important in our discussion.

Definition 5.2. For a coupled system of randomprocesses (X1(t), X2(t)), we denote by fX2|X1(x2, t|x
′

1, t
′) the conditional PDF

of X2 at t given X1 at t ′, which is defined by

fX2|X1(x2, t|x
′

1, t
′) =


f (2)2 (x′

1, x
′

2, t
′
; x1, x2, t)dx′

2dx1
f (1)1 (x′

1, t ′)
(5.2)

and when t ′ = t , we define fX2|X1(x2, t|x1, t) by

fX2|X1(x2, t|x1, t) =
f (1)2 (x1, x2, t)

f (1)1 (x1, t)
=


f (2)2 (x′

1, x
′

2, t
′
; x1, x2, t)dx′

2dx
′

1

f (1)1 (x1, t)
. (5.3)

Definition 5.3. For a coupled system of random processes (X1(t), X2(t)), we denote by pXi(x
′

i, t
′
; xi, t) the TP of Xi from t ′

to t , which is defined as

pXi(x
′

i, t
′
; xi, t) =

f (2)1 (x′

i, t
′
; xi, t)

f (1)1 (x′

i, t ′)
, i = 1, 2. (5.4)

Definition 5.4. For a coupled system of random processes (X1(t), X2(t)), we denote by pX2|X1(x
′

2, t
′
; x2, t|x′

1, t
′) the condi-

tional TP of X2 from t ′ to t given X1, which is defined by

pX2|X1(x
′

2, t
′
; x2, t|x′

1, t
′) =


p(x′

1, x
′

2, t
′
; x1, x2, t)dx1. (5.5)
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With all the above notations, we have the following lemma, which is simply the conditional version of the CKE:

Lemma 5.5. Given a coupled system of stochastic processes (X(t), Y (t)), and assume Y (t) depends on X(t) as

dY = V (Y , t)dt + dX (5.6)

where V is a smooth function in terms of both Y and t. Then the conditional PDF fY |X (y, t|x′, t ′) and the conditional TP
pY |X (y′, t ′ → y, t|x′, t ′) as defined in Definitions 5.2 and 5.4 satisfy

pY |X (y′, t ′; y, t|x′, t ′)fY |X (y′, t ′|x′, t ′)dy′
= fY |X (y, t|x′, t ′). (5.7)

Proof. By Definitions 5.1–5.4, we have,

LHS =

 
f (2)2 (x′, y′, t ′; x, y, t)dx

f (1)2 (x′, y′, t ′)
·
f (1)2 (x′, y′, t ′)

f (1)1 (x′, t ′)
dy′

=
1

f (1)1 (x′, t ′)


f (2)2 (x′, y′, t ′; x, y, t)dy′dx = fY |X (y, t|x′, t ′) = RHS

which implies the conditional version of the CKE. �

Tomake our notation simplewithout inducing any ambiguity, fromnowonwewill drop off the subscript and superscript
from joint probability density f (n)q . For instance
• f (x, y, t) represents the one-time joint probability density in two random processes X and Y ;
• f (x′, y′, t ′; x, y, t) represents the two-times joint PDF in two random processes X and Y ;
• f (x′, t ′; y, t) is defined by f (x′, t ′; y, t) =


f (2)2 (x′, y′, t ′; x, y, t)dy′dx.

For a coupled system of random processes (X(t), Y (t)) satisfying the one-way dependence (5.6), the conservation law
reads 

ΩX×ΩY


f (x, y, t)− f (x, y, t ′)


dxdy = F (ΩX ×ΩY , t ′, t), (5.8)

where the flux F (ΩX ×ΩY , t ′, t) is defined as:

F (ΩX ×ΩY , t ′, t) =


ΩX×ΩY

dxdy


Rm
X ×Rn

Y

dx′dy′


p(x′, y′, t ′; x, y, t)f (x′, y′, t ′)− p(x, y, t ′; x′, y′, t)f (x, y, t ′)


. (5.9)

Notice thatweuse subscriptsX, Y inRm,Rn to associate the integral variablewith the integral domain. For the samepurpose,
we sometimes put the differentials together with the integral signs in order to indicate the correspondence between the
integral variable and integral domain.

Now let us introduce the main theorem which we will apply onto two examples in the next sections.

Theorem 5.6. Given a coupled system of stochastic processes (X(t), Y (t)). Assume Y (t) depends on X(t) by (5.6), and the TP
p(x′, y′, t ′; x, y, t) satisfies

p(x′, y′, t ′; x, y, t) = pX (x′, t ′; x, t) · pY |X (y′, t ′; y, t|x′, t ′) (5.10)

then the net flux F (ΩX ×ΩY , t ′, t) can be simplified as

F (ΩX ×ΩY , t ′, t) =


ΩY

FX (ΩX , y, t ′, t) dy +


ΩX

FY (ΩY , x, t ′, t) dx. (5.11)

Here the nonlocal fluxes FX (ΩX , y, t ′, t) and FY (ΩY , x, t ′, t) are constructed as follows

FX (ΩX , y, t ′, t) =


ΩX

dx


Rm
X

dx′


pX (x′, t ′; x, t)f (x′, t ′; y, t)− pX (x, t ′; x′, t)f (x, t ′; y, t)


,

FY (ΩY , x, t ′, t) =


ΩY

dy


Rn
Y

dy′


pY |X (y′, t ′; y, t|x, t ′)f (x, y′, t ′)− pY |X (y, t ′; y′, t|x, t ′)f (x, y, t ′)


.

One may check that the properties given in Section 4.1 are satisfied. Furthermore, we have the pointwise master equation for the
coupled system as

f (x, y, t)− f (x, y, t ′) =


Rm
X


pX (x′, t ′; x, t)f (x′, t ′; y, t)− pX (x, t ′; x′, t)f (x, t ′; y, t)


dx′

+


Rn
Y


pY |X (y′, t ′; y, t|x, t ′)f (x, y′, t ′)− pY |X (y, t ′; y′, t|x, t ′)f (x, y, t ′)


dy′ (5.12)
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or in the differential form

ft(x, y, t) = lim
1t→0

1
1t


Rm
X


pX (x′, t ′; x, t)f (x′, y, t ′)− pX (x, t ′; x′, t)f (x, y, t ′)


dx′

+ lim
1t→0

1
1t


Rn
Y


pY |X (y′, t ′; y, t|x, t ′)f (x, y′, t ′)− pY |X (y, t ′; y′, t|x, t ′)f (x, y, t ′)


dy′.

Proof. By adding and subtracting one term to Eq. (5.9), we have

F (ΩX ×ΩY , t ′, t)

=


ΩX×ΩY

dxdy


Rm
X ×Rn

Y

dx′dy′


p(x′, y′, t ′; x, y, t)f (x′, y′, t ′)− p(x, y′, t ′; x′, y, t)f (x, y′, t ′)


+


p(x, y′, t ′; x′, y, t)f (x, y′, t ′)− p(x, y, t ′; x′, y′, t)f (x, y, t ′)


= I + II.

For the part I, we apply Eq. (5.10) and Lemma 5.5,

I =


ΩY

dy


ΩX×Rm
X

dx′dx


Rn
Y

dy′


pX (x′, t ′; x, t)pY |X (y′, t ′; y, t|x′, t ′)fX (x′, t ′)fY |X (y′, t ′|x′, t ′)

− pX (x, t ′; x′, t)pY |X (y′, t ′; y, t|x, t ′)fX (x, t ′)fY |X (y′, t ′|x, t ′)


=


ΩY

dy


ΩX×Rm
X

dx′dx

pX (x′, t ′; x, t)fX (x′, t ′)


Rn
Y

pY |X (y′, t ′; y, t|x′, t ′)fY |X (y′, t ′|x′, t ′)dy′

− pX (x, t ′; x′, t)fX (x, t ′)


Rn
Y

pY |X (y′, t ′, y, t|x, t ′)fY |X (y′, t ′|x, t ′)dy′


=


ΩY

dy


ΩX×Rm
X

dx′dx

pX (x′, t ′; x, t)fX (x′, t ′)fY |X (y, t|x′, t ′)

− pX (x, t ′; x′, t)fX (x, t ′)fY |X (y, t|x, t ′)


=


ΩY

dy


ΩX×Rm
X

dx′dx

pX (x′, t ′; x, t)f (x′, t ′; y, t)− pX (x, t ′; x′, t)f (x, t ′; y, t)


=


ΩY

FX (ΩX , y, t ′, t) dy.

Part II is easier,

II =


ΩX

dx


ΩY ×Rn
Y

dy′dy


Rm
X

dx′


p(x, y′, t ′; x′, y, t)f (x, y′, t ′)− p(x, y, t ′; x′, y′, t)f (x, y, t ′)


=


ΩX

dx


ΩY ×Rn
Y

dy′dy

f (x, y′, t ′)


Rm
X

p(x, y′, t ′; x′, y, t)dx′
− f (x, y, t ′)


Rm
X

p(x, y, t ′; x′, y′, t)dx′


=


ΩX

dx


ΩY ×Rn
Y

dy′dy

pY |X (y′, t ′; y, t|x, t ′)f (x, y′, t ′)− pY |X (y, t ′; y′, t|x, t ′)f (x, y, t ′)


=


ΩX

FY (ΩY , x, t ′, t) dx.

The master equation (5.12) is a direct consequence from the form (5.11). Notice that when1t → 0, we have

f (x, t ′, y, t) → f (x, y, t ′) = f (x, y, t),

hence the master equation in differential form holds as well. �

5.2. Spatially inhomogeneous coagulation equation

Consider an inhomogeneous coagulation process:

Zt =


Xt
St


, (5.13)
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where St represents a stochastic coagulation process, and Xt describes a stochastic particle motion in Rn satisfying the
Fokker–Planck dynamics:

dXt = V (X, t)dt +
√
2σdWt ,

and the PDF is f (x, s, t). In this coupled system, the coagulation process St depends on the particle motion Xt through the
coagulation kernel β = β(s, s′, x). The TP of the inhomogeneous coagulation process Z is given by:

p(x′, s′, t ′; x, s, t) = pX (x′, t ′; x, t) · pS|X (s′, t ′; s, t|x′, t ′), (5.14)

where pX (x′, t ′; x, t) represents the transition probability of the particle motion in Rn, and pS|X (s′, t ′; s, t|x′, t ′) represents
the coagulation probability from (s′, t ′) to (s, t) at position x′, and reads

pS|X (s′, t ′; s, t|x′, t ′) =


1t

s − s′
β(s′, s − s′, x′)f (x′, s − s′, t ′), s′ < s,

1 − △t


∞

0

1
ŝ
β(s′, ŝ; x′, t ′)f (x′, ŝ, t ′)dŝ, s′ = s,

0, s′ > s.

(5.15)

Now we can derive the spatially inhomogeneous coagulation equation. First of all, Eq. (2.6) implies

lim
1t→0

1
1t


Rm
X


pX (x′, t ′; x, t)f (x′, s, t ′)− pX (x, t ′; x′, t)f (x, s, t ′)


dx′

= −∇x ·


v(x, t)f (x, s, t)


+ σ∆xf (x, s, t).

Similar as the derivation for the homogeneous coagulation equation in Section 3.1, we have

lim
1t→0

1
1t


RS


pS|X (s′, t ′; s, t|x, t ′)f (x, s′, t ′)− pS|X (s, t ′; s′, t)f (x, s, t ′)


ds′

=
s
2

 s

0
β(s′, s − s′, x)

f (x, s′, t)
s′

f (x, s − s′, t)
s − s′

ds′ −


∞

0

β(s, s′, x)
s′

f (x, s, t)f (x, s′, t)ds′.

Apply Theorem 5.6 and the relation N(x, s, t) = f (x, s, t)/s, we finally have the spatially inhomogeneous coagulation
equation,

Nt(x, s, t) =
1
2

 s

0
β(s′, s − s′, x)N(x, s′, t)N(x, s − s′, t)ds′ −


∞

0
β(s, s′, x)N(x, s′, t)N(x, s, t)ds′

− ∇x · (v(x, t)N(x, s, t))+ σ △x N(x, s, t). (5.16)

5.3. Dynamics in randomly varying environments

The stochastic processes in the examples we study previously are all Lévy processes, which means dXt is independent
of increment and stationary. In this section, we will study some non-Lévy processes in Rn. For instance, if dXt/dt = Rt ,
where Rt is a Markov process, then Xt is not Lévy process because dXt does depend on different time t . In this case, we need
to introduce a new state variable for Rt so that we can derive its evolution equation more conveniently by studying the
coupled dynamical system. For example, a stochastic model is proposed in [33] to study gene regulation in a stochastically
changing environment. This model is formulated by a differential equation driven by a continuous time two-state Markov
process. The system is written as

dXt

dt
+ µXt = Rt , (5.17)

where Xt is the expression level, µ is the degradation rate and Rt is a Markov process with two states r0, r1 ∈ Rn which
represents the environmental inputs. The authors write the density function as the sum of two marginal density functions
which corresponds to two states r0 and r1 respectively.

Actually we can study for a more general system. Mathematically, we assume the system is governed by the equation

dXt = µ1(Xt , t)dt + µ2(Xt , t)dWt + µ3(Xt , t)dZt + µ4(Xt , t)Rtdt, (5.18)

whereWt is a Brownian motion and Zt is a CTRW. Rt is a continuous time, continuous state, and time homogeneous Markov
jump process with exponential waiting time between jumps. We assume Rt is independent of Xt . Furthermore, we also
assume the transition rate ϕ(r′; r) from state r′ to r exists, i.e.:

ϕ(r′; r) = lim
△t→0

pR(r′, t ′; r, t)
△t

. (5.19)
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In the present paper, we only consider the simple case that Xt follows

dXt

dt
= µ(Xt , t)+ Rt (5.20)

and denote by f (r, x, t) the PDF for this system. The joint TP for this coupled system (Xt , Rt) is

p(x′, r′, t ′; x, r, t) = pR(r′, t ′; r, t)pX |R(x′, t ′; x, t|r′, t ′)

= pR(r′, t ′; r, t)δ

x − x′

− µ(x′, t ′)△t − r′△t


= pR(r′, t ′; r, t)
δ(x′

− x0)
1 + ∇x · µ(x0, t ′)△t

(5.21)

where x0 is the root of g(x′) = x − x′
− µ(x′, t ′)△t − r△t = 0 for small time step △t = t − t ′. And x0 approaches x as △t

converges to 0. Then we have

lim
1t→0

1
1t


Rm


pR(r′, t ′; r, t)f (r′, x, t ′)− pR(r, t ′; r′, t)f (r, x, t ′)


dr′

=


Rm


φ(r′; r)f (r′, x, t ′)− φ(r′; r)f (r, x, t ′)


dr′ (5.22)

due to the assumption (5.19). Furthermore,

lim
1t→0

1
1t


Rn


pX |R(x′, t ′; x, t|r, t ′)f (r, x′, t ′)− pX |R(x, t ′; x′, t|r, t ′)f (r, x, t ′)


dx′

= lim
1t→0

1
1t


f (r, x0, t ′)

1 + ∇x · µ(x0, t ′)1t
− f (r, x, t ′)


= −f (r, x, t)∇x · µ(x, t)− ∇xf (r, x, t) ·


µ(x, t)+ r


= −∇x ·


r + µ(x, t)


f (r, x, t)


(5.23)

where the Taylor expansion for f (r, x0, t ′) around x is applied on the second equality.
According to Theorem 5.6, we can combine Eqs. (5.22) and (5.23) and obtain the density equation

ft + ∇x · ((r + µ)f ) =


r′∈Rm


ϕ(r|r′)f (r′, x, t)− ϕ(r′|r)f (r, x, t)


dr′. (5.24)

Now let us consider the discrete case. Assume Rt is a finite states Markov process with n states {ri}ni=1. Denote the
Q -matrix, i.e., infinitesimal generator by Q and the transition probability matrix by P(t). Pr′r(t) represents the TP from state
r′ to rwithin transition time t . By the fundamental knowledge of continuous time Markov process, we know P ′(t) = P(t)Q
and

qr = lim
t→0

1 − Prr(t)
t

, qr′r = lim
t→0

Pr′r(t)
t

,

where qr = −Qrr represents the transition rate from state r to r, and qr ′r = Qr ′r represents the transition rate from state r′
to r. Similarly we have the evolution equation:

ft(r, x, t)+ ∇x ·


r + µ(x, t)


f (r, x, t)


= −qrf (r, x, t)+


r′≠r

qr′rf (r′, x, t). (5.25)

If the drift term µ(x, t) = −µx as in [33] and the Markov process only has two states r0, r1, and the infinitesimal generator
is given by

−λ0 λ0
λ1 −λ1


,

then we reproduce the PDEs as in [33]:

ft(r0, x, t)+ ∇x · [(r0 − µx)f (r0, x, t)] = −λ0f (r0, x, t)+ λ1f (r1, x, t),
ft(r1, x, t)+ ∇x · [(r1 − µx)f (r1, x, t)] = −λ1f (r1, x, t)+ λ0f (r0, x, t).
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6. Summary

In this paper, we presented some generalized local and nonlocal master equations for various stochastic processes. We
illustrated the applications of this framework to both classical cases such as Fokker–Planck equations and Lévy process, as
well as nonlocal models such as stochastic coagulation equation. The formalism can be viewed as one of the examples of the
recently developed nonlocal vector calculus.Most importantly, Theorem5.6 arising fromour study for the coupled systemof
stochastic processes has been proved and applied to spatially inhomogeneous coagulation processes and some dynamics in
randomly varying environments. Our work has been limited to processes defined in the entire space. It is natural to consider
the effect of the bounded domain as in the case of [32,6]. Extensions to non-Markovian processes are also possible and these
interesting topics will be studied in the future.
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