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1 Turning and bipedal motion

Figure S1: Many types of cell crawling appear, including bipedal motion and turning. Cell shape (phase field φ), actin promoter (ρaφ),
and myosin (ρmφ) of cells at different times. Color plots are rescaled by 1, 1.4 µm−2, and 0.8 µm−2, respectively. TOP: Cell turning;
total width of stripe is w = 40 µm (not in image; scale bar indicates 10 µm). BOTTOM: Bipedal motion. Total width of stripe is
w = 10 µm (dashed lines).

2 Sharp interface derivation
We will derive the sharp interface results presented in the text. These are that the front and back interface velocities are given by
±αρf,ba ∓ βρf,bm with

α =
η0a
4ν0

, β =
η0m`h
2ν0

, (S1)

where `2h = 2ν0/ξ. In order to get these results, we will assume the sharp interface limit ε/`h � 1, and also that the cell’s size Lcell is
much larger than `h. We will also assume that the interface’s curvature is not relevant.

Our Stokes equation for the cell’s cytoskeletal velocity u is

∇ ·
[
ν(φ)

(
∇u +∇uT

)]
+∇ · σmyo +∇ · σpoly + Fmem + Fadh − ξu = 0 (S2)

where ν(φ) = ν0φ(r) and the active stresses are given by

σmyo = η0mφρmI (S3)

σpoly = −η0aφρaδεn̂n̂ (S4)

where I is the identity tensor, δε = ε(∇φ)2, and n̂ is the unit normal vector to the cell boundary. Fadh contains stochastic adhesion forces,
which we ignore. We note that these adhesion forces may in some limits only renormalize ξ [1], so it may be appropriate to think of the
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ξ as an effective value larger than that given in the simulation. The membrane forces are derived from a phase field approximation to the
Helfrich energy and surface tension (see, e.g. [2, 3]), Fmem = Ftension + Fbend with

Ftension = −γ
(
ε∇2φ− G′

ε

)
∇φ (S5)

Fbend = κε

(
∇2 − G′′

ε2

)(
∇2φ− G′

ε2

)
∇φ (S6)

where G(φ) = 18φ2(1− φ)2 and G′ and G′′ denote derivatives of G with respect to φ.
We are interested in creating an effectively one-dimensional model. We approximate our cell’s complex shape by an effectively

one-dimensional front that minimizes the tension and bending energies (i.e. Ftension = Fbend = 0). This will be true if ε∇2φ = G′

ε , or
(for a front in the y direction)

φI(y) =
1

2
(1 + tanh(3y/ε)) (S7)

Under this assumption, the Stokes equation becomes

ν̃∂y [φI(y)∂yu] + Fmyo [φI ] + Fpoly [φI ]− ξu = 0 (S8)

where ν̃ = 2ν0, Fpoly ≡ ∂yσpoly and Fmyo ≡ ∂yσmyo We will look at the two force terms separately, since this equation is linear and we
can superimpose the two resulting velocity fields. We will also assume that the densities ρa and ρm do not vary quickly at the front, so
that Fpoly ≈ −η0aρa∂y(φIδε) and Fmyo ≈ η0mρm∂yφI . We illustrate the resulting field φI and the forces in Fig. S2 below.
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Figure S2: We show the phase field and active forces at the interface at y = 0. Here the phase field φI = 1
2 (1 + tanh(3y/ε)). The active

force due to actin polymerization is Fpoly ≈ −η0aρa∂y(φIδε) and the active force due to myosin contractility is Fmyo ≈ η0mρm∂yφI .
ε = 2µm in this figure.

2.1 Active force due to actin polymerization
We start by rewriting Eq. S8 with Fpoly = −η0aρa∂y(φIδε) and Fmyo = 0. (We will use linearity to rescue the complete result later.)
Rescaling our lengths to r = y/(`h) where `2h = ν̃/ξ and defining δ = ε/3`h, we find

∂r [{1 + tanh(r/δ)} ∂ru]− χ

δ
∂r
[
{1 + tanh(r/δ)} sech4(r/δ)

]
− 2u = 0 (S9)

where χ = 3
4η

0
aρa/ν̃. We can’t solve this equation exactly, but can develop an asymptotic approximation in the sharp interface limit of

ε � `h (δ � 1). In particular, we can see that in the sharp interface limit, the term sech4r/δ can be neglected everywhere but near the
front position, r = O(δ). Moving to the stretched variable z = r/δ, and defining U(z) = u(r) for convenience,

∂z [(1 + tanh z)∂zU ]− χ∂z
[
(1 + tanh z) sech4z

]
− 2δ2U = 0 (S10)

To O(δ0), we can neglect the last term on the right. The remaining ODE can be directly integrated:

U(z) = A

(
z − 1

2
e−2z

)
+B + χ

{
4

(1 + e−2z)2
− 8

3(1 + e−2z)3

}
(S11)
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We cannot consistently apply the boundary conditions u(r → ±∞) = 0 to this solution; we need to match it to the solution in the outer
region. However, the outer regions to the right and left of the front have two distinctly different characters. For r � δ, 1+tanh(r/δ) ≈ 2,
and the outer expansion is

∂2ruR − uR = 0 (S12)

and we can immediately determine uR = Ce−r, neglecting the solution that diverges as r →∞. Matching to the interior solution yields
the requirement C = B + 4

3χ and A = −δC. However, for r � −δ, 1 + tanh(r/δ) approaches zero; δ is a singular perturbation to the
outer equation in the left region. For r � −δ, 1 + tanh(r/δ) ≈ 2e2r/δ , and so

∂r(e
2r/δ∂ruL)− uL = 0 (S13)

which can be solved to find
uL = De−r/δK1(δe−r/δ) (S14)

where K1 is the modified Bessel function of order 1, and we have dropped the solution that diverges as r → −∞. To match this to the
interior solution, we choose r = δzc with zc fixed but large (and negative), and look at the behavior as δ → 0:

uL ∼ D
[

1

δ
+
e−2zc

2
δ {ln δ − zc − ln 2 + γE − 1/2}

]
(S15)

∼ D
[

1

δ
+
e−2zc

2
δ ln δ

]
(S16)

where γE is the Euler gamma, γE = 0.5772 . . . . We match to the interior solution at z = zc with zc � −1,

U ∼ −1

2
Ae−2zc +B (S17)

Matching then requires that −A = Dδ ln δ and B = D/δ. Combining this with our earlier matching requirements, C = B + 4
3χ

and A = −δC, we find:

A/χ =
4

3

δ2 ln δ

1− δ ln δ
(S18)

B/χ = −4

3

1

1− δ ln δ
(S19)

C/χ = −4

3

δ ln δ

1− δ ln δ
(S20)

D/χ = −4

3

δ

1− δ ln δ
(S21)

Importantly, because C → 0 as δ → 0, in the sharp interface limit, there is no long-range velocity induced by the actin promoter at the
interface.
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Figure S3: Velocity of fluid due to the presence of actin promoter at the cell boundary. Interface is at y = 0 as above, i.e. φ =
1
2 [1 + tanh(3y/ε)]. Here ε = 2 µm, `h = 63 µm, i.e. δ ≈ 0.01.
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Our asymptotics provide an excellent approximation to the full numerical solution (Fig. S3). It also allows us to determine the
interface velocity, u(0) (using the interior solution). We find in the sharp interface limit that

uinterface = −2

3
χ ≡ −αρa (S22)

where

α =
η0a
2ν̃

=
η0a
4ν0

. (S23)

This is the result given in the main paper. It is only the leading order term; higher-order terms that depend on δ can also be obtained
from the solution above. The process for myosin is very similar, but we will find that a long-range (on the order of `h) velocity will be
induced, unlike the actin promoter case.

2.2 Myosin force
We start by rewriting Eq. S8 with Fmyo = η0mρm∂yφ and Fpoly = 0. Rescaling our lengths to r = y/(`h) where `2h = ν̃/ξ and defining
δ = ε/3`h, we find

∂r [{1 + tanh(r/δ)} ∂ru] + µ∂r [1 + tanh(r/δ)]− 2u = 0 (S24)

where µ = η0mρm`h/ν̃. Note that unlike χ in the actin promoter case, µ does have an explicit dependence on the hydrodynamic length
scale `h.

We develop an asymptotic approximation in the sharp interface limit of ε� `h (δ � 1). Moving to the stretched variable z = r/δ,
and defining U(z) = u(r),

∂z [(1 + tanh z)∂zU ] + µδ∂z [1 + tanh z]− 2δ2U = 0 (S25)

To linear order in δ, the last term can be dropped, and the remaining equation can be easily integrated to find

U(z) = A

(
z − 1

2
e−2z

)
+B − µδ

2
e−2z (S26)

The outer limits are the same as in the actin promoter case. We then get the matching conditionsD/δ = B,A+µδ = −Dδ ln δ, B = C,
and A = −δC. These can be solved to find

A/µ = − δ

1− δ ln δ
(S27)

B/µ =
1

1− δ ln δ
(S28)

C/µ =
1

1− δ ln δ
(S29)

D/µ =
δ

1− δ ln δ
(S30)

Note that C does not vanish in the sharp interface limit: the presence of myosin at the interface leads to a velocity far away from the
interface, u(r) ≈ µe−r. Our asymptotic approximations are again an excellent approximation to the full numerical solution (Fig. S4).

In the sharp interface limit, u(0) becomes
uinterface = µ ≡ βρm (S31)

where

β =
η0m`h
ν̃

=
η0m`h
2ν0

(S32)

2.3 When can we apply the sharp interface result?
We argue that in the limit Lcell � `h, we can neglect correlations between the cell edges. We have been attempting to determine the
velocity of the cell interface using only the actin promoter and myosin densities at the interface, but no information about the actin
promoter and myosin throughout the cell, or the other interface of the cell. When is this appropriate? We have seen above that myosin at
the cell interface induces a velocity in the cell body with a dependence of position of e−y/`h ; if Lcell � `h, one interface will not affect
the other. We have also neglected forces coming from internal gradients of the myosin-induced stress; once again, the characteristic
length scale for these forces is `h, and so they should not affect the velocity of the interfaces if Lcell � `h. The sharp interface results
could be generalized to include all of these effects, but they produce additional complications, such as the need to track the details of
myosin within the cell.
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Figure S4: Velocity of fluid due to the presence of myosin at the cell boundary. Interface is at y = 0 as above, i.e. φ =
1
2 [1 + tanh(3y/ε)]. Here ε = 2 µm, `h = 63 µm, i.e. δ ≈ 0.01. Note that even though δ is small, the velocity to the right of
the interface is not small since C is O(δ0).

3 Tables of parameters used

3.1 Parameters used for all two-dimensional phase field simulations
We mark with an asterisk the parameters that have been changed from the simulations presented in Ref. [3]. Parameters were originally
chosen in [3] to ensure that the cell velocity, actin flow velocity, and midline stress were close to experimentally reported values for
keratocytes; in general, we have attempted not to change these values. Where possible, we have given literature justification for these
parameters.

3.1.1 Phase field and cell boundary properties

Parameter Description Value Justification
γ Cell tension coefficient 20 pN Order-of-magnitude set in [4]
κ Cell bending coefficient 20 pN µm2 Order-of-magnitude set in [4]
ε Phase field width 2 µm Chosen to ensure smooth variation

in φ
Γ Phase field relaxation parameter 0.4 µm/s Set in [3]

3.1.2 Cytoskeletal flow parameters

Parameter Description Value Justification
ν0 Viscosity of cytoskeletal flow 103 pN s / µm Set roughly by [5]; see also [6]
η0a Protrusion coefficient 560 pN µm 2 Chosen to reproduce shapes and

other features in [3]
η0m Myosin contractility coefficient 60-61 pN µm ∗ Similar to that of [6]; tuned to

increase periodic migration ampli-
tude

ξ Substrate friction coefficient 0.5 Pa s / µm Value arising from cell sitting on
layer of water with height 2 nm [7]

3.1.3 Reaction-diffusion parameters

In the same wave-pinning kinetics as [3] for the reaction term in the actin promoter equation,

f(ρa, ρ
cyt
a ) = kb

(
ρ2a

K2
a + ρ2a

+ ka

)
ρcyt
a − kcρa (S33)
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where, by the conservation of total actin promoter,
∫
d2r

(
ρa(r) + ρcyt

a

)
φ(r) = N tot

a , or, assuming the cytosolic actin promoter is
well-mixed (uniform),

ρcyt
a =

N tot
a −

∫
d2rρa(r)φ(r)∫
d2rφ(r)

. (S34)

We note that this formula was written incorrectly in the Supplementary Material of Ref. [3].
Parameter Description Value Justification
ka Unitless base activation rate 0.01 a Order-of-magnitude from [8]
kb Overall activation rate 10 s−1 Order-of-magnitude from [8]
kc Deactivation rate 10 s−1 Order-of-magnitude from [8]
Ka Positive feedback threshold for actin promoter concentration 1 µm −2 Order-of-magnitude from [8]
Da Actin promoter diffusion coefficient 0.8 µm 2/s Typical membrane-bound protein

diffusion coefficient [9]
D0
m Myosin diffusion coefficient at zero actin concentration 2 µm 2/s Chosen in [3]

KD Myosin diffusion threshold, Dm = D0
m/(1 + ρa/KD) 0.5 µm −2 b Chosen in [3]

N tot
a Total amount of actin promoter 485∗ c Roughly rescaled by cell size from

value chosen in [3] proportional to
cell area

ρ0m Initial density of myosin 0.3 µm −2 Chosen such that myosin stress cor-
responds to that estimated in [6]

3.1.4 Adhesion parameters

Parameter Description Value Justification
Nadh Number of adhesions 1000∗ d Roughly rescaled from value cho-

sen in [3] proportional to cell area
F 0

grip Characteristic gripping stress for gripping-slipping rupture 5 Pa Chosen in [3] to reproduce traction
forces and shape of keratocytes

k0grip Gripping coefficient 2.5 Pa / (s µm) Chosen in [3] to reproduce traction
forces and shape of keratocytes

k0slip Slipping coefficient 0.25 Pa / µm Chosen in [3] to reproduce traction
forces and shape of keratocytes

ron Rate of transition from slipping to gripping state 0.005 s−1 Chosen in [3] to reproduce traction
forces and shape of keratocytes

r0off Rate of transition from gripping to slipping state (at zero force) 0.002 s−1 Chosen in [3] to reproduce traction
forces and shape of keratocytes

rdie Rate of slipping site death 0.2 s−1 Chosen in [3] to reproduce traction
forces and shape of keratocytes

3.1.5 Numerical evaluation parameters

Parameter Description Value
n×m Number of (horizontal, vertical) grid points 256× 256
Lx × Ly Box size 50µm× 50µm
∆t Time step 2× 10−3 s∗

λ Cutoff for evaluating phase field equations 10−4

3.2 Parameters used for each figure
3.2.1 Figure 1

For the oscillation in Fig. 1, we start with an initial state of a circular cell with radius 6 µm. We choose η0m = 61 pN µm, and have
an adhesive stripe of total width w = 6µm, i.e. χ(r) = 1

2

[
1 + tanh(3{w2 − |x|}/ε)

]
. All other parameters are as written in the tables

above.
aThe units for this parameter were listed incorrectly in the Supplemental Material of Ref. [3].
bThis is the value used in Ref. [3], though it was listed incorrectly in the Supplemental Material of that work.
cThis parameter is denoted by ρtot

a in Ref. [3].
dThis describes the total number of adhesions over the entire cell. The value of Nadh in Ref. [3] is listed incorrectly, and should be Nadh = 4000 over the whole cell.

The change in adhesion number in this paper roughly corresponds to the change in cell area.
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3.2.2 Figure 2

We think of our one-dimensional model as describing a slice down the center of a two-dimensional cell with width w, but with ρa
uniform across the x direction. Parameters for the actin promoter reaction-diffusion part of the one-dimensional model are exactly the
same as for the two-dimensional model of Fig. 1; however, the conservation law follows a slightly different form:∫ w/2

−w/2
dx

∫ Ly/2

−Ly/2

[
ρa(y) + ρcyt

a

]
φ(y) = N tot

a (S35)

or, equivalently,

ρcyt
a =

N tot
a /w −

∫
dyρa(y)φ(y)∫

dyφ(y)
. (S36)

The parameters unique to the one-dimensional model are α = 0.14µm3/s and β = 0.068µm3/s, m0 = 2.43µm−2 and τ = 30 s. The
value for α is determined by the sharp interface result, α = η0a/4ν0, using the two-dimensional simulation parameters. We have set β,
m0, and τ so that the cell oscillates similarly to the two-dimensional simulation. The one-dimensional model is evaluated on a grid of
512 points with Ly = 100 µm, with ∆t = 0.01 s.

3.2.3 Figure S1

For the turning motion (Fig. S1 top), we start with an initial state of a circular cell with radius 8 µm. We choose η0m = 60 pN µm, and
have an adhesive stripe of total width w = 40 µm, i.e. χ(r) = 1

2

[
1 + tanh(3{w2 − |x|}/ε)

]
. For the bipedal motion (Fig. S1 bottom),

we choose exactly the same parameters, except that we take w = 10 µm. All other parameters are as written in the tables above.

3.3 Robustness of periodic migration to variation in parameters
The bulk of our parameters have been set by comparison with experiments on keratocytes, and are identical to those used in [3]; they
were not selected to observe periodic migration. However, some parameters have been changed in order to ensure that the cells polarize
and migrate on stripes. In particular, we changed N tot

a and Nadh because the cells we study are significantly smaller in area than those
in [3]. We also changed η0m to change the contraction speed and vary the amplitude of periodic migration. Initial simulations have
shown that periodic migration can be observed over wider ranges of parameters as well; varying one parameter at a time, we see periodic
migration at Nadh = 700, or η0m = 80 pN µm, or N tot

a = 400. These parameters can be changed more if we change multiple parameters
at once. Our experience with altering the model suggests that periodic migration can be re-created as long as the central polarization
mechanism is in place, the contraction and protrusion are closely balanced, and the myosin effectively keeps the memory.

4 Details of numerical algorithm

4.1 Time-stepping and discretization
Our goal is to numerically solve the system of equations

∂tφ+ u · ∇φ = Γ(ε∇2φ−G′(φ)/ε+ εc|∇φ|) (S37)
∂t(φρa) +∇ · (φρau) = ∇ · (φDa∇ρa) + φf(ρa, ρ

cyt
a ) (S38)

∂t(φρm) +∇ · (φρmu) = ∇ · (φDm(ρa)∇ρa) (S39)

∇ ·
[
ν0φ(∇u +∇uT )

]
+∇ · (σpoly + σmyo) + Fmem + Fadh − ξu = 0 (S40)

We fix a uniform spatial grid with grid sizes ∆x, ∆y. We also use a fixed time step ∆t to march these equations forward from initial
conditions φ(0),u(0), ρ

(0)
a , ρ

(0)
m . We denote the state of the system at time t = n∆t by φ(n),u(n), ρ

(n)
a , ρ

(n)
m . Suppose we have obtained

all these quantities at the time n∆t. We then solve all the equations (S37)–(S39) to obtain these quantities at the time (n+ 1)∆t.
We first obtain φ(n+1) from the φ-equation (S37) with the forward Euler scheme:

φ(n+1) = φ(n) −∆tu(n) · ∇φ(n) + ∆tΓ
[
ε∇2φ(n) −G′(φ(n))/ε+ εc(n)|∇φ(n)|

]
.

On the right-hand side of this equation, ∇φ(n) is calculated with a central difference scheme, ∇2φ(n) is calculated by five-point finite
difference scheme, and the curvature term c(n) is calculated by

c(n) = ∇ · ∇φ
(n)

|∇φ(n)|

when |∇φ(n)| > 0.01, and set to be zero otherwise.
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We next solve Eq. (S38) and Eq. (S39) to obtain ρ(n+1)
a and ρ(n+1)

m , respectively. We apply the forward Euler scheme to the reaction-
diffusion-advection equation (S38):

φ(n)
ρ
(n+1)
a − ρ(n)a

∆t
+
φ(n+1) − φ(n)

∆t
ρ(n)a = −∇ · (φ(n)ρ(n)a u(n)) +∇ · (φ(n)Da∇ρ(n)a ) + φ(n)f (n)

Equivalently,

ρ(n+1)
a =

(2φ(n) − φ(n+1))

φ(n)
ρ(n)a −∆t

∇ · (φ(n)ρ(n)a u(n))

φ(n)
+ ∆t

∇ · (φ(n)Da∇ρ(n)a )

φ(n)
+ ∆tf (n) (S41)

We only divide by φ(n) in the region where φ(n) ≥ λ, where λ = 10−4. Outside of this region, we keep ρ(n+1)
a = ρ

(n)
a . More

specifically, we have use the following discretization:[
∇ · (φ(n)ρ(n)a u(n))

]
ij

=
[
φ
(n)
i+1/2,jρ

(n)
a,i+1/2,ju

(n)
i+1/2,j − φ

(n)
i−1/2,jρ

(n)
a,i−1/2,ju

(n)
i−1/2,j

]/
∆x

+
[
φ
(n)
i,j+1/2ρ

(n)
a,i,j+1/2v

(n)
i,j+1/2 − φ

(n)
i,j−1/2 + ρ

(n)
a,i,j−1/2v

(n)
i,j−1/2

]/
∆y[

∇ · (φ(n)Da∇ρ(n)a )
]
ij

= Da

[
φ
(n)
i+1/2,j

ρ
(n)
a,i+1,j − ρ

(n)
a,ij

∆x
− φ(n)i−1/2,j

ρ
(n)
a,ij − ρ

(n)
a,i−1,j

∆x

]/
∆x

+Da

[
φ
(n)
i,j+1/2

ρ
(n)
a,i,j+1 − ρ

(n)
a,ij

∆y
− φ(n)i,j−1/2

ρ
(n)
a,ij − ρ

(n)
a,i,j−1

∆y

]/
∆y

where u(n)
ij =

(
u
(n)
ij , v

(n)
ij

)
. We apply the analogous forward Euler scheme to the ρm-equation (S39). Since the diffusion coefficient

Dm = Dm(ρa) depends on ρa, we discretize the diffusion term at a grid point labeled by (i, j) as follows[
∇ · (φ(n)D(n)

m ∇ρ(n)a )
]
ij

=

[
φ
(n)
ij D

(n)
m,ij + φ

(n)
i+1,jD

(n)
m,i+1,j

2
·
ρ
(n)
a,i+1,j − ρ

(n)
a,ij

∆x
−
φ
(n)
ij D

(n)
m,ij + φ

(n)
i−1,jD

(n)
m,i−1,j

2
·
ρ
(n)
a,ij − ρ

(n)
a,i−1,j

∆x

]/
∆x

+

[
φ
(n)
ij D

(n)
m,ij + φ

(n)
i,j+1D

(n)
m,i,j+1

2
·
ρ
(n)
a,i,j+1 − ρ

(n)
a,ij

∆y
−
φ
(n)
ij D

(n)
m,ij + φ

(n)
i,j−1D

(n)
m,i,j−1

2
·
ρ
(n)
a,ij − ρ

(n)
a,i,j−1

∆y

]/
∆y

where D(n)
m,ij = Dm(ρ

(n)
a,ij). To keep ρm conserved and reduce its drift, we rescale ρm at each time step so that the total integral of ρm is

kept a constant. We note that we have corrected the position of the non-constant diffusion coefficient in the ρm equation in [3].
Finally, we solve the Stokes equation (S40) with a semi-implicit Fourier spectral scheme to obtain u(n+1). To do so, we first subtract

the term ν0φ̃∇2u from both sides of the Stokes equation (S40) with φ̃ a constant (e.g., φ̃ = 2) to yield

ξu− ν0φ̃∇2u = ∇ ·
[
ν0(φ− φ̃)∇u + ν0φ∇uT )

]
+∇ · (σpoly + σmyo) + Fmem + Fadh ≡ RHS(u, φ, ρa, ρm)

To obtain u(n+1), we set u(n+1)
0 = u(n) and solve the following equation iteratively using the spectral Fourier method:

ξu(n+1)
k+1 − ν0φ̃∇2u(n+1)

k+1 = RHS(u(n+1)
k , φ(n+1), ρ(n+1)

a , ρ(n+1)
m ) k = 0, 1, . . . ,m

and set u(n+1) = u(n+1)
m . The calculations of ∇ · (σpoly + σmyo),Fmem and Fadh are performed as in [3]. The number of steps m in this

iteration is set to be m = 10 or set by

max |u(n+1)
m − u(n+1)

m−1 | < 0.01 max|u(n+1)
m |.

Shifting of the simulation box when the cell approaches the box edges is performed as in [3, 4].

4.2 Adhesion dynamics and calculation of adhesion force
The adhesion dynamics are precisely as given in [3], except that adhesions do not form off of the adhesive stripe, and are destroyed if
they leave the stripe. For completeness, we summarize these dynamics here.

Adhesions between the cell and substrate are tracked individually; there are a fixed numberNadh of adhesions, and if one is destroyed,
another one is created. The probability of adhesion formation is proportional to ρa and to φ, resulting in nascent adhesions being more
likely to form at the front of the cell. We compute the initial adhesion location by a rejection method: we propose an adhesion location
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r0 distributed uniformly in the region |x| ≤ w
2 , where w is the total width of the adhesive stripe, and accept that adhesion location with

probability p = ρa(r0)φ/max(ρa). Adhesions are destroyed if they leave the stripe (i.e. have |x| > w
2 ) or if φ < 1/2 at the adhesion

location.
Adhesions are advected by the cytoskeletal flow, u; in practice, we choose the adhesion velocity to be the velocity u at the nearest

grid point to the adhesion location.
Adhesions have two modes: “slipping” and “gripping.” Adhesions are formed in gripping mode. When an adhesion is formed or

transitions into gripping mode, its initial position r0 is noted. The gripping adhesion acts as a spring stretched from its initial location
(where the adhesion attaches to the substrate) to its current location. It thus exerts a force on the cell of

Fgrip = −kgrip(r− r0) (S42)

By contrast, a slipping adhesion exerts a force
Fslip = −kslipu(r) (S43)

where r is the adhesion position. We assume that the adhesions mature over time: kgrip = k0griptadh and kslip = k0sliptadh where tadh is
the age of the adhesion site. Adhesions may transition between slipping and gripping, and slipping adhesions may disappear. Gripping
adhesions rupture and become slipping adhesions with a force-dependent rate roff = r0off exp(|Fgrip|/F0), with F0 the gripping strength
scale. Slipping adhesions may return to gripping mode with a rate ron, and disappear with a rate rdie. To calculate the force density Fadh
that enters into the Stokes equation, forces on adhesions are distributed to the nearest grid point; we therefore list the appropriate units
in terms of forces per unit area. (We note that [3] incorrectly describes the force as being spread over the closest four grid points.)
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