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A phase-field variational implicit-solvent approach is developed for the solvation of charged
molecules. The starting point of such an approach is the representation of a solute-solvent inter-
face by a phase field that takes one value in the solute region and another in the solvent region, with a
smooth transition from one to the other on a small transition layer. The minimization of an effective
free-energy functional of all possible phase fields determines the equilibrium conformations and free
energies of an underlying molecular system. All the surface energy, the solute-solvent van der Waals
interaction, and the electrostatic interaction are coupled together self-consistently through a phase
field. The surface energy results from the minimization of a double-well potential and the gradient
of a field. The electrostatic interaction is described by the Coulomb-field approximation. Accurate
and efficient methods are designed and implemented to numerically relax an underlying charged
molecular system. Applications to single ions, a two-plate system, and a two-domain protein reveal
that the new theory and methods can capture capillary evaporation in hydrophobic confinement and
corresponding multiple equilibrium states as found in molecular dynamics simulations. Comparisons
of the phase-field and the original sharp-interface variational approaches are discussed. © 2013 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4812839]

I. INTRODUCTION

The structure, dynamics, and function of biomolecular
systems are crucially influenced by the interaction between
the biomolecules and their aqueous environment. Such in-
teractions can be described efficiently by implicit-solvent
models1–4 in which the solvent molecules and ions are treated
implicitly and their effects are coarse-grained. These models
are complementary to the more accurate but computationally
expensive explicit-solvent models, such as molecular dynam-
ics and Monte Carlo simulations, which often provide sam-
pled statistical information rather than direct descriptions of
thermodynamics.

A large class of existing implicit-solvent models is based
on various kinds of predefined solute-solvent interfaces, such
as the van der Waals surface (vdWS), solvent-excluded sur-
face (SES), or solvent-accessible surface (SAS).5–9 In these
models, the solvation free energy is approximated by the sum
of two parts. One is the interfacial energy which is often
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c)Electronic mail: jche@gnf.org
d)Electronic mail: bli@math.ucsd.edu
e)Electronic mail: jmccammon@ucsd.edu

taken to be proportional to the surface area. The other is the
electrostatic free energy which is often determined by the
Poisson-Boltzmann10–14 or generalized Born15–18 theory in
which a vdWS, SES, or SAS is used as a dielectric boundary.
While such fixed-surface, implicit-solvent approaches have
been successful in many cases, their accuracy and general ap-
plicability are still questionable. It is believed that one of the
main issues here is the decoupling of surface energy, disper-
sion, and electrostatic interaction. Moreover, an ad hoc def-
inition of vdWS, SAS, or SES can often lead to inaccurate
free-energy calculations. It is additionally well established by
now that cavitation free energies do not scale with surface
area for high curvatures,19–22 a fact of critical importance in
the implicit-solvent modeling of hydrophobic interactions at
molecular scales.23–27

In recent years, a new class of surface based, implicit-
solvent models—the variational implicit-solvent model
(VISM)—has been developed.28, 29 Coupled with the robust
level-set numerical method, such models allow an efficient
and quantitative description of molecular solvation.30–36 Cen-
tral in the VISM is a mean-field free-energy functional of
all possible solute-solvent interfaces, or dielectric boundaries,
that separate the continuum solvent from all solute atoms.
In a simple setting, such a free-energy functional consists
of surface energy, solute-solvent van der Waals interaction

0021-9606/2013/139(2)/024111/11/$30.00 © 2013 AIP Publishing LLC139, 024111-1
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energy, and continuum electrostatic free energy. The min-
imization of the functional determines the solvation free
energies and stable equilibrium solute-solvent interfaces. Ex-
tensive level-set numerical results with comparison with ex-
periment and molecular dynamics simulations have demon-
strated the success of this new approach to the solvation of
molecular systems in describing the hydrophobic interaction,
capturing multiple equilibrium states of hydration, and pro-
viding good estimates of solvation free energies.30, 32, 33, 35 In
general, a stable equilibrium solute-solvent interface deter-
mined by the level-set VISM can be quite different from a
vdWS, SES, or SAS, particularly when it comes to the de-
scription of hydrophobic interactions.20, 27, 37 Perhaps the most
significant feature of VISM is that its free-energy functional
exhibits a complex energy landscape with multiple local min-
ima corresponding to different equilibrium states.

In this work, we develop a phase-field VISM, often ab-
breviated as P-VISM, as an alternative to the original VISM
that uses a sharp-interface formulation to the solvation of
charged molecules. The phase-field theory and method have
been widely used in studying interface problems arising in
many scientific areas such as materials physics, complex flu-
ids, and biomembranes, cf., e.g., Refs. 38–49 and the refer-
ences therein. In a phase-field model, an interface separating
two regions is represented by a continuous function that takes
values close to one constant in one of the regions and another
constant in the other region, but smoothly changes its values
from one of the constants to another in a thin transition region.
(We choose these constant values to be 0 and 1, respectively.)
It is in this way that a phase field defines a diffuse interface.
Both the sharp-interface and the diffuse-interface approaches
have their own advantages and disadvantages. For instance, in
phase-field computations, explicit tracking of moving bound-
aries is avoided. But an extra fit-parameter, a numerical con-
stant that characterizes the size of transition layer, is intro-
duced. We have two particular reasons to develop a phase-
field VISM. First, existing studies have shown that interfacial
fluctuations can be described in a phase-field approach.50–52

Such fluctuations are particularly crucial in the transition of
one equilibrium conformation to another in a biomolecular
system. It seems, however, the direct inclusion of fluctuations
in a sharp-interface model is not straightforward. Second, a
phase field can describe well the transition from solute to sol-
vent. With some modeling refinement, such a field can likely
be used to describe the hydration shell in the framework of
implicit-solvent modeling.

Fundamental in our phase-field variational approach to
the implicit solvation of charged molecules is a mean-field
free-energy functional of all possible phase fields. Minimiza-
tion of the free-energy functional determines the minimum
free energies as well as the stable equilibrium conforma-
tions of an underlying biomolecular system. In our previous
work,53 we proposed such free-energy functionals and proved
mathematically that they “converge” to the sharp-interface
VISM functional. As in the original VISM, our phase-field
free-energy functional couples all the surface energy, the
solute-solvent van der Waals interactions, and the electrostatic
interactions through a phase field. The surface energy is taken
to be proportional to the surface area. In the free-energy func-

tional of phase field φ = φ(x), the approximation of the sur-
face area is given by

∫ [
ξ

2
|∇φ|2 + 1

ξ
W (φ)

]
dx,

where ξ > 0 is a small parameter characterizing the width
of transition layer and W is a properly chosen double-well
potential. If a phase field φ has a low free energy, then the W -
term forces the phase field φ to be close to the two wells of
W , partitioning the underlying solvation region into the so-
lute and solvent regions, while the gradient term penalizes
such partitioning. As the parameter ξ becomes smaller and
smaller, the transition layer characterized by a phase field
becomes thinner and thinner, and the corresponding integral
value approaches the interfacial area.53–55 This well estab-
lished mathematical theory is the foundation of the phase-
field approach. As in the sharp-interface version of VISM,
we model the solute-solvent van der Waals interaction by the
sum of Lennard-Jones potentials of pair-wise interactions be-
tween all the solute particles and solvent molecules that are
now treated as a continuum. We also describe the electrostatic
part of the solvation free energy by the Coulomb-field approx-
imation that we have developed recently.35, 36

Much of our work is devoted to the design, implemen-
tation, and test of accurate and efficient numerical methods
for solving the gradient-flow (i.e., the steepest descent) par-
tial differential equations of relaxing our phase-field free-
energy functional. We use a semi-implicit scheme for the
time discretization. In each time step, we use the spectral
method for the spatial discretization and use the fast Fourier
transformation to solve the linear system of equations of the
discretization.

We also apply our theory and method to several charged
molecular systems of different complexity. First, we con-
sider the hydration of some single ions and compare our
phase-field calculations with experiment. Our second system
consists of two hydrophobic plates for which we calculate
the potential of mean force with the plate-plate distance as
the reaction coordinate. The last system is the two-domain
protein biphenyl-2,3-diol-1,2-dioxygenase (BphC). For this
system, we compare our results with those of molecular
dynamics simulations26 and the sharp-interface variational
implicit-solvent modeling.36

We notice that several related issues, such as coupling the
solvent boundary to the optimization of overall energy, the
curvature effect to surface energy, and dewetting transition,
have been discussed in literature.25, 56–58 Other related models
and methods have also been proposed.4, 59–62 A similar solva-
tion model is proposed in Ref. 62, where the surface energy is
approximated by the integral of γ |∇S| with γ being the sur-
face energy density and S a field similar to our φ. However,
there are no terms in the total free-energy functional Gtotal (cf.
Eq. (7) in Ref. 62) that can keep the field S to be close to two
distinct values so that the system region can be partitioned
into the solute and solvent regions by the field S. Unless an
equilibrium boundary or field S is a priori known, the min-
imization of the total free-energy functional will smooth out
the field S to reduce the surface energy.
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The rest of the paper is organized as follows: In Sec. II,
we present our phase-field VISM for molecular solvation. In
Sec. III, we describe our computational methods for solving
the partial differential equation of the gradient-flow of the
phase-field free-energy functional. In Sec. IV, we apply our
theory and methods to the solvation of single ions, a two-plate
system, and the two-domain protein BphC. Finally, in Sec. V,
we draw conclusions of our studies.

II. THEORY

We consider a system of molecular solvation that occu-
pies a finite region � in R3. The system consists of solute
atoms located at x1, . . . , xN in � together with the solvent
that is treated as a continuum with a uniform density ρw. Let
ξ > 0 be a small parameter with units in length. In the frame-
work of VISM, we consider the following free-energy func-
tional of any phase field φ = φ(x) (x ∈ �):

Fξ [φ] = P

∫
�

φ2 dx + γ0

∫
�

[
ξ

2
|∇φ|2 + 1

ξ
W (φ)

]
dx

+ ρw

∫
�

(φ − 1)2U dx

+ 1

32π2ε0

(
1

εw
− 1

εm

)∫
�

(φ − 1)2

∣∣∣∣∣
N∑

i=1

Qi(x − xi)

|x − xi |3
∣∣∣∣∣
2

dx.

(1)

In the first term of the free-energy functional (1), P is
the difference between the pressure inside and outside solute
region. For a field φ with a low free energy, the integral in the
first term of Fξ [φ] is the volume of the solute region defined
by φ ≈ 1. Therefore, the first term describes the volumetric
contribution to the immersion of a solute molecule into the
solvent.

The second term of the free-energy functional (1) is the
effective surface energy of the solute-solvent interface. Here
and below, γ 0 is an effective macroscopic surface tension of
the solute-solvent interface. It can be different from that for
a flat solute-solvent interface. The function W = W (φ) is a
double-well potential. As usual, we choose

W (φ) = 18φ2(1 − φ)2,

where the pre-factor 18 is so chosen such that the integral
in the γ 0-term in (1) approximates the surface area, as ξ be-
comes small.

We note that in the sharp-interface VISM free-energy
functional, the surface energy is described by the integral on
the dielectric boundary 	 of γ flat(1 − 2τH), instead of γ 0

alone.28, 29 Here, γ flat is the usual value of surface tension for
a macroscopically flat solute-solvent interface. The additional
term −2γ flatτH is the curvature correction21, 28, 29, 63–65 where
H is the mean curvature (the average of the two principal
curvatures) and τ is a fit-parameter often called the Tolman
length or coefficient. In practice, one often uses τ ≈ 1 Å. For
high efficiency, we do not include such a curvature correction
to the surface tension in our phase-field formulation. Instead,
we us an effective, “global” constant surface tension γ 0. The

value of the effective surface tension γ 0 can be estimated by

γ0 area (	) = γflat

∫
	

(1 − 2τH ) dS.

For a single ion, 	 is a sphere. We can thus use the ionic van
der Waals radius and τ = 1 Å to get an estimate for γ 0 from
γ flat. In general, γ 0 is still a fit-parameter.

The third term of the free-energy functional (1) describes
the solute-solvent interaction that includes both the short-
range repulsion due to the excluded volume effect and the
long-range attraction. Here, the potential U = U (x) is given
by

U (x) =
N∑

i=1

U
(i)
LJ (|x − xi |), (2)

where U
(i)
LJ is the Lennard-Jones potential defined by

U
(i)
LJ (r) = 4εi

[(σi

r

)12
−

(σi

r

)6
]

. (3)

The parameters εi (in units kBT) and σ i (in units Å) can vary.
The last term in the free-energy functional (1) is the elec-

trostatic part of the solvation free energy. Its sharp-interface
version is derived in our previous work35 based on the
Coulomb-field approximation. In this term, ε0 is the vacuum
permittivity, εm and εw are the relative permittivities of the
solute and solvent, respectively, and Qi is the partial charge
of the ith solute atom located at xi (i = 1, . . . , N). To reduce
the error in approximating the electrostatic energy caused by
using a finite region �, we replace the region of integral �

in the last term in (1) by the entire space R3. Since the region
outside � is filled with solvent where φ = 0, this is equivalent
to adding the quantity

E(�) = 1

32π2ε0

(
1

εw
− 1

εm

) ∫
R3\�

∣∣∣∣∣
N∑

i=1

Qi(x − xi)

|x − xi |3
∣∣∣∣∣
2

dx.

(4)
In our recent work,53 we have proved mathematically that

the family of functionals Fξ [φ] parameterized by ξ > 0 con-
verges in certain sense (	-convergence) to the sharp-interface
solvation free-energy functional F[	] of all solute-solvent in-
terfaces 	,

F [	] = P vol (�m) + γ0 area (	) +ρw

N∑
i=1

∫
�w

Ui(|x − xi |) dx

+ 1

32π2ε0

(
1

εw
− 1

εm

)∫
�w

∣∣∣∣∣
N∑

i=1

Qi(x − xi)

|x − xi |3
∣∣∣∣∣
2

dx,

(5)

where �m and �w are the solute region and solvent region,
respectively, that are separated by the sharp, solute-solvent
interface 	. This mathematical result particularly implies the
following: if φξ = φξ (x) are a sequence of (local) minimiz-
ers of the phase-field free-energy functional Fξ , with the se-
quence of parameters ξ → 0, then φξ (x) converges to a char-
acteristic function, χ = χ (x), that only takes values 0 and 1 in
the entire solvation region �. The region �m (m for molecule)
defined by χ (x) = 1 is exactly the solute region containing all
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the solute particles x1, . . . , xN . The region �w (w for water)
defined by χ (x) = 0 is the solvent region. The interface, 	min,
that separates the solute and solvent regions minimizes the
sharp-interface solvation free-energy functional (5). More-
over, min Fξ [φ] (which is the same as Fξ [φξ ]) converges to
min F[	] (which is the same as F[	min]), as ξ approaches 0.

III. COMPUTATIONAL METHODS

To minimize the free-energy functional (1), we solve nu-
merically for a steady-state solution of the partial differential
equation of the gradient-flow (i.e., the steepest descent) of the
free-energy functional (1): ∂ tφ = −δφFξ [φ], where ∂ t denotes
the partial derivative with respect to t and δφ denotes the vari-
ational derivative with respect to φ. By routine calculations,
we can obtain the variational derivative δφFξ [φ]. The result-
ing equation for the phase field φ = φ(x, t) is

∂tφ = −2P φ + γ0

[
ξ�φ − 1

ξ
W ′(φ)

]
− 2ρw(φ − 1)U

− 1

16π2ε0

(
1

εw
− 1

εm

)
(φ − 1)

∣∣∣∣∣
N∑

i=1

Qi(x − xi)

|x − xi |3
∣∣∣∣∣
2

.

(6)

We solve this equation together with some initial condi-
tion φ(x, 0) = φ0(x) for some given φ0(x) and the periodical
boundary condition.

We use several kinds of initial phase fields φ0(x) in the
initial condition for solving the evolution equation (6). The
first one corresponds to a tight wrap: a surface that is close
to the van der Waals surface of the solute atoms. The second
one is a loose wrap: a surface that loosely encloses all the
solute atoms. An example of such a loose wrap is a sphere of
large radius. The third one is a combination of tight and loose
wraps.

We choose our computational domain to be � = (−L,
L)3 with a given L > 0 and cover it by a uniform grid of N3

s

grid points for some integer Ns > 1. We label all the three-
dimensional grid points by (i, j, k) with i, j, k = 0, 1, . . . ,
Ns. We also choose a time step �t > 0 and set tn = n�t (n
= 0, 1, . . . ). For a given function u = u(x, t), we denote by
u(n)(x) an approximation of u(x, tn) at time tn and by un

i,j,k an
approximation of u(xi,j,k, tn) at the grid point xi,j,k and time
tn. We use a semi-implicit scheme for the time discretization
of Eq. (6). We treat implicitly the terms −2Pφ and γ 0ξ�φ in
the right-hand side of (6), and treat the other terms explicitly.
As a result, we obtain the time discretization:

γ0ξ�t�φ(n+1) − (1 + 2P�t)φ(n+1)

= γ0�t

ξ
W ′ (φ(n)

) − φ(n)

+ �t
(
φ(n) − 1

) [
2ρwU + 1

16π2ε0

(
1

εw
− 1

εm

)

×
∣∣∣∣∣

N∑
i=1

Qi(x − xi)

|x − xi |3
∣∣∣∣∣
2
⎤
⎦ , n = 0, 1, . . . .

For each n ≥ 0, we use the Fourier spectral method to solve
the above elliptic equation with periodic boundary condi-
tion to obtain φ(n + 1). If the difference F[φ(n+1)] − F[φ(n)]
between the free-energy values of two consecutive iterates
φ(n) and φ(n+1) is smaller than a tolerance (e.g., 10−6), then
we stop the computation and use φ(n+1) as the steady-state
solution.

To evaluate the electrostatic energy, we need to com-
pute E(�) defined in (4). We notice that each xi is in-
side �. Moreover, (x − xi)/|x − xi |3 = −∇(1/|x − xi |) and
�(1/|x − xi |) = 0 in R3 \ �. Therefore, we have by Green’s
identity that for any i and j with 1 ≤ i, j ≤ N,∫

R3\�

(x − xi) · (x − xj )

|x − xi |3|x − xj |3 dx

=
∫
R3\�

∇
(

1

|x − xi |
)

· ∇
(

1

|x − xj |
)

dx

= −
∫

∂�

1

|x − xi |
∂

∂n

(
1

|x − xj |
)

dSx

=
∫

∂�

n(x) · (x − xj )

|x − xi | |x − xj |3 dSx,

where ∂/∂n denotes the normal derivative along the boundary
∂� of �, and n(x) is the unit normal to ∂� at x pointing from
inside to outside of �. If i 	= j then we have a symmetric form:

2
∫
R3\�

(x − xi) · (x − xj )

|x − xi |3|x − xj |3 dx

=
∫

∂�

n(x)

|x − xi | |x − xj | ·
(

x − xi

|x − xi |2 + x − xj

|x − xj |2
)

dSx.

Consequently,

E(�) = 1

32π2ε0

(
1

εw
− 1

εm

)[
N∑

i=1

Q2
i

∫
∂�

n(x) · (x − xi)

|x − xi |4 dSx

+
∑

1≤i<j≤N

QiQj

∫
∂�

n(x)

|x − xi | |x − xj |

·
(

x − xi

|x − xi |2 + x − xj

|x − xj |2
)

dSx

]
.

We now test our theory and method on a one-particle sys-
tem (N = 1). We place a single point charge Q at the origin
immersed in water. As the one-particle system is radially sym-
metric, the phase-field free-energy functional (1) reduces to
that of radially symmetric phase fields φ = φ(r) (N = 1 and
Q1 = Q):

F [φ] = 4πP

∫ ∞

0
[φ(r)]2r2 dr

+ 4πγ0

∫ ∞

0

[
ξ

2
|φ′(r)|2 + 1

ξ
W (φ(r))

]
r2 dr

+ 4πρw

∫ ∞

0
[φ(r) − 1]2 U (r)r2 dr

+ Q2

8πε0

(
1

εw
− 1

εm

) ∫ ∞

0

1

r2
[φ(r) − 1]2 dr, (7)
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TABLE I. A comparison of numerical results obtained by the phase-field calculations (solving the Euler-Lagrange equation (8)) and by the sharp-interface
calculations (minimizing numerically the function G[R] in (9)) for the solvation of a single-particle system. The sharp-interface results are presented in the last
column. See the text for the units.

Q Optimal radii/energy ξ = 0.5 ξ = 0.2 ξ = 0.05 ξ = 0.02 Sharp-interface

0.0 Rmin 3.003 3.026 3.045 3.048 3.054
Fsurf 19.861 20.153 20.389 20.426 20.511
FvdW − 2.595 − 2.635 − 2.610 − 2.583 − 2.644
Felec 0.000 0.000 0.000 0.000 0.000
Ftot 17.267 17.518 17.779 17.8431 17.867

0.5 Rmin 2.910 2.933 2.953 2.954 2.960
Fsurf 18.696 18.937 19.177 19.195 19.267
FvdW − 1.056 − 1.060 − 1.053 − 0.986 − 1.054
Felec − 23.032 − 23.157 − 23.171 − 23.193 − 23.173
Ftot − 5.391 − 5.280 − 5.0470 − 4.984 − 4.960

1.0 Rmin 2.724 2.756 2.764 2.768 2.771
Fsurf 17.024 16.842 16.863 16.856 16.886
FvdW 5.116 5.138 5.118 5.223 5.113
Felec − 99.529 − 99.256 − 99.131 − 99.106 − 99.012
Ftot − 77.389 − 77.276 − 77.150 − 77.027 − 77.017

1.5 Rmin 2.547 2.566 2.585 2.589 2.593
Fsurf 18.510 16.201 15.132 14.921 14.782
FvdW 19.127 18.532 18.143 18.056 17.971
Felec − 245.685 − 241.735 − 239.117 − 238.521 − 238.105
Ftot − 208.048 − 207.002 − 205.842 − 205.544 − 205.354

2.0 Rmin 2.403 2.422 2.440 2.445 2.448
Fsurf 28.520 19.597 14.854 13.855 13.178
FvdW 45.171 41.678 39.565 39.123 38.757
Felec − 483.156 − 464.071 − 452.592 − 450.081 − 448.317
Ftot − 409.465 − 402.796 − 398.173 − 397.103 − 396.381

where U(r) is given by (3) with N = 1, ε1 = ε, and σ 1 = σ . In-
stead of solving the corresponding time-dependent, gradient-
flow equation (6), we minimize the functional by solving the
corresponding Euler-Lagrange equation:

2Pr2φ − γ0ξ (r2φ′)′ + γ0

ξ
r2W ′(φ)

+
[

2ρwr2U (r) + Q2

16π2ε0

(
1

εw
− 1

εm

)
1

r2

]
(φ − 1) = 0.

(8)

We use the adaptive solver BVP4C in MATLAB to solve this
ordinary differential equation together with some boundary
conditions in the range 0 ≤ r ≤ R∞ with R∞ = 25 Å.

We compare our results of phase-field computations for
the one-particle system with those of the sharp-interface im-
plementation. For a one-particle system, the sharp-interface
free-energy functional (5) is a one-variable function of the ra-
dius R of the solute sphere centered at the origin. It is given
by Ref. 35:

G[R] = 4

3
πPR3 + 4πγ0R

2 + 16πρwε

(
σ 12

9R9
− σ 6

3R3

)

+ Q2

8πε0R

(
1

εw
− 1

εm

)
. (9)

This one-variable function can be minimized numerically
with a very high accuracy.

We use the following parameters: P = 0, T = 300 K,
γ 0 = 0.175 kBT /Å2 with kB the Boltzmann constant,

ρw = 0.0333 Å
−3

, ε = 0.3 kBT , σ = 3.5 Å, ε0 = 1.4321
× 10−4 e2/(kBT Å), εm = 1, and εw = 80. We test on a set of
Q-values (in units e): Q = 0.0, 0.5, 1.0, 1.5, 2.0. We use both
the sharp-interface and phase-field models to calculate the
optimal radius Rmin, the total minimum free energy Ftot, and
the corresponding surface energy Fsurf, solute-solvent van der
Waals interaction energy FvdW, and the electrostatic energy
Felec, respectively. For our phase-field calculations, we use
different values of the numerical parameter ξ (in units Å).
Table I shows our computational results. It is clear that as ξ

becomes smaller, the result of the phase-field model is also
closer to that of the sharp-interface model.

IV. APPLICATIONS

We now apply our phase-field variational implicit-solvent
model (P-VISM) to a few single ions, a two-plate system,
and the two-domain protein BphC. For each of these systems,
we use the following parameters: ξ = 0.5 Å, P = 0 bar,

T = 300 K, ρw = 0.0333 Å
−3

, ε0 = 1.4321 × 10−4 e2/

(kBT Å), εm = 1, and εw = 80. All the effective surface ten-
sion γ 0, the Lennard-Jones parameters εi and σ i (1 ≤ i ≤ N),
and the partial charges Qi (1 ≤ i ≤ N) will be specified later.
In all of our computations, we set the computational box to be
� = (−L, L)3 with L = 20 Å and use a grid with 256 × 256
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TABLE II. Solvation free energies (kBT) obtained by P-VISM, VISM, and experiment66 for single ions K+,
Na+, Cl−, and F−. The Lennard-Jones parameters ε (kBT) and σ (Å) are taken from Ref. 67. Different effective

values of the surface tension γ 0 (kBT/Å
2
) are used in the P-VISM calculations reported in the fourth and fifth

columns, respectively. The percentages in these two columns are the relative errors compared with the experiment.

Ions ε σ P-VISM (γ 0 = 0.175) P-VISM (γ 0 = 0.0583) VISM Experiment

K+ 0.008 3.85 − 103.7 (11.7%) − 112.0 (4.6%) − 112.3 − 117.5
Na+ 0.008 3.49 − 124.4 (14.4%) − 132.9 (8.6%) − 131.1 − 145.4
Cl− 0.21 3.78 − 114.3 (15.5%) − 125.9 (7.0%) − 126.7 − 135.4
F− 0.219 3.3 − 162.1 (12.4%) − 170.2 (8.1%) − 171.9 − 185.2

× 256 grid points to cover �. We also set the time step �t
= 0.1. After the final steady-state solution φ is reached, we
compute the 1/2-level set of φ, i.e., {x ∈ � : φ(x) = 1/2},
as the sharp solute-solvent interface. In calculating the
electrostatic part of the solvation energy for single anions, we
use a new phase field rescaled from our P-VISM equilibrium
phase field, effectively shrinking the dielectric boundary.35

A. Single ions

We use our P-VISM to calculate the solvation free en-
ergy for each of the single ions K+, Na+, Cl−, and F−. As
in the sharp-interface VISM,35 we calculate the electrostatic
part of the solvation free energy for anions Cl− and F− us-
ing a shifted dielectric boundary that is obtained by shrinking
the optimal solute-solvent boundary obtained by our P-VISM
by 1 Å, which is the length of the water OH bond, to include
the asymmetry effect.29, 35, 36 Specifically, we first compute a
free-energy minimizing phase field φ. We then calculate its
1/2-level set which is approximately a sphere, and also cal-
culate the radius r0 of this sphere. We further define a new
phase field φ∗(x) = φ(r0x/(r0 − 1)) and use it for calculating
the electrostatic part of the free energy. Note that the 1/2-level
set of φ* is a sphere approximately of radius r0 − 1, which is
the shifted dielectric boundary.

In Table II, we display the solvation free energies for each
of the four ions by our P-VISM, the sharp-interface VISM
(marked VISM),35 and experiment66 (converted from kJ/mol
to kBT). In the sharp-interface VISM calculations, the Tolman
coefficient is τ = 1 Å. We see that a good agreement among
our P-VISM, VISM, and experiment is reached. In particu-
lar, a smaller value of the effective surface tension provides a
better estimate of the solvation free energy.

B. Two parallel plates

We now consider the system of two parallel molecu-
lar plates that has been studied by the molecular dynamics
simulations68 and by the sharp-interface VISM.35 Each plate
consists of 6 × 6 fixed CH2 atoms with the atom-to-atom dis-
tance d0 = 2.1945 Å. The plate has a square length of about
30 Å. The two plates are placed in parallel with a center-to-
center distance d. We use the usual value of the surface ten-
sion γ0 = 0.175 kBT/Å

2
. The Lennard-Jones parameters for

the solute-solvent van der Waals interaction are ε = 0.3 kBT

and σ = 3.5 Å, same for all the solute atoms. To study the

charge effect, as in Ref. 35, we assign central charges q1

and q2 to the first and second plates, respectively, with |q1|
= |q2|. The total charges of these two plates are 36q1 and
36q2, respectively. We choose the values of (q1, q2) to be
(0 e,0 e), (+0.1 e,−0.1 e), (+0.1 e,+0.1 e), (+0.2 e, −0.2 e),
and (+0.2 e,+0.2 e). For each of some selected values of d,
we solve Eq. (6) to obtain the steady-state solution which in
turn determines a stable equilibrium solute-solvent interface.
We use two different types of initial phase fields. One is a tight
wrap, which consists of two surfaces, tightly wrapping up the
two plates, respectively. The other corresponds to a large box
containing both of the plates.

Figure 1 shows typical snapshots from our numerical re-
laxation. We observe that, with the plate-plate separation d
= 16 Å and partial charges (q1, q2) = (0.1 e, 0.1 e), there are
two stable, equilibrium conformations. One is a wet state in
which the solute-solvent interface wraps tightly around the
solute atoms, and the solvent molecules get in between the
two plates. This state is reached with a tight initial; cf. the last
one in the top row. The other is a (partially) dry state in which
the solvent molecules are repelled. This state is reached with
a loose initial; cf. the last one in the bottom row.

To study the charge effect to the wetting and drying
of the plates, we fix the plates with the plate-plate separa-
tion d = 12 Å and assign partial charges (q1, q2) = (0 e, 0 e),
(0.2 e, 0.2 e), and (−0.2 e, 0.2 e), respectively. For each pair
of partial charges, we numerically relax our P-VISM func-
tional using a loose initial. In Figure 2, we show the three
final, stable, equilibrium conformations of the two plates. We
see that if the plates are equally like-charged, then a stable
capillary bubble remains but with a tighter surface when com-
pared to the uncharged case q1 = q2 = 0 e. This is because the
oppositely directed electrostatic field cancels out in the void
and the water distribution is hardly affected. If the plates are
charged oppositely, capillary evaporation is suppressed and
the final state is wet. This is because the strong electric field
between the plates drags the polar water into the void. Overall,
the charging suppresses the capillary evaporation, showing
the sensitive coupling between electrostatics and hydropho-
bicity in aqueous solvation. We note that the P-VISM equi-
librium surfaces obtained with tight initials are all very sim-
ilar to the right one in Figure 2, regardless how charges are
distributed.

We now study the potential of mean forces (PMF) with
the reaction coordinate being the plate-plate separation d
(in Å). Let φd be a free-energy minimizing phase field
corresponding to a given reaction coordinate d. The total
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FIG. 1. Snapshots from numerical relaxation of the two-plate system. A red region indicates the solute region without solvent. Outside the red region is the
solvent region. Each red surface is defined as the 1/2-level set of a phase-field function {x : φ(x, t) = 1/2} at some relaxation time t, where φ(x, t) solves
Eq. (6). In these computations, the plate-plate separation is fixed to be d = 16 Å and the partial charges are fixed to be (q1, q2) = (0.1 e, 0.1 e). In each row from
left to right, the first is the initial surface and the last is the corresponding final, steady-state surface.

solvation free energy F[φd] is the sum of the geometrical
part (the surface energy) Fgeom[φd], the solute-solvent van der
Waals interaction energy FvdW[φd], and the electrostatic en-
ergy Felec[φd]:

F [φd ] = Fgeom[φd ] + FvdW[φd ] + Felec[φd ].

As in Refs. 35 and 36, we define the (total) PMF by

GPMF
tot (d) = GPMF

geom(d) + GPMF
vdW(d) + GPMF

elec (d),

with

GPMF
geom(d) = Fgeom[φd ] − Fgeom[φ∞],

GPMF
vdW(d) = FvdW[φd ] − FvdW[φ∞]

+
∑

i∈Plate I

∑
j∈Plate II

Ui,j (|xi − xj |),

G
pmf
elec(d) = Felec[φd ] − Felec[φ∞]

+ 1

4πεmε0

∑
i∈Plate I

∑
j∈Plate II

QiQj

|xi − xj | .

FIG. 2. Stable equilibrium solute-solvent surfaces of the two-plate system
obtained by the P-VISM calculations with loose initials. A red region in-
dicates the solute region without solvent. Outside the red region is the sol-
vent region. Each red surface is defined as the 1/2-level set of a phase-field
function {x : φ(x, t) = 1/2} at some relaxation time t, where φ(x, t) solves
Eq. (6). The plate-plate separation is fixed to be d = 12 Å. From left to right,
the partial charges are (q1, q2) = (0 e, 0 e), (0.2 e, 0.2 e), and (−0.2 e, 0.2 e),
respectively.

Here a quantity at ∞ is understood as the limit of that quantity
at a coordinate d′ as d′ → ∞, and Ui, j is the Lennard-Jones
interaction potential between xi and xj . A quantity at ∞ can
be calculated by doubling that of a single plate.

For a given reaction coordinate d there can be multiple
stable equilibrium phase fields φd that are local minimiz-
ers of the P-VISM free-energy functional. Different local
minimizers for the same coordinate d define multiple local
minimum free energies. Therefore, the PMF can have mul-
tiple branches along the reaction coordinate d, and hence
can lead to hysteresis. Strictly speaking, therefore, our PMFs
are different from those defined using a Boltzmann average
over all possible minimizers. Rather, our PMFs reflect pos-
sible branches of the VISM free energy along the reaction
coordinate d.

Figure 3 shows the two different PMF branches for
the two-plate system with several, different values of par-
tial charges. These PMFs exhibit clearly the bimodal behav-
ior and hysteresis of the system. For the neutral plates (cf.
Figure 3, left), a strong hysteresis is present for 6 � d � 16 Å.
Adding charges influences the free-energy branches and hys-
teresis as shown in Figure 3 (middle and right). However, only
in the case of oppositely charged plates, the changes are sig-
nificant as a strong electrostatic field develops in between the
hydrophobic plates.

In Figures 4 and 5, we plot the different components of
the PMF with loose and tight initial surfaces, respectively.
For the loose initials (Figure 4), the geometric part displays a
strong attraction below a critical distance dc at which capillary
evaporation begins. The crossover distance decreases from dc

� 20 Å for (q1, q2) = (−0.2 e, +0.2 e) down to 9 Å for (q1,
q2) = (0 e, 0 e). The value 20 Å is larger than 14 Å predicted
by the sharp-interface VISM where the curvature correction
was included. Note that the opposite charging has a much
stronger effect than like-charging due to the electrostatic field
distribution discussed above. Also the solute-solvent vdWS
part of the interaction is strongly affected by electrostatics due
to the very different surface geometries induced by charging.
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FIG. 3. The two PMF branches corresponding to the wet (red and circles) and dry (blue and +) states, in certain range of d, for the two plates carrying different
partial charges (q1, q2).

Both curves GPMF
geom(d) and GPMF

vdW(d) demonstrate the strong
sensitivity of nonpolar hydration to local electrostatics when
capillary evaporation occurs and very “soft” surfaces are
present. For the surfaces resulting from the tight initials
(Figure 5), the situation is a bit less sensitive to electrostat-
ics as the final surface is closer to the vdWS surface for
dc � 6 Å.

C. The protein BphC

We now apply our P-VISM to BphC, a key enzyme of
biphenyl biodegradation pathway in Pseudomonos sp. The
functional unit of this protein is a homo-octamer, and each
subunit consists of two domains. This system has been care-
fully studied by molecular dynamics simulations26 and by the
sharp-interface VISM.35, 36 These studies indicate a strong in-
terplay between hydrophobic and electrostatic contributions
to the structure of protein-water interface. Our study here is

close to that by the sharp-interface VISM.35, 36 We choose
several values of the domain separation d for which d = 0
is the native configuration in crystal structure (PDB code:
1dhy). For each fixed d value, we apply our P-VISM to
compute the solvation free energy and the equilibrium BphC
surface.

In Figure 6 we show our P-VISM computational results
of six BphC surfaces at three different domain separations
with and without atomic partial charges. In these calculations,

we set the effective surface tension to be γ0 = 0.13 kBT/Å
2
.

At d = 8 Å, the P-VISM identifies the inter domain region as
partially solvent excluded when atomic charges are included,
and as completely solvent excluded without any atomic partial
charges. The interface wraps around the protein more tightly
with charges than that without them due to the attractive
nature of the polar interactions between solute and solvent. At
d = 14 Å, the uncharged and charged BphC molecules pose
topologically distinct solute-solvent interfaces. With polar
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G
ge

om
P

M
F

( 
k B

T
 )

 

 

4 6 8 10 12 14 16 18 20 22 24

0

50

100

150

d (Å )
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FIG. 4. Different components of the PMF for the two-plate system for different charge combinations (q1, q2) (see legend) obtained by the phase-field VISM
with loose initial surfaces.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  128.164.177.168 On: Fri, 02 Sep

2016 02:04:56



024111-9 Zhao et al. J. Chem. Phys. 139, 024111 (2013)

4 6 8 10 12 14 16 18 20 22 24
−300

−200

−100

0

100

d (Å)
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FIG. 5. Different components of the PMF for the two-plate system for different charge combinations (q1, q2) (see legend) obtained by the phase-field VISM
with tight initial surfaces.

interactions, both domains are completely solvated. By con-
trast, the center of the domain interface still remains low water
occupancy without electrostatic interactions. At d = 16 Å,
such topological distinction is more significant. All these are
consistent with the results from atomistic simulations, where
dewetting extends to a much greater region without polar
interactions. It is clear that charges modify the solute-solvent
interface dramatically for BphC. Compared with traditional
surfaces, such as vdWS, SES, or SAS, the P-VISM surfaces
are topologically similar at small and large inter domain
separations. However, a traditional surface would break
into two independent surfaces for large d regardless charge
distribution.

FIG. 6. The phase-field VISM calculations of the BphC with loose initials.
Red indicates a solute region. Upper row: with partial charges. Lower row:
without partial charges. From the left to right in each row, the protein-protein
separation is d = 8, 14, 16 Å, respectively.

To test how the effective surface tension can qual-
itatively change the equilibrium structures of the pro-
tein BphC, we perform our P-VISM computations with
three different values of the effective surface tension γ0

= 0.175, 0.13, 0.08 kBT/Å
2
, respectively. We fix the protein-

protein separation d = 14 Å and use loose initials. The com-
putational results are shown in Figure 7. Without charges, the
change of the effective surface tension can affect significantly
the equilibrium conformations. However, such variation of ef-
fective surface tension does not affect the equilibrium con-
formations when charges are turned on. This indicates that
the electrostatics dominates the hydrophobic interaction in the
system.

FIG. 7. P-VISM surfaces of BphC with loose initials and d = 14 Å.
Red indicates a solute region. Upper row: with partial charges. Lower
row: without partial charges. From left column to right column: γ0

= 0.175, 0.13, 0.08 kBT/Å
2
.
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V. CONCLUSIONS

We have developed a new P-VISM for the prediction of
equilibrium structures and solvation free energies of charged
molecules in an aqueous solution. This model is based on
the minimization of a solvation free-energy functional of all
phase fields. A phase field φ = φ(x) with a low solvation free
energy partitions the entire solvation region into the solute re-
gion where φ(x) ≈ 1, the solvent region where φ(x) ≈ 0, and
a thin transition layer that defines a diffuse solute-solvent in-
terface. As in the sharp-interface variational implicit-solvent
approach, the free-energy functional consists of surface en-
ergy, solute-solvent van der Waals interaction energy of short-
range repulsion and long-range attraction, and the electro-
static energy. The surface energy is modeled by the integral
of the gradient of phase field and a double-well potential of
phase field, with a proper numerical scaling. The electrostatic
interaction is described by the Coulomb-field approximation.
In our recent work,53 we have proved mathematically that
our phase-field free-energy functional converges in certain
sense to the sharp-interface one as the numerical parameter
approaches zero. We minimize the free-energy functional by
solving the time-dependent, gradient-flow equation with an
initial phase field often chosen as a tight or loose surface en-
closing all the solute particles. We design and implement nu-
merical methods to solve such an equation for steady state
solutions.

Our applications to a few single ions, two parallel
charged plates, and the protein BphC have shown that our the-
ory and methods can predict qualitatively well the solvation
free energies for these systems. Moreover, we have been able
to capture multiple equilibrium states of wet and dry for the
two-plate system and the protein BphC. Such multiple states
exist generally in other biomolecules in solution. They lead
to the system hysteresis and fluctuations. But they are hard to
be described by implicit-solvent models of fixed-surface type.
Further, we have found from two plates to a complex protein
that charges impact strongly on the process of hydration and
dehydration. These results are in parallel to those obtained by
our previous studies using a sharp-interface VISM.35, 36 In ad-
dition, we have found that by using an effective surface ten-
sion, we can provide relatively good estimates of the solva-
tion free energies. The variation of effective surface tension
can change the conformation of a nonpolar molecule. Such
variation, however, affects little to a charged molecule.

We now compare our P-VISM with the previously de-
veloped sharp-interface VISM. First, in a real molecular sys-
tem, a solute-solvent interface fluctuates,69 and hence is re-
ally a diffuse interface. A phase-field description of such an
interface seems to be more reasonable. However, such a de-
scription introduces a fit-parameter, the numerical parameter
ξ , that needs to be adjusted. Second, in our current P-VISM,
we do not have the curvature correction in the surface energy.
Such correction can be included in the sharp-interface VISM.
Sometimes, this curvature correction is crucial in providing
an accurate estimate of the solvation free energy. As we have
found, such curvature correction can be achieved by using an
effective surface tension. Moreover, the variation of such sur-
face tension does not strongly affect a charged molecular sys-

tem. Third, both the sharp-interface VISM implemented by
the level-set method and our current P-VISM are similar in
terms of accuracy and efficiency. For the phase-field imple-
mentation, one cannot choose the numerical parameter ξ to
be too small, as otherwise one will need to have many more
grid points to resolve the interface. This will then lead to the
computational system to be too large, if one does not use lo-
cal adaptivity which itself may slow down the computation.
Finally, the most important reason that we develop our cur-
rent P-VISM is that fluctuations of solute-solvent interfaces,
critically important in biomolecular conformational changes,
are in general hard to describe through a sharp-interface
description.

As in many phase-field applications, we have treated the
parameter ξ as a purely numerical parameter. (In the literature
of phase filed, ε is often used to denote this numerical pa-
rameter.) In general, this parameter ξ describes the interfacial
thickness. In the context of molecular solvation, such thick-
ness of a solute-solvent interface can be curvature dependent.
It is determined by molecular roughness and the interfacial
fluctuations.69–71 In this work, we select this parameter ξ to be
a fraction of 1 Å for the molecular roughness. It is interesting
to further study how the interfacial fluctuations can change
such a thickness and how such changes can be incorporated
in our phase-field model.

We are currently working to incorporate the Poisson-
Boltzmann equation into our P-VISM to better describe the
electrostatic interaction. We are also developing a method to
include system fluctuations through a phase-field description.
In future it is possible to combine our P-VISM with molecular
dynamics simulations to describe hydration shells, the distri-
bution of water molecules, and other more detailed molecular
properties of a solvation system.
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