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Purpose – The paper discusses the concept of a reflexive domain, an arena where the 
apparent objects as entities of the domain are actually processes and transformations of 
the domain as a whole. Human actions in the world partake of the patterns of reflexivity, 
and the productions of human beings, including science and mathematics, can be seen in 
this light. 

Methodology – Simple mathematical models are used to make conceptual points. 

Context – The paper begins with a review of the author’s previous work on eigenforms - 
objects as tokens for eigenbehaviors, the study of recursions and fixed points of 
recursions. The paper also studies eigenforms in the Boolean reflexive models of 
Vladimir Lefebvre. 

Findings –The paper gives a mathematical definition of a reflexive domain and proves 
that every transformation of such a domain has a fixed point. (This point of view has 
been taken by W. Lawvere in the context of logic and category theory.) Thus eigenforms 
exist in reflexive domains. We discuss a related concept called a “magma.” A magma is 
composed entirely of its own structure-preserving transformations. Thus a magma can be 
regarded as a model of reflexivity and we call a magma “reflexive” if it encompasses all 
of its structure-preserving transformations (plus a side condition explained in the paper). 
We prove a fixed point theorem for reflexive magmas. We then show how magmas are 
related to knot theory and to an extension of set theory using knot diagrammatic 
topology. This work brings formalisms for self-reference into a wider arena of process 
algebra, combinatorics, non-standard set theory and topology. The paper then discusses 
how these findings are related to lambda calculus, set theory and models for self-
reference. The last section of the paper is an account of a computer experiment with a 
variant of the Life cellular automaton of John H. Conway. In this variant , 7-Life, the 
recursions lead to self-sustaining processes with very long evolutionary patterns. We 
show how examples of novel phenomena arise in these patterns over the course of large 
time scales.  

Value – The paper provides a wider context and mathematical conceptual tools for the 
cybernetic study of reflexivity and circularity in systems. 

Keywords – Reflexive, eigenform, cybernetics, Boolean algebra, knots, magma, Russell 
paradox, cellular automata 

1. Introduction 

“Reflexive” is a term that refers to the presence of a relationship between an entity and 
itself. One can be aware of one’s own thoughts. An organism produces itself through its 
own action and its own productions. A market or a system of finance is composed of 



actions and individuals, and the actions of those individuals influence the market just as 
the global information from the market influences the actions of the individuals. Here it is 
the self-relations of the market through its own structure and the structure of its 
individuals that moves its evolution forward. Nowhere is there a way to cut an individual 
participant from the market effectively and make him into an objective observer. His 
action in the market is concomitant to his being reflexively linked with that market. It is 
just so for theorists of the market, for their theories, if communicated, become part of the 
action and decision-making of the market. Social systems partake of this same reflexivity, 
and so does apparently objective science and mathematics. In order to see the reflexivity 
of the practice of physical science or mathematics, one must leave the idea of an 
objective domain of investigation in brackets and see the enterprise as a wide-ranging  
conversation among a group of investigators. Then, at once, the process is seen to be a 
reflexive interaction among the members of this group. Mathematical results, like all 
technical inventions, have a certain stability over time that gives them an air of 
permanence, but the process that produces these novelties is every bit as fraught with 
circularity and mutual influence as any other conversation or social interaction. 

How then, shall we describe a reflexive domain? It is the purpose of this paper to give a 
very abstract definition that nevertheless captures what I believe to be the main 
conceptual feature of reflexivity. We then immediately prove that eigenforms, fixed 
points of transformations, are present for all transformations of the reflexive domain. This 
will encourage us and will give us pause to think further about the relationship of 
reflexivity and eigenform. 

The existence of eigenforms will encourage us, for we have previously studied them with 
the notion that “objects are tokens for eigenbehavior.” Eigenforms are the natural 
emergence of those tokens by way of recursion. So to find the eigenforms dictated by a 
larger concept is pleasing.  The existence of fixed points for arbitrary transformations 
shows us that the domain we have postulated is indeed very wide. It is not an objectively 
existing domain. It is a clearing in which structures can arise and new structures can 
arise. A reflexive domain is not an already-existing structure. To be what it claims to be, 
a reflexive domain must be a combination of an existing structure and an invitation to 
create new structures and new concepts. The new will become platforms from which 
further flights of creativity can be made. Thus in the course of examining the concept of 
reflexivity we will find that the essence of the matter is an opening into creativity; and 
that will become the actual theme of this paper. 

This essay begins with a discussion of the notion of “eigenform” as pioneered by Heinz 
von Foerster in his papers (Foerster 1981a–c) and explored in papers by the author 
(Kauffman 1987, 2003, 2005). We include some of the material from (Kauffman 2005) in 
this paper for the sake of completeness. In (Foerster 1981a) the familiar objects of our 
existence can be seen to be nothing more than tokens for the behaviors of the organism, 
creating apparently stable forms.  

In this view, the object is both an element of a world and a token or symbol for the 
process of its production/observation.  

An object, in itself, is a symbolic entity, participating in a network of interactions, taking 
on its apparent solidity and stability from these interactions. We ourselves are such 



objects: we, as human beings, are “signs for ourselves,” a concept originally developed 
by the American philosopher, Charles S. Peirce (Kauffman 2001). Eigenforms are 
mathematical companions to Peirce’s work.  

In an observing system, what is observed is not distinct from the system itself, nor can 
one make a complete separation between the observer and the observed. The observer 
and the observed stand together in a coalescence of perception. From the stance of the 
observing system, all objects are non-local, depending upon the presence of the system as 
a whole. It is within that paradigm that these models begin to live, act and enter into 
conversation with us.  

After this journey into objects and eigenforms, we take a wider stance and consider the 
structure of spaces and domains that partake of the reflexivity of object and process. In 
Section 6 we give a definition of a reflexive domain. Our definition populates a space 
(domain) with entities that could be construed as objects, and we assume that each object 
acts as a transformation on the space. Essentially this means that given entities A and B, 
there is a new entity C that is the result of A and B acting together in the order AB (so 
that one can say that “A acts on B” for AB and “B acts on A” for BA). This means that 
the reflexive space is endowed with a non-commutative and non-associative algebraic 
structure. The reflexive space is expandable in the sense that whenever we define a 
process, using entities that have already been constructed or defined, then that process 
can take a name, becoming a new entity/transformation of a space that is expanded to 
include itself. Reflexive spaces are open to evolution over time as new processes are 
invented and new forms emerge from their interaction.  

Remarkably, reflexive spaces always have eigenforms for every 
element/transformation/entity in the space! The proof is simple but requires discussion.  

Given F in a reflexive domain, define G by Gx = F(xx). 

Then GG = F(GG) and so GG is an eigenform for F.  

Just as promised, in a reflexive domain, every entity has an eigenform. From this 
standpoint, one should start with the concept of reflexivity and see that from it emerge 
eigenforms. Are we satisfied with this approach? We are not.  In order to start with 
reflexivity, we need to posit objects and processes. As we have already argued in this 
essay, objects are tokens for eigenbehaviors. And a correct or natural beginning is a 
process where objects are seen as tokens of processes.  

By now the reader begins to see that the story we have to tell is a circular one. We give a 
way to understand this circularity in our last section, where we discuss creativity in 
recursive processes and the emergence of novelty. 

The paper continues in Section 6 by studying an allied concept that we call a magma. A 
magma is a domain with a binary operation * that allows one to combine elements a and 
b of the domain to form a new element a * b of that domain. In the magma each element 
a is also a mapping of the domain to itself via left combination: x  a * x. We assume 
that each such transformation preserves the structure of the combinatory operation. 
Magmas are very close in concept to reflexive domains. We define the notion of a 



reflexive magma and show that such magmas satisfy a fixed point theorem and so contain 
eigenforms. In Section 7 we show how magmas arise naturally in the context of knot 
theory and a theory of knot sets. Sections 8 and 9 discuss the relationships of reflexivity 
with the lambda calculus of Church and Curry and with Cantor’s diagonal argument and 
the Russell paradox. Section 10 is a minimalist discussion of self-reference and 
reflexivity in relation to the conceptualization of a universe that comes to observe itself. 
Section 11 is an account of a computer experiment with a variant of the Life cellular 
automaton of John H. Conway. In this variant that we have discovered, 7-Life, the 
recursions lead to self-sustaining processes with very long evolutionary patterns. We 
show how examples of novel phenomena arise over the course of large time scales. This 
example will be a later springboard for the discussion of the emergence of novelty from 
deterministic processes. Here, it is an example showing how the course of a process is 
just as important as its eigenform or infinite concatenation.  

The paper ends with a discussion of the wider context of reflexivity. We are acutely 
aware that this paper about reflexivity only gives certain conceptual tools and does not 
yet address the actuality of the reflexive condition of persons and observers who are 
inextricably part of the universes that they hope to study. In so doing they will adopt 
points of view and these very points of view will create patterns, new forms, objects of 
study and will act as a veil over the original intent. It is only through working with many 
points of view and many investigations that the particularities of single lenses will begin 
to fall away and a wider understanding will emerge. 

2. Objects as tokens for eigenbehaviors  

In his paper Objects as Tokens for Eigenbehaviors, von Foerster (1981a) suggests that we 
think seriously about the mathematical structure behind the constructivist doctrine that 
perceived worlds are worlds created by the observer. At first glance such a statement 
appears to be nothing more than solipsism. At second glance, the statement appears to be 
a tautology, for who else can create the rich subjectivity of the immediate impression of 
the senses? At third glance, something more is needed. In that paper he suggests that the 
familiar objects of our experience are the fixed points of operators. These operators are 
the structure of our perception. To the extent that the operators are shared, there is no 
solipsism in this point of view. It is the beginning of a mathematics of second order 
cybernetics. 

Consider the relationship between an observer O and an “object” A. The key point about 
the observer and the object is that “the object remains in constant form with respect to the 
observer.” This constancy of form does not preclude motion or change of shape. Form is 
more malleable than the geometry of Euclid. In fact, ultimately, the form of an “object” is 
the form of the distinction that “it” makes in the space of our perception. In any attempt 
to speak absolutely about the nature of form we take the form of distinction for the form 
(paraphrasing Spencer-Brown 1969). It is the form of distinction that remains constant 
and produces an apparent object for the observer. How can you write an equation for 
this? The simplest route is to write 

O(A) = A. 



The object A is a fixed point for the observer O. The object is an eigenform. We must 
emphasize that this is the most schematically possible description of the condition of the 
observer in relation to an object A. We only record that the observer as an actor 
(operator) manages through his acting to leave the (form of) the object unchanged. This 
can be a recognition of the symmetry of the object but it also can be a description of how 
the observer, searching for an object, makes that object up (like a good fairy tale) from 
the very ingredients that are the observer herself. This is the situation that Heinz von 
Foerster has been most interested in studying. As he puts it, if you give a person an 
undecideable problem, then the answer that he gives you is a description of himself. And 
so, by working on hard and undecideable problems we go deeply into the discovery of 
who we really are. All this is symbolized in the little equation O(A) = A. 

And what about this matter of the object as a token for eigenbehavior? This is the crucial 
step. We forget about the object and focus on the observer. We attempt to “solve” the 
equation O(A) = A with A as the unknown. Not only do we admit that the “inner” 
structure of the object is unknown, we adhere to whatever knowledge we have of the 
observer and attempt to find what such an observer could observe based upon that 
structure. 

We can start anew from the dictum that the perceiver and the perceived arise together in 
the condition of observation. This is a stance that insists on mutuality (neither perceiver 
nor the perceived causes the other). A distinction has emerged and with it a world with an 
observer and an observed. The distinction is itself an eigenform.  

3. Compresence and coalescence 

We identify the world in terms of how we shape it. We shape the world in response to 
how it changes us. We change the world and the world changes us. Objects arise as 
tokens of a behavior that leads to seemingly unchanging forms. Forms are seen to be 
unchanging through their invariance under our attempts to change, to shape them. 

For an observer there are two primary modes of perception – compresence and 
coalescence. Compresence connotes the coexistence of separate entities together in one 
including space. Coalescence connotes the one space holding, in perception, the observer 
and the observed, inseparable in an unbroken wholeness. Coalescence is the constant 
condition of our awareness. Coalescence is the world taken in simplicity; compresence is 
the world taken in apparent multiplicity. 

This distinction between compresence and coalescence, drawn by Henri Bortoft (1971), 
can act as a compass in traversing the domains of object and reference. Eigenform is a 
first step towards a mathematical description of coalescence. In the world of eigenform, 
the observer and the observed are one in a process that recursively gives rise to each. 

4. The eigenform model 

We have seen how the concept of an object has evolved to make what we call objects 
(and the objective world), processes that are interdependent with the actions of observers. 



The notion of a fixed object has become a notion of a process that produces the apparent 
stability of the object. This process can be simplified in a model to become a recursive 
process where a rule or rules are applied time and time again. The resulting object of such 
a process is the eigenform of the process, and the process itself is the eigenbehavior.  

In this way we have a model for thinking about object as token for eigenbehavior. This 
model examines the result of a simple recursive process carried to its limit. For example, 
suppose that 

F(X) = X

 

That is, each step in the process encloses the results of the previous step within a box. 
Here is an illustration of the first few steps of the process applied to an empty box, X:  

X F(X) F(F(X)) F(F(F(X)))  

If we continue this process, then successive nests of boxes resemble one another, and in 
the limit of infinitely many boxes, we find that  

...X=F(F(F(...)))=

...F(X) = = X

 



The infinite nest of boxes is invariant under the addition of one more surrounding box. 
Hence this infinite nest of boxes is a fixed point for the recursion. In other words, if X 
denotes the infinite nest of boxes, then 

X = F(X).  

This equation is a description of a state of affairs. The form of an infinite nest of boxes is 
invariant under the operation of adding one more surrounding box. The infinite nest of 
boxes is one of the simplest eigenforms. 

Remark. On reading the above description of the limiting process  

X ---> F(X) ---> F(F(X)) ---> ... 

the reader may find herself thinking along the following lines: “Doesn’t he mean to put 
those three dots in the nested boxes on the outside of the boxes rather than on the inside? 
After all, the operation F surrounds X with a square, so at each stage, a square is added 
from the outside. Shouldn’t the picture then be like this one below?” 

 

“I have illustrated the new picture with the three dots on the left, the right, the top and the 
bottom to show how in this way of thinking the nest of boxes grows outward and 
consequently it grows in all these directions. If we take this construction to infinity, then 
it will either fill the plane with boxes, or the widths between successive boxes will have 
to grow smaller and smaller, just as, with the three dots inside, you had to make the boxes 
smaller and smaller. But really, this second picture is quite different from the first picture. 
In fact if we do make the second picture, and imagine that it is a solution to the equation 
F(X) = X, it does not seem to be a solution! Look at the picture below.” 



 

“Now I have put a box around the outwardly growing infinite nest of boxes, but this 
means that I have allowed an infinite number of boxes to grow there (going out but 
staying in a finite amount of space by crowding one next to another) and then I put one 
more box around all of them. The result is not the same! This is a new form of boxes. 

So with the outward growth, I make new infinities, but I do not solve the equation X = 
F(X). Now I see what you were doing with the inward nest of boxes. You let it grow 
inwardly and obtained a limit form that did not see the one box more that you put around 
the outside. I had to try this other method in order to see what you were doing. And I am 
sure that other readers will have to experiment in this way and in new ways to really 
understand this construction of eigenforms.” 

Comment on the remark. Indeed the patient reader was right that there is more than one 
way to go to infinity. A simpler example can be seen in the equation x = ax where we 
solve it by letting x = aaa..., an infinite repetition of a’s going off to the right. 

Then  

ax = a(aaa...) = aaaa... = aaa... = x. 

But if we do it in the other order and take xa, we find that  

xa = aaaa...a 

which means an infinite row of a’s followed by one more a. 

And we see that in this way of thinking xa is not equal to ax. 

Similarly, y = ...aaa is not a solution to ay = y but it is a solution to ya = a. This may seem 
a bit strange and abstract, so it is better to think with the boxes (I think). But in ordinary 
mathematics we use this same sort of infinite construction. For example, we write 

x = 1 + a + aa + aaa + aaaa + ... 



and rewrite it in the form 

x = 1 + a(1 + a + aa + aaa + ...) = 1 + ax 

and conclude that  

x – ax = 1, 

x(1 – a) = 1, 

x = 1 / (1 – a). 

Hence 

1 / (1 – a) = 1 + a + aa + aaa + aaaa + ... 

Here we are using aa for the product of a with itself, so these can be numbers. And one 
can verify that indeed if a is a number and the absolute value of a is less than one, then 
this formula is true. For example, if a = 1 / 2, then 1 / (1 – (1 / 2)) = 2 and the formula 
asserts that 

2 = 1 + 1/2 + 1/4 + 1/8 + 1/16 + .... 

This is true, and the reader should ask herself how she knows that it is true! The reader 
will also be interested in seeing what happens when a is bigger than or equal to 1 in 
absolute value. For example, if a = 2, then our formula would seem to say that  

-1 = 1 + 2 + 4 + 8 + 16 + 32 + ... 

Is there some truth in this absurdity? 

We can see what has actually happened by making a closer analysis. 

Let X = 1 + 2 + 4 + ... + 2N where 2N means 2 multiplied by itself N times. Then we have 

X = 1 + 2(1 + 2 +... + 2N–1), 

X = 1 + 2(1 + 2 +... + 2N–1 + 2N) – 2(2N), 

X = 1 + 2X – 2N + 1, 

So we have 

X – 2X = 1 – 2N + 1, 

which is the same as saying 

X = –1 + 2N + 1. 



Do you see what has happened? We are interested in finding out what happens when N 
goes to infinity. But here if we ignore the term 2N+1 we will get the wildly wrong answer 
of –1. You have to take infinity with a grain of salt as well as looking at it as the vastness 
of all the grains of sand on the beach. End of Comment. 

A further comment: Perhaps you thought that we showed that the equation:  -1 = 1 + 2 + 
4 + … is wrong. There is a point of view in which it is right! Consider that in binary 
arithmetic we represent 1 by 1, 2 by 10, 4 by 100, 8 by 1000 and so on. Then 1+ 2+ 4 + 8 
is represented in binary by 1111, and when you add 1 to 1111 you find a series of carrys 
taking you to the answer 10000. Suppose you had a computer that could only handle 
binary numbers up to four bits. Then when you added 1 to 1111 you would get 0000, 
since the computer would throw away the last bit. In this sense 1111 represents -1 in such 
a limited computer, and in the same way the infinite sum 1+2+4+8+… represents -1 in 
an infinite computer that is not prepared to have bits beyond the first infinity!  

In the process of observation, we interact with ourselves and with the world to produce 
stabilities that become the objects of our perception. These objects, like the infinite nest 
of boxes, may go beyond the specific properties of the world in which we operate. They 
attain their stability through the limiting process that goes outside the immediate world of 
individual actions. We make an imaginative leap to complete such objects to become 
tokens for eigenbehaviors. It is impossible to make an infinite nest of boxes. We do not 
make it. We imagine it. And in imagining that infinite nest of boxes, we arrive at the 
eigenform.  

The leap of imagination to the infinite eigenform is a model of the human ability to create 
signs and symbols. In the case of the eigenform X with X = F(X), X can be regarded as 
the name of the process itself or as the name of the limiting process. Note that if you are 
told that  

X = F(X),  

then, substituting F(X) for X, you can write 

X = F(F(X)). 

Substituting again and again, you have 

X = F(F(F(X))) = F(F(F(F(X)))) = F(F(F(F(F(X))))) = ... 

The process arises from the symbolic expression of its eigenform. In this view, the 
eigenform is an implicate order for the process that generates it. (Here we refer to 
implicate order in the sense of David Bohm (1980).)  

Sometimes one stylizes the structure by indicating where the eigenform X reenters its 
own indicational space with an arrow or other graphical device. See the picture below for 
the case of the nested boxes. 



... =

 

Does the infinite nest of boxes exist? Certainly it does not exist on this page or anywhere 
in the physical world with which we are familiar. The infinite nest of boxes exists in the 
imagination. It is a symbolic entity. 

The eigenform is the imagined boundary in the reciprocal relationship of the object (the 
“It”) and the process leading to the object (the process leading to “It”). In the diagram 
below we have indicated these relationships with respect to the eigenform of nested 
boxes. Note that the “It” is illustrated as a finite approximation (to the infinite limit) that 
is sufficient to allow an observer to infer/perceive the generating process that underlies it. 

The It

The Process leading to It.

...

 

Just so, an object in the world (cognitive, physical, ideal, etc.) provides a conceptual 
center for the exploration of a skein of relationships related to its context and to the 
processes that generate it. An object can have varying degrees of reality, just as an 
eigenform does. If we take the suggestion to heart that objects are tokens for 
eigenbehaviors, then an object in itself is an entity, participating in a network of 
interactions, taking on its apparent solidity and stability from these interactions.  



An object is an amphibian between the symbolic and imaginary world of the mind and 
the complex world of personal experience. The object, when viewed as a process, is a 
dialogue between these worlds. The object, when seen as a sign for itself, or in and of 
itself, is imaginary. 

Why are objects apparently solid? Of course you cannot walk through a brick wall even if 
you think about it differently. I do not mean apparent in the sense of thought alone. I 
mean apparent in the sense of appearance. The wall appears solid to me because of the 
actions that I can perform. The wall is quite transparent to a neutrino, and will not even 
be an eigenform for that neutrino. 

This example shows quite sharply how the nature of an object is entailed in the properties 
of its observer. 

The eigenform model can be expressed in quite abstract and general terms. Suppose that 
we are given a recursion (not necessarily numerical) with the equation 

X(t + 1) = F(X(t)). 

Here X(t) denotes the condition of observation at time t. X(t) could be as simple as a set 
of nested boxes, or as complex as the entire configuration of your body in relation to the 
known universe at time t. Then F(X(t)) denotes the result of applying the operations 
symbolized by F to the condition at time t. You could, for simplicity, assume that F is 
independent of time. Time independence of the recursion F will give us simple answers 
and we can later discuss what will happen if the actions depend upon the time. In the 
time-independent case we can write 

J = F(F(F(...))) 

- the infinite concatenation of F upon itself. Then  

F(J) = J 

since adding one more F to the concatenation changes nothing. 

Thus J, the infinite concatenation of the operation upon itself leads to a fixed point for F. 
J is said to be the eigenform for the recursion F. We see that every recursion has an 
eigenform. Every recursion has an (imaginary) fixed point. 

We end this section with one more example. This is the eigenform of the Koch fractal 
(Mandelbrot 1982). In this case one can write symbolically the eigenform equation 

K = K { K K } K 

to indicate that the Koch Fractal reenters its own indicational space four times (that is, it 
is made up of four copies of itself, each one-third the size of the original. The curly 
brackets in the center of this equation refer to the fact that the two middle copies within 
the fractal are inclined with respect to one another and with respect to the two outer 
copies. In the figure below we show the geometric configuration of the reentry. 



K = K { K K } K  

In the geometric recursion, each line segment at a given stage is replaced by four line 
segments of one third of its length, arranged according to the pattern of reentry as shown 
in the figure above.  

The recursion corresponding to the Koch eigenform is illustrated in the next figure. Here 
we see the sequence of approximations leading to the infinite self-reflecting eigenform 
that is known as the Koch snowflake fractal. 

 



Five stages of recursion are shown. To the eye, the last stage vividly illustrates how the 
ideal fractal form contains four copies of itself, each one-third the size of the whole. The 
abstract schema 

K = K { K K } K  

for this fractal can itself be iterated to produce a “skeleton” of the geometric recursion: 

K = K { K K } K  
 = K { K K } K { K { K K } K K { K K } K } K { K K } K  
 = ... 

We have only performed one line of this skeletal recursion. There are sixteen K’s in this 
second expression, just as there are sixteen line segments in the second stage of the 
geometric recursion. Comparison with this symbolic recursion shows how geometry aids 
the intuition. The interaction of eigenforms with the geometry of physical, mental, 
symbolic and spiritual landscapes is an entire subject that is in need of deep exploration.  

It is usually thought that the miracle of recognition of an object arises in some simple 
way from the assumed existence of the object and the action of our perceiving systems. 
This is fine tuning to the point where the action of the perceiver and the perception of the 
object are indistinguishable. Such tuning requires an intermixing of the perceiver and the 
perceived that goes beyond description. Yet at the mathematical levels, such as number 
or fractal pattern, part of the process is slowed down to the point where we can begin to 
apprehend the process. There is a stability in the comparison, in the correspondence that 
is a process happening at once in the present time. The closed loop of perception occurs 
in the eternity of present individual time. Each such process depends upon linked and 
ongoing eigenbehaviors and yet is seen as simple by the perceiving mind. The perceiving 
mind is itself an eigenform. 

Mirror-mirror 
In the next figure we illustrate how an eigenform can arise from a process of mutual 
reflection. The figure shows a circle with an arrow pointing to a rectangle and a rectangle 
with an arrow pointing toward a circle. For this example, we take the rule that an arrow 
between two entities (P → Q) means that the second entity will create an internal image 
of the first entity (Q will make an image of P). If P → Q and Q → P, then each entity 
makes an image of the other. A recursion will ensue. Each of P and Q generates 
eigenforms in this mutuality.  



then

then

then

 

In this example we can denote the initial forms by C (for circle) and B (for box). We have 
C → B and B → C. The rule of imaging is (symbolically):  

If P → Q then P → QP. 

If P ← Q, then PQ ← Q. 

We start with the mutual reference C  B. 

This condition of mutual mirroring can be described by two operators C and B:  

C(P) = CP corresponds to C → P. 

B(Q) = BQ corresponds to Q ← B. 

Solving the eigenform equations 

C(Y) = X, 

B(X) = Y,  

we have the mirror-mirror solution 

X = BCBCBCBC..., 

Y = CBCBCBCB..., 

just as in the figure. 

We are quite familiar with this form of mutual mirroring in the physical realm where one 
can have two facing mirrors, and in the realm of human relations where the complexity of 



exchange (mutual mirroring) between two individuals leads to the eigenform of their 
relationship.  

5. Boolean self-reference and the work of Vladimir Lefebvre 

Vladimir Lefebvre (1982) models ethical situations involving multiple reflections (I think 
about your thoughts about me, while you think about my thoughts about you.) using 
Boolean algebra and a graphical formalism.  

The crux of this endeavor begins with examining self-referential equations in the Boolean 
context. In this context we have the arithmetic of 0 and 1 with 1 + 1 = 1 and otherwise 0 
and 1 behaving as in ordinary arithmetic, with complementation (a → a') interchanging 
them: 0' = 1 and 1' = 0.  

In interpreting Boolean algebra for logic, we take a+b to mean “a or b” and ab to mean 
“a and b.”  

Thus we take 1 as T (True) and 0 as F (False).  

Note that a > b (a implies b) is represented by a' + b in this system. 

A very simple form of Boolean self-reference is the equation 

x = x. 

This just says that x is equal to x. It is like the biblical “I am that I am.” 

A diabolical form of Boolean self reference is the equation 

x = x'. 

This says that x is equal to not x, and can be interpreted as the statement of the liar who 
asserts that he is lying, “I am a liar.” I like to think of the solution to this equation as an 
oscillation between 0 and 1. 

After all, if x = 0, then x = x' = 0' = 1 and if x = 1, then x = x' = 1' = 0. 

So x oscillates just like a buzzer of a doorbell. 

The simplest general form of a Boolean self-referential equation is 

x = ax + bx'. 

What are the possibilities? 

We can have  

x = x + x' = 1 (constantly true), 
x = 1x + 0x' = x (self-affirming), 



x = 0x + 1x' = x' (self-denying), 
x = 0x + 0x' = 0 (just false). 

Thus there does not seem to be a lot of structure in this simplest version of self-reference. 
However, we should think a bit further and realize that a and b can be propositions that 
have relative truth values and we may not need to know the actual truth values of a and b. 
Consider the equation 

x = (b' + c)x + cx'. 

If x = 0, then we have 0 = c. 

So we conclude that for x = 0 to be a solution, this equation reduces to x = x or x = 0. 
However, if x = 1 is a solution, then we have 1 = b' + c, and the equation will have a 
solution just so long as b implies c is true. In either case the equation has a non-
oscillatory solution. This is the form of the self-referential equation at the base of 
Vladimir Lefebvre’s analysis of ethics and reflectivity.  

The next thing to notice is that  

(a > b) > c = (a' + b) ' + c = ab' + c = (b' + c)a + ca'. 

Thus we have  

a = (a > b) > c  

as an allowable self referential Boolean equation. 

Lefebrve interprets the right hand side of this equation as  “c thinks of b thinking of a.” 
Thus the self-reference is “a is thinking of c thinking of b thinking of a.”  

Lefebvre takes ba as notation for “a implies b.” Thus 

ba = b + a' 

and ba stands for a > b, which is interpreted as “b is thinking about a” or “b has an 
internal image of a.”  

Thus our self-referential equation becomes a = cx where x = ba. 

Using Laws of Form 
Here is a second take on this theme, using Laws of Form (Spencer 1969) bracket 
notation. In the Laws of Form notation, we take a' = <a> and ab stands for a + b while 
the conjunction ab in Boolean algebra becomes <<a><b>> in accordance with 
DeMorgan’s Law. We also have 0 as the void state in Laws of Form and 1 = < >, the 
marked state, a single crossing from the void. Then the Boolean arithmetic of 0 and 1 
corresponds to the Laws of Calling < > < > = < > and Crossing << >> = “void.” 



In Laws of Form notation, “a implies b” is written as 

<a>b = b <a>. 

In Lefebvre’s notation this is the same as  

b<a> = ba. 

Thus Laws of Form is a useful alternate formalism for this theory. 

We can interpret b<a> as “b thinks of a.” 

Consider the self-referential equation  

a = <<a>b>c. 

“a is thinking of c thinking of b who thinks of a.” 

This is a self-reference that can be made inside two-valued primary arithmetic, since it 
never oscillates like a = <a>. You can think of this fixed point in the form of the infinite 
reentry: 

a = <<<<<<<<<<<<<<...>b>c>b>c>b>c>b>c>b>c>b>c>b>c. 

It is amusing to write this in ordinary Boolean form as 

a = c + da where d = <b> and xy = <<x><y>> and x + y replaces x y (LOF 
juxtaposition). Then we get 

a = c + da 

a = c + d(c + da) = c + dc + d^2 a 

and so on, 

a = c + d^2 c + d^3 c + d^4 c + ...  

a = “c/(1-d).” 

The infinite reentry expressions in LOF become an infinite power series in Boolean 
algebra. This brings us closer to classical mathematics and its role in producing 
imaginary values. 

Vladimir Lefebvre (1982) in his “Algebra of Conscience” models structures such as 

a = <b>a 

b = <a>b 



as “a thinking about himself with an image of b” and “b thinking about himself with an 
image of a.”  

We can use the LOF notation to represent the self-referential algebra of Lefebvre, and it 
is useful to do this.  

It is important to see how fixed point equations and reflexivity are intertwined in the 
Boolean structure. One might think that these concepts would not live in the Boolean 
context, but of course we do manage to discuss them in the Boolean context of our own 
thought. So Lefebvre’s model is a microcosm of our condition, and of course this is 
exactly the point! 

This section is just a small introduction to Lefebrvre’s theory of reflexivity. It is worth 
pointing out that he uses the Boolean background skillfully when it is required, but uses 
the symbolism of reflection on the surface in a way that corresponds to nested linguistic 
statements. For example, a<a<a>> represents “a thinking about a, who has a self-image 
that corresponds to the true (external) a.” When we evaluate this expression we find 

a<a<a>> = a < < > > = a. 

Thus the non-self-doubting a is simply himself. 

On the other hand, a<a< <a> >> represents a with an image of himself whose image of 
himself is false (<a>). Evaluating this expression, we find 

a<a< <a> >> = a<a a> = a < a > = < >. 

Thus the individual with a doubting self image receives a marked value for his 
skepticism. What about an individual who directly doubts 

himself? Then we have a < <a> > = a a = a. He is in the same boat as the individual with 
a self-image who doubts. From these examples, we see that the Lefebvre system needs to 
be examined carefully for its internal meanings. This will be the subject of another paper. 

6. Reflexive domains and the magma 

A reflexive domain D is an arena where actions and processes that transform the domain 
can also be seen as the elements that compose the domain. Every element of the domain 
can be seen as a transformation of the domain to itself. 

In actual practice, an element of a domain may be a person or company (collective of 
persons) or a physical object or mechanism that is seen to be in action. In actual practice 
we must note that what are regarded as objects or entities depends upon the way in which 
observers inside or outside the domain divide their worlds. 

It is very difficult to make a detailed mathematical model of such situations. Each actor is 
an actor in more than one play. His actions undergo separate but related interpretations, 



depending upon the others with whom he interacts. Mutual feedback of a multiplicity of 
ongoing processes is not easily described in the Platonic terms of pure mathematics. 

Nevertheless, we take as a general principle for a mathematical model that D is a certain 
set (possibly evolving in time), and we let [D, D] denote a selected collection of 
mappings from D to D. An element F of [D, D] is a mapping F: D → D.  

We shall assume that there is a one-to-one correspondence  

I:D → [D, D].  

This is the assumption of reflexivity. Every element of the reflexive domain is a 
transformation of that domain. Each denizen of the reflexive domain has a dual role of 
actor and actant. 

Given an element g in D, I(g): D → D is a mapping from D to D, and for every mapping 
F: D → D, there is an element g in D such that I(g) = F. The reflexive domain embodies 
a perfect correspondence between actions and entities that are the recipients of these 
actions. 

See D. Scott (1980) for a specific construction of relflexive domains relevant to computer 
science and logic. An important precursor to this notion of reflexive domain in 
mathematics is the notion of Gödel numbering of texts. One chooses a method to encode 
a text as a specific natural number (a certain product of prime powers). Then texts that 
speak about numbers can, in principle, speak about other texts and even about 
themselves. If a text is seen as a transformation on the field of numbers, then that text is 
itself a number (its Gödelian code) and so can be transforming itself. The precision of this 
idea enabled Gödel to construct mathematical systems that could talk about their own 
properties without contradiction and he showed that all sufficiently rich mathematical 
systems have this property. In this way, these systems become self-limiting due to the 
possibility of statements whose coded meaning becomes “This statement has no proof in 
the system of mathematics in which it is written,” while the surface meaning of the same 
statement is a discussion of the properties of certain numerical relations. The domain of 
numerical relations appears innocuous, and yet it sows the seeds of its own limitations 
through this ability to reflect itself through the mirror of the Gödel coding. 

The Gödelian example is not just a piece of mathematics. It is a reflection with 
mathematical precision of the condition of our language, thought and action. We are 
always equipped to comment on our own doings and in so doing to create new language 
about our old language and new language about our worlds. All our apparent well-
thought-out and directed actions in worlds that seem to extend outward from us in an 
objective way are fraught with the circularity not just of our meta-comments, but also 
with the circular return of the consequences of those actions and the influence of our very 
theories of the world on the properties of that world itself. 

We now prove a fundamental theorem about reflexive domains. 

We show that every mapping F: D → D has a fixed point p, an element p in D such that 
F(p) = p. What does this mean? It means that there is another way, in a reflexive domain, 



to associate a point to a transformation. The point can be seen as the fixed point of a 
transformation and in that way, the points of the domain disappear into the self-referential 
nature of the transformations. 

Let me tender persuasions. Suppose that p = F(p). Then we can regard this equation as an 
expression of p in terms of F and itself and write 

p  = F(p) 
 = F(F(p) 
 = F(F(F(p))) 
 = F(F(F(F(p)))) 

and continue in this fashion until the appearance of p on the right hand side is lost in the 
depths of the composition of F upon itself. 

p = F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(...)))))))))))))))))))). 

The infinite composition of F upon itself is invariant under one more composition with F 
and so F(p) = p is consistent with this process. 

To show that an entity p is a fixed point for a process F is to show that p can be formally 
identified with the infinite concatenation of F upon itself. This is an image of the way 
objects become tokens for eigenbehaviors, in the language of Heinz von Foerster.  

Here we show that eigenforms exist in reflexive domains without an infinite limit. The 
interested reader should compare this argument with the work of William Lawvere 
(1972). Lawvere proves a more general result in the context of Cartesian closed 
categories. We have taken his argument and shaped it particularly for this discussion of 
reflexivity. 

Fixed Point Theorem. Let D be a reflexive domain with 1–1 correspondence F: D → 
[D, D]. Then every F in [D, D] has a fixed point. That is, there exists a p in D such that 
F(p) = p. 

Proof. Define G: D → D by the equation Gx = F(I(x)x) for each x in D.  

Since I:D → [D,D] is a 1 – 1 correspondence, we know that G = I(g) for some g in D.  

Hence Gx = I(g)x = F(I(x)x) for all x in D.  

Therefore, letting x = g, I(g)g = F(I(g)g) and so p = I(g)g is a fixed point for F.  

Q.E.D. 

We shall discuss this proof and its meaning right now in a series of remarks, and later in 
the paper in regard to examples that will be constructed. 



Remark 1 
Suppose that we reduce the notational complexity of our description of the reflexive 
domain by simply saying that for any two entities g and x in the domain there is a new 
entity gx that is the result of the interaction of g and x. (We think of gx as I(g)x = I(g) 
applied to x.) 

In mathematical terms, we define 

gx = I(g)x. 

Then the proof of the fixed point theorem appears in a simpler form: we define Gx = 
F(xx) and note that GG = F(GG). 

Thus GG is the fixed point for F! 

I like to call G “F’s Gremlin.”1 

This is an apt description of our G. At first G looks quite harmless. Applying G to any A 
we just apply A to itself and apply F to the result. GA = F(AA). The dangerous mixture 
comes when it is possible to apply G to itself! Then GG = F(GG), and GG is sitting right 
in there surrounded by F and you cannot stop the action. Off goes the recursion 

GG  = F(GG) 
 = F(F(GG)) 
 = F(F(F(F(GG)))) 
 = F(F(F(F(F(F(F(F(GG)))))))) 

The diabolical nature of the Gremlin is that he represents a process that once started, is 
hard to stop. 

Gremlins seem innocent. They just duplicate entities that they meet, and set up an 
operation of the duplicate on the duplicand. But when you let a gremlin meet a gremlin 
then strange things can happen. It is a bit like the story of the sorcerer’s apprentice. A 
recursion may happen whether you like it or not. 

Such are the processes by which we make the world into a field of tokens and symbols 
and forget the behaviors and processes and reflexive spaces from which they came. Fixed 
points and self-references are the unavoidable fruits of reflexivity, and reflexivity is the 
natural condition in a universe where there is no complete separation of part from the 
whole.  

                                                

1 See Kauffman (2001). According to Webster’s New Collegiate Dictionary (1956) a 
gremlin is “one of the impish foot-high gnomes whimsically blamed by airmen for 
interfering with motors, instruments, machine guns, etc.; hence any like disruptive elf.” 



Remark 2 
A reflexive domain is a place where actions and events coincide. An action is a mapping 
of the whole space because there is no intrinsic separation of the local and the global. 
Feedback is an attempt to handle the lack of separation of part and whole by describing 
their mutual influence. 

When we define a new element g of D via gx = F(x) for any mapping F: D → D, and we 
have a notion of the combination of elements of D: a,b → ab, then we can define gx = 
F(xx) and so get gg = F(gg). Here we have not made a big separation between the 
elements of D and the mappings, since each element g of D gives the mapping I(g)x = gx. 
But in fact, we could define ab = I(a)b in a reflexive domain. 

Whenever anyone comes up with a transformation, we make that transformation into an 
element of the domain by the definition gx = F(x). We transmute verbs to nouns. The 
reflexive domain evolves. 

The space is not given a priori. The space evolves in relation to actions and definitions. 
The road unfolds before us as we travel. 

Remark 3 
We create languages for evolving concepts. The outer reaches of set theory (and category 
theory) lead to clear concepts, but these concepts are not themselves sets or categories. A 
good example is the famous Russellian concept of sets that are not members of 
themselves. Russell’s concept is not a set. Another example is the concept of set itself. 
There is no set that is the set of all sets. 

This very limitation on the notion of a set is its opening. It shows us that set theory can be  
an evolving language. Language and concepts expand in time. 

Here is a transformation on sets: F(X) = {X}. The transform of a set X is the singleton set 
whose member is X. If X is not a member of itself, then F(X) is also not a member of 
itself. But a fixed point of the transformation F is an entity U such that {U} = U. We have 
shown that within the domain of sets that are not members of themselves, there is no 
fixed point for the transformation X → {X}. This fragment of set theory (sets that are not 
members of themselves) is not yet a reflexive domain. We shall allow sets that are 
members of themselves if we wish to have a set theory with reflexivity. 

Remark 4: Transcendence 

The leap to infinity via self-reference, the production of the finite base of a new level of 
infinity, the completion of an incompletion, the emergence of eternity from the world of 
time – all these metaphors are intimately related to the going back and forth between a 
process and its eigenform.  

How then is observation different from action? 



If observation is a form of recursion coupled with the production of the finite base of the 
limiting form, then observation is a transcendence to a new level. The model of 
observation as a simple eigen-vector must be shifted to a model of observation as the act 
of producing an eigenform. 

It is not enough to produce an eigenform. The fixed point is itself an active element and 
can itself engage in transformation. 

In the creation of spaces of conversation for human beings, we partake of a reflexivity of 
action and apparent object, where it is seen that every local manifestation of process, 
every seemingly fixed entity in a moving world is an indicator of global transformation. 
The local and the global intertwine in a reflexive and cybernetic unity.  

Retuning (returning/tuning/retuning) to thoughts of reflexivity, one creates by going 
outside oneself, but the creation returns in the form of a conversation with one’s self. 
There is a feedback loop between the person/designer and the world that she makes. 

Each one acts in the creation of the other. Priorities may be assigned, but it is the loop 
that interests us, and the possibility of the stability (or at least temporal persistence) of 
what is created in that loop.  

Remark 5: The magma as reflexive domain 
A magma is an algebraic system with a binary operation a * b that is  

left-distributive: a * (b * c) = (a * b) * (a * c). This means that every element of the 
magma is a structure preserving mapping of the magma to itself (via left multiplication). 
A magma is composed of its own symmetries.  

It may help the reader to see how elements of a magma become mappings of the magma 
to itself, preserving the combinational structure. Let A(x) = a * x for a given element a in 
a magma M. 

Then A: M → M and  

A(x * y) = a * (x * y) = (a * x) * (a * y) = A(x) * A(y). 

Thus for all x and y in M we have A(x * y) = A(x) * A(y). Each element of the magma 
gives rise, by left multiplication, to a structure-preserving mapping of the magma to 
itself. 

Here is an example of a magma. Let TRI = {a, b, c} be a set with three distinct elements 
a, b and c.  

Define a * a = a, b * b = b and c * c = c. And define a * b = c = b * a, a * c = b = c * a 
and b * c = a = c * b.  



In other words, each element combines with itself to produce itself, and any pair of 
distinct elements combine to produce the remaining element that is different from either 
of them. The reader can verify that TRI is indeed a magma. For example, 

a * (b * c) = a * (a ) = a 
(a * b) * (a * c) = (c) * (b) = a. 

Note also that the multiplication in this magma is not associative: 

a * (a * b) = a * c = b 
(a * a) * b = a * b = c. 

We will return to this magma in the next section and see that TRI is intimately related to 
the simplest knot, the trefoil knot. 

Another example to think about is OM, the free magma generated by one element J. 
Here we consider all possible expressions and ways that b can combine with itself and 
with other elements generated from itself. Remarkably, the free magma is an infinitely 
complex structure. For example, note the following consequences of the distributive law 
(here using XY instead of X * Y): 

J(JJ) = ((JJ)(JJ))  
 = ((JJ)J)((JJ)J)  

 = (((JJ)J)(JJ))(((JJ)J)J)). 

In the free magma an infinite structure is generated from one element and all its patterns 
of self-interaction. 

Suppose further that we assume that every structure-preserving mapping of the magma M 
is represented by an element of the magma M. This will place us in the position of 
creating from the magma something like a reflexive domain.  

In the next section we shall see that magmas arise very naturally in the topology of knots 
and links in three-dimensional space. This is an excellent way to think about them, and it 
provides a way to think about reflexivity in terms of topology. Here we take an abstract 
point of view and see when the structure-preserving nature of elements of a magma leads 
to the analog of a reflexive domain. 

I shall call a magma M reflexive if it has the property that every structure-preserving 
mapping of the algebra is realized by an element of the algebra and (x * x) * z = x * z for 
all x and z in M.  

A special case of this last property would be where x * x = x for all x in M. We shall see 
this property come up in the knot theoretic interpretations of the next section. 

Suppose that M is a reflexive magma. Does M satisfy the fixed point theorem? We find 
that the answer is, yes: 



Fixed Point Theorem for Reflexive Magmas. Let M be a reflexive magma. Let F: M → 
M be a structure-preserving mapping of M to itself. Then there exists an element b in M 
such that F(p) = p. 

Proof. Let F: M → M be any structure-preserving mapping of the magma M to itself. 
This means that we assume that F(x * y) = F(x) * F(y) for all x and y in M. Define G(x) 
= F(x * x) and regard G: M → M. Is G structure preserving? We must compare G(x * y) 
= F((x * y) * (x * y)) = F(x * (y * y)) with G(x) * G(y) = F(x * x) * F(y * y) = 
F((x * x) * (y * y)). 

Since (x * x) * z = x * z for all x and z in M, we conclude that G(x * y) = G(x) * G(y) for 
all x and y in M. 

Thus G is structure preserving and hence there is an element g of M such that G(x) = 
g * x for all x in M. Therefore we have g * x = F(x * x), whence g * g = F(g * g). For p = 
g * g, we have p = F(p). This completes the proof. // 

This analysis shows that the concept of a magma is very close to our notion of a reflexive 
domain. The examples of magmas related to knot theory, given in the previous section, 
show that magmas are not just abstract structures, but are related directly to the properties 
of space and topology in the worlds of communication and perception in which we live.  

7. Knot sets, topological eigenforms and the left-distributive magma 

We shall use knot and link diagrams to represent sets. More about this point of view can 
be found in the author’s paper “Knot Logic” (Kauffman 1995). In this notation the 
eigenset Ω  satisfying the equation 

Ω  = {Ω} 

is a topological curl. If you travel along the curl you can start as a member and find that 
after a while you have become the container. 

Further travel takes you back to being a member in an infinite round. In the topological 
realm, Ω does not have any associated paradox. This section is intended as an 
introduction to the idea of topological eigenforms, a subject that we shall develop more 
fully elsewhere. 

Set theory is about an asymmetric relation called membership.  

We write a ε S to say that a is a member of the set S. In this section we shall diagram the 
membership relation as follows: 



a
b

a

a b!

 

This is knot-set notation. 

In this notation, if b goes once under a, we write a = {b}. If b goes twice under a, we 
write a = {b, b}. This means that the “sets” are multi-sets, allowing more than one 
appearance of a member. For a deeper analysis of the knot-set structure see [KL 
REFERENCE?]. 

This knot-set notation allows us to have sets that are members of themselves, 

!" "

" = {"}

"

 

and sets can be members of each other. 

a

b

a={b}

b={a}  

Here a mutual relationship of a and b is diagrammed as a topological linking.  



a

bc

a = {b,b}

b = {c,c}

c = {a,a}

 

Here are the Borromean Rings. The Rings have the property that if you remove any one 
of them, then the other two are topologically unlinked. They form a topological tripartite 
relation. Their knot-set is described by the three equations in the diagram. 

Thus we see that this representative knot-set is a “scissors-paper-stone” pattern. Each 
component of the Rings lies over one other component, in a cyclic pattern.  

Remark. The connection between this formalism and epistemic logic (Hintikka 1962) 
should be further explored. In epistemic logic the basic expressions are of the form 
KaKbp (“a knows that b knows that p”).  

One specific thing to explore is the problem of common knowledge, which can only be 
reduced to an infinite number of K’s as in  

E = KaKbKaKbKaKb... 

denoting that “a knows that b knows that a knows that ....” 

We can write this as  

E = KaF 
F = KbE  

indicating that 

E = “a knows F” 
F = “b knows E.” 

Together these statements indicate common knowledge or mutuality for a and b. 
Conversely, we can take the linked sets A = {B} and B = {A} as a statement of common 
knowledge. 

Another avenue that should be explored is the relationship between knot set theory and 
Aczel’s theory of self-referential and non-wellfounded sets (Aczel 1988) and the related 
treatment by Barwise and Moss (1996). 

Quandles and colorings of knot diagrams 
There is an approach to studying knots and links that is very close to our knot sets, but 
starts from a rather different premise. 



In this approach each arc of the diagram receives a label or “color.” An arc of the 
diagram is a continuous curve in the diagram that starts at one undercrossing and ends at 
another undercrossing. For example, the trefoil diagram below has three arcs. 

a

b

cT

b = a*c

c = b*a

a = c*b

x

y

z

z=x*y

 

Each arc corresponds to an element of a “Trefoil Color Algebra” IQ(T), where T denotes 
the trefoil knot. The algebra is generated by colors a, b and c with the relations 

a * a = a, 
b * b = b, 
c * c = c, 

a * b = b * a = c, 
b * c = c * b = a, 
a * c = c * a = b. 

Each of these relations in the diagram above is a description of one of the crossings in T. 
The full set of relations describes the coloring rules for an algebra that contains these 
relations and allows any two elements to be combined to a third element. This three-
element algebra is particularly simple. If two colors are different, they combine to form 
the remaining third color. If two colors are the same, they combine to form the same 
color. 

When we take an algebra of this sort, we want its coloring structure to be invariant under 
the Reidemeister moves (illustrated below).  

This means that when you make a new diagram from the old diagram by a topological 
move, the resulting new diagram inherits a unique coloring from the old diagram. Then 
one can see from this that the trefoil must be knotted since all diagrams topologically 
equivalent to it will carry three colors, while an unknotted diagram can carry only one 
color. 

As the next diagram shows, invariance of the coloring rules under the Reidemeister 
moves implies the following global relations on the algebra: 



x * x = x 
(x * y) * y = x 

(x * y) * z = (x * z) * (y * z) 

for any x, y and z in the algebra (set of colors) IQ(T). 

An algebra that satisfies these rules is called an Involutory Quandle (Kauffman 1995), 
hence the initials IQ. Perhaps the most remarkable property of the quandle is its right-
distributive law corresponding to the third Reidemeister move, as illustrated below. The 
reader will be interested to observe that in a multiplicative group G, the following 
operation satisfies all the axioms for the quandle: g * h = hg–1h. 

In an additive and commutative version of this axiom we can write a * b = 2b – a. Here 
the models that are most useful to the knot theorist are to take a and b to be elements of 
the integers Z or elements of the modular number system Z/dZ = Zd for some 
appropriate modulus d. The knot being analyzed restricts the modular possibilities. In the 
case of the trefoil knot the only possibility is d = 3, and in the case of the Figure Eight 
knot (shown after the Reidemeister moves below) the only possibility is d = 5. 

This analysis then shows that there cannot be any sequence of Reidemeister moves 
connecting the Trefoil and the Figure Eight. They are distinct knot types. 



I.
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III.
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(x*y)*z = (x*z)*(y*z)
 

Here is the example for the Figure Eight Knot. 



0

1 2

3

5

2 x 1 -0 = 1

2 x 2 -1 = 3

2 x 3 - 1 = 5

-> 0 = 5

Z/5Z = {0,1,2,3,4} with 0 = 5.  

We have shown how an attempt to label the arcs of the knot according to the quandle rule  

a

b

c = 2b -a = a*b

 

a * b = 2b – a leads to a labelling of the Figure Eight knot in Z/5Z. In our illustration we 
have shown that there is a compatible coloring using four out of the five elements of 
Z/5Z. If you apply Reidemeister moves to the diagram for the Figure Eight knot you will 
see that other versions of the knot require all five colors. It is interesting to prove that 
there is no diagram of the Figure Eight knot that can be colored in less than four colors. 

It should be noted that the knot diagrams give a remarkable picture of non-associative 
algebra structure and that each arc-label a in a diagram is both an element of the algebra 
and a transformation of the algebra to itself via the mapping Oa(x) = x * a.  

Note that the right distributivity of this operation has the equation 

Oa(x * y) = (x * y) * a = (x * a) * (y * a) = Oa(x) * Oa(y) 

That is, we have 

Oa(x * y) = Oa(x) * Oa(y). 

The right distributive law tells us that each quandle operation is a quandle 
homomorphism. That is, each quandle operation is a structure-preserving mapping of the 
quandle to itself. This is an underlying algebraic meaning of the third Reidemeister move. 
Since the mappings Oa are invertible, we see that any quandle Q is in 1–1 
correspondence with a certain collection of automorphisms of itself. In this sense a 



quandle is a reflexive domain with a limitation on the allowable collection of self-
mappings. In fact we have a very simple fixed point theorem for quandles since  

Oa(a) = a * a = a. 

Every element of the quandle is fixed by its own automorphism. 

Since we take [Q, Q] to be the set of mappings of Q to itself of the form Oa(x) = x * a, 
we see that any quandle is a reflexive domain of a restricted sort. (Not every set theoretic 
mapping of Q to Q is realized in the above manner.) 

How far is the quandle from being a reflexive space in the full sense of the word? Let us 
look at the fixed point construction. We define 

G(x) = (x * x) * F for a given element F of the quandle.  

Is it then the case that (x * x) * F = x * g for some g in the quandle?  

The answer is, yes, but for a very simple reason:  

We have x * x = x so that (x * x) * F = x * F and consequently (F * F) * F = F * F. In 
fact, F * F = F, so F is already its own fixed point. We therefore see that in a quandle the 
fixed point theorem is satisfied automatically due to the axiom x * x = x for all x.  

On the other hand, if F:Q   Q is an arbitrary mapping from Q to Q, then we cannot 
expect that F will have a fixed point. For example, in the trefoil quandle TRI , suppose 
we define F(a) = b, F(b) = c and F(c) = a. Then F has no fixed point. Note that F is a 
structure-preserving mapping. (In this case the composition of F with itself three times 
fixes everything. If we make transformations that are permutations of finite sets, then 
they may be fixed-point free, but some powers of them will certainly have fixed points.)  

We have F(x * y) = F(x) * F(y) for all x and y in TRI. For example, F(a * b) = F(c) = a 
= b * c = F(a) * F(b).  

In order to extend TRI to a reflexive (right-distributive) magma we would have to add an 
element f to the algebra such that x * f = F(x) for each x in TRI, take the consequences of 
that and continue. We leave the exploration of this extension to the reader. 

Left distributivity 
We have written the quandle as a right-distributive structure with invertible elements. It is 
mathematically equivalent to use the formalism of a left distributive operation. In left 
distributive formalism we have A * (b * c) = (A * b) * (A * c). This corresponds exactly 
to the interpretation that each element A in Q is a mapping of Q to Q where the mapping 
A[x] = A * x is a structure-preserving mapping from Q to Q. 

A[b * c] = A[b] * A[c]. 



We can ask of a domain that every element of the domain is itself a structure-preserving 
mapping of that domain. This is very similar to the requirement of reflexivity and, as we 
have seen in the case of quandles, can often be realized for small structures such as the 
Trefoil quandle.  

We call a domain M with an operation * that is left distributive a magma. Magmas are 
more general than the link diagrammatic quandles. We take only the analog of the third 
Reidemeister move and do not assume any other axioms  A magma with no other 
relations than left-distributivity is called a free magma.  

The search for structure-preserving mappings can occur in rarefied contexts. See, for 
example, the work of Laver and Dehornoy (2000; Kauffman 1995), who studied 
mappings of set theory to itself that would preserve all definable structure in the theory. 
Dehornoy realized that many of the problems he studied in relation to set theory were 
accessible in more concrete ways via the use of knots and braids. Thus the knots and 
braids become a language for understanding the formal properties of self-embedded 
structures.  

Structure-preserving mappings of set theory must begin as the identity mapping since the 
relations of sets are quite rigid at the beginning. (You would not be able to map an empty 
set to a set that was not empty for example, and so the empty set would have to go to 
itself.) The existence of non-trivial structure-preserving mappings of set theory questions 
the boundaries of definability and involves the postulation of sets of very large size. See 
Piechocinska (2005) for a good exposition of the philosophical issues about such 
embeddings and for an approach to wholeness in physics that is based on these ideas. 

It is worth making a remark here about sets. Consider the collection Aleph of all sets 
whose members are themselves sets and such that any investigation into membership will 
just reveal more sets as members. Typical elements of Aleph are the empty set { }, the set 
whose member is the empty set { { } } and of course various curious constructs that have 
infinitely many members such as { { } , {{ }}, {{{ }}}, {{{{ }}}}, ... } and we may even 
consider sets that are members of themselves (eigen-sets!) such as { { { { { ... } } } } }. 

The key thing to understand about Aleph as a class of sets is that any member of Aleph 
is, by definition, a subset of Aleph. And any subset of Aleph is, by definition, a member 
of Aleph. This is a beautiful property of the class Aleph, and it is a paradoxical property 
if we imagine that Aleph is a set! For if Aleph is a set, then we have just shown that 
Aleph is in 1–1 correspondence with the set of subsets P(Aleph) of Aleph. If X is any set 
then we denote the set of subsets of X by P(X). Cantor’s Theorem (proved here in 
Section 8 and related in that section to the fixed point theory of reflexive domains) tells 
us that for any set X, P(X) is larger than X. 

This means that there cannot be a 1–1 correspondence between Aleph and P(Aleph) if 
Aleph is a set. We can only conclude that Aleph is not a set. It is a class, to give it a 
name. It is an unbroken wholeness whose particularities we can always consider, but 
whose totality will always elude us. The way that the totality of Aleph eludes us is right 
before our eyes. Any particular element of Aleph is a set and is a collection of sets as 
well. But we cannot complete Aleph. Any attempt to approximate Aleph as a set will 
always have some subsets that have not been tallied inside itself and so the set of subsets 



of the approximation will grow beyond that approximation to a new and larger domain of 
sets. Philosophically, this observation of the unreachability of Aleph, the set of all sets, as 
a set itself is very interesting and important. We see here how a perfectly clear 
mathematical concept may always remain outside the bounds of the formalities to which 
it refers and yet that concept is indeed composed of these formalities. It is the leading 
presence of the ultimately huge and unattainable Aleph that leads us to consider 
exceeding large sets in the pursuit of a flexibility in the self-embeddings of set theory. At 
the end of Section 8, we take an alternative view of Aleph and consider what would have 
to change if Aleph were admitted to be a set. 

Enough said about the abstract reaches of the magma. 

We should not expect that any given structure is a reflexive space. But it is possible to 
create languages that can expand indefinitely and thus partake of the ideal of reflexivity. 

8. Church and Curry 

In this section we point out how the notion of a reflexive domain first appeared in the 
work of Alonzo Church and Haskell Curry (Barendregt 1984) in the 1930s. This method 
is commonly called the “lambda calculus.” The key to lambda calculus is the construction 
of a self-reflexive language, a language that can refer and operate upon itself. In this way 
eigenforms can be woven into the context of languages that are their own metalanguages, 
hence into the context of natural language and observing systems. 

In the Church-Curry language (the lambda calculus), there are two basic rules: 

1. Naming. If you have an expression in the symbols in lambda calculus then there is 
always a single word in the language that encodes this expression. The application of this 
word has the same effect as the application of the expression itself.  

2. Reflexivity. Given any two words, A and B, in the lambda calculus, there is permission 
to form their concatenation AB, with the interpretation that A operates upon or qualifies 
B. In this way, every word in the lambda calculus is both an operator and an operand. The 
calculus is inherently self-reflexive.  

Here is an example. Let GA denote the process that creates two copies of A and puts 
them in a box. 

AAGA = 
 

In lambda calculus we are allowed to apply G to itself. The result is two copies of G next 
to one another, inside the box. 



GG = GG
 

This equation about GG exhibits GG directly as a solution to the eigenform equation 

X = X
 

thus producing the eigenform without an infinite limiting process. 

 

More generally, we wish to find the eigenform for a process F. We want to find a J so 
that F(J) = J. We create an operator G with the property that  

GX = F(XX)  

for any X. When G operates on X, G makes a duplicate of X and allows X to act on its 
duplicate. Now comes the kicker.  

Let G act on  itself  and look! 

GG = F(GG) 

So GG is a fixed point for F.  

We have solved the eigenform problem without the excursion to infinity. If you reflect on 
this magic trick of Church and Curry you will see that it has come directly from the 
postulates of Naming and Reflexivity that we have discussed above. These notions, that 
there should be a name for everything, and that words can be applied to the description 
and production of other words, allow  language to refer to itself and to produce itself 
from itself. The Church-Curry construction was devised for mathematical logic, but it is 
fundamental to the logic of logic, the linguistics of linguistics and the cybernetics of 
cybernetics.  

An eigenform must be placed in a context in order for it to have human meaning. The 
struggle on the mathematical side is to control recursions, bending them to desired ends. 
The struggle on the human side is to cognize a world sensibly and to communicate well 
and effectively with others. For each of us, there is a continual manufacture of 
eigenforms (tokens for eigenbehavior). Such tokens will not pass as the currency of 
communication unless we achieve mutuality as well. Mutuality itself is a higher 
eigenform. As with all eigenforms, the abstract version exists. Realization happens over 
the course of time. 



 

9. Cantor’s diagonal argument and Russell’s paradox 

Let AB mean that B is a member of A. 

Cantor’s Theorem. Let S be any set (S can be finite or infinite). 

Let P(S) be the set of subsets of S. Then P(S) is bigger than S in the sense that for any 
mapping F: S → P(S) there will be subsets C of S (hence elements of F(S)) that are not of 
the form F(a) for any a in S. In short, the power set P(S) of any set S is larger than S. 

Proof. Suppose that you were given a way to associate to each element x of a set S a 
subset F(x) of S. Then we can ask whether x is a member of F(x). Either it is or it isn’t. 
So let us form the set of all x such that x is not a member of F(x). Call this new set C. We 
have the defining equation for C: 

Cx = ~F(x)x. 

Is C = F(a) for some a in S? 

If C = F(a) then for all x we have F(a)x = ~F(x)x. 

Take x = a. Then F(a)a = ~F(a)a. 

This says that a is a member of F(a) if and only if a is not a member of F(a). This shows 
that indeed C cannot be of the form F(a), and we have proved Cantor’s Theorem that the 
set of subsets of a set is always larger than the set itself. // 

Note the problem that the assumption that C = F(a) gave us. 

If C = F(a), then F(a)a = ~F(a)a. We would have a fixed point for negation. But there is 
no fixed point for negation in classical logic! 

If we had enlarged the truth set to  

{T, F, I}  

where ~I = I is an eigenform for negation, then F(a)a would have value I. What does this 
mean? It means that the index a of the corresponding set F(a) would have an oscillating 
membership value. The element a would be like Groucho Marx, who declared that he 
would not join any club that would have him as a member. We would be propelled into 
sets that vary in time.  

Note that our proof of Cantor’s Theorem has exactly the same form as our earlier proof of 
the existence of fixed points for a reflexive space. The mapping F: X → P(X) takes the 
role of the 1–1 correspondence between D and [D, D]. The reader will enjoy thinking 
about this analogy. In the Cantor Theorem we have used the non-existence of a fixed 
point for negation to deduce a difference between set X and its power set P(X). In the 



study of a reflexive domain we have shown the existence of fixed points, but we have 
seen that such domains must be open to new elements and new transformations. 

Note also how close Cantor’s Theorem is to Russell’s famous paradox. 

Russell devised the set R defined by the equation 

Rx = ~xx. 

An element x is a member of the Russell set if and only if x is not a member of itself.  

To see the contradiction, substitute R for x and get 

RR = ~ RR. 

This appearance of an eigenform for negation tells us that we either must concede 
temporality to Russell’s construction R, or else banish it from the world of sets.  

10. The secret 

What is the simplest language that is capable of self-reference?  

We are all familiar with the abilities of natural language to refer to itself. Why this very 
sentence is an example of self-referentiality. The American dollar bill declares, “This bill 
is legal tender.” The sentence that you are now reading declares that you, the reader, are 
complicit in its own act of reference. But what is the simplest language that can refer to 
itself? 

The simplest language would have a simple alphabet. Let us say it has only the letter R. 
The words in this language will be all strings of Rs. Call the language LS. The words in 
LS are the following: 

R, 
RR, 

RRR, 
RRRR, 

and so on. 

Two words are equal if they have the same number of letter Rs. 

Each word makes a meaningful statement of reference via the rule: 

If X is a word in LS, then RX refers to XX. 

RX refers to XX, the repetition of X. 

Thus RRR refers to RRRR (not to itself), and R refers to the empty word.  

There is a word in LS that refers to itself. Can you find it? 



 

Let us see. 

RX refers to XX. 

So we need XX = RX if RX were to refer to RX. 

If XX = RX, then X = R. 

So we need X = R. 

And RR refers to itself. 

The little language LS looks like a pedantic triviality, but it is actually at the root of 
reflexivity, Gödel’s incompleteness Theorem, recursion theory, Russell’s paradox and the 
notion of self-observing and self-referring systems. It seems paradoxical that what looks 
like a trick of repeating a symbol can be so important. The trick is more than just a trick. 

The Russell paradox (see the previous section) continues to act as a mystery at the center 
of our attempts to relate syntax and semantics. In that center is a little trick of syntactical 
repetition. 

I would like to think that when we eventually discover the true secret of the universe it 
will turn out to be this simple.  

The snake bites its tail. The Universe is constructed in such a way that it can refer to 
itself. In so doing, the Universe must divide itself into a part that refers and a part to 
which it refers, a part that sees and a part that is seen. 

Let us say that R is the part that refers and U is the referent. The divided universe is RX 
and RX = U and RX refers to U (itself). Our solution suggests that the Universe divides 
itself into two identical parts, each of which refers to the universe as a whole. This is 

RR. 

In other words, the universe can pretend that it is two and then let itself refer to the two, 
and find that it has in the process referred only to the one, that is, itself. 

The Universe plays hide and seek with herself, pretending to divide itself  into two when 
it  is really only one. And that is the secret of the Universe and that is the universal source 
of our trick of self-reference. 

11. The World of Recursive Emergence and Creativity 

We have repeatedly insisted that a formal fixed point or eigenform is associated with any 
transformation T in any domain where infinite composition of transformations is 
possible. Thus we make 



E = T(T(T(T(T(...))))) and find that E = T(E). This is the symbolic fixed point that 
sometimes corresponds to a stability in the original domain of the recursion. We have 
also seen that one can take a seed z for the recursion and repeatedly form 

z, T(z), T(T(z)), T(T(T(z))), ... 

in a temporal sequence or recursive process. Then the finite products of this process can 
exhibit similarity to the infinite eigenform, and they can also exhibit novelty and 
emergence structure in ways that are most surprising. It is this appearance of creativity 
and novelty in recursive process that makes reflexivity more than abstract mathematics 
and more than a philosophical idea. 

The purpose of this last section is to exhibit an example involving cellular automata that 
illustrates these ideas and gives us a platform for thought. In this example, we are using 
an algorithm that I call “7-Life.” It is a variant of the Life automaton of John H. Conway 
(Gardner (1970)). 

Conway’s automaton is governed by the rule B3/S23 which means that a white square in 
the grid is born (B) when it has 3 neighbors and it survives (S) when it has exactly 2 or 3 
neighbors. Life has the property that there are many intriguing formations and processes, 
but statistically most configurations die out to a collection of isolated static patterns (still 
lifes) and oscillating patterns that do not grow and do not interact outside themselves.  

We should mention that there are a vast number of different cellular automata. A good 
start in learning about these structures is the book by Stephen Wolfram (2002). 
Wolfram’s book concentrates almost entirely on one-dimensional cellular automata and 
achieves a qualitative classification of the behaviors found in a comprehensive class of 
the simplest types of line automata. Wolfram finds that a number of these simplest 
automata are computationally universal in the sense that they can simulate a universal 
Turing machine on the one dimensional lattice of the automaton. The automata that we 
are looking at in this section, and 7-Life in particular, are two dimensional and hardly 
considered by Wolfram in his treatise. Conway’s Life is also not analyzed in Wolfram. In 
fact, it was shown that Conway Life is Turing universal by Conway and his collaborators 
prior to the onset of Wolfram’s work in the 1980s. We mention this background and the 
difference in dimensionalities to give the reader some perspective so that he will not be 
surprised and wonder “Why is this phenomenon not discussed in Wolfram?” Indeed the 
phenomenon of the remarkable emergence of complexity from simple algorithms is the 
theme of Wolfram’s work. This theme plays significantly in all algorithmic mathematics 
and in all significant studies of cellular automata. 

6-Life, defined by the rule B36/S23 is well-known, as a search on the Internet for Life 
automata will reveal. 6-Life does not have the qualitative self-sustaining properties that 
are evident in 7-Life, but there are emergent structures there as well. We concentrate here 
on 7-Life because the long-term self-sustaining interactions of this automaton make it 
ideal for studies of long term evolution and the emergence of forms. 

7-Life has the rule B37/S23 and has many of the properties of Life, plus the phenomenon 
that many starting configurations grow, self-interact and produce streams of gliders. The 
gliders are five-square formations (occurring in Life as well) that occur spontaneously 



and regenerate themselves, appearing to move along diagonal directions in the process. 
The most striking property of 7-Life is the long term persistence of such self-interacting 
configurations, growing slowly in complexity over time. 

In Figures 1, 2, and 3 we indicate the result of applying the 7-Life algorithm to a simple 
and not-quite symmetrical starting configuration, shown in Figure 1. In Figure 2 we see 
the result of 33911 iterations of the process. We now have a galaxy of complex 
interactions. The small entities radiating away from the galaxy are gliders, as described 
above, and if a reader were to watch the process using a computer program, he or she 
would see a teeming, seemingly random mass of activity. Then in Figure 3 we see that 
after 49281 iterations something new has emerged. It seems that a highly patterned 
dragon is emerging from the chaos of the complex process. The tip of this dragon moves 
forward relentlessly. 

The body of the dragon interacts with the glider radiation and begins to roil in the chaotic 
process. So far, the growing tip of the dragon has not interacted with any gliders.  

 

Figure 1. The starting configuration 



 

Figure 2. After 33911 iterations 



 

Figure 3. After 49281 iterations 



 

Figure 4. The growing tip 

 

Figure 5. The generating tip GG 

Figures 4 gives close-ups of the tip of the dragon and Figure 5 isolates the generator, GG, 
of the dragon itself. This configuration GG of 16 squares in mirror symmetry, when 
placed on an otherwise blank lattice, will generate the dragon in the 7-Life algorithm.  

What has happened is that this 16-square generator GG has appeared in the course of the 
complex interactions, and it has had enough room to move forward in its own pattern – 
forming the dragon behind it and periodically regenerating itself. The generator of the 
dragon, GG, is not our invention. GG is a natural consequence of the complex process of 
7-Life. GG emerges, but with much lower probability than the gliders. The result is an 



appearance of novelty and creativity in the complex process as it happens over time. We 
can only speculate what more complex entities would eventually emerge in 7-Life over 
many more iterations. 

In the same way, DNA emerges from the complex process of the world of the earth and 
sun. 

We see from this example that eigenforms that are processes, such as the self-generating 
GG, can and will emerge of their own accord from complex systems based on recursion. 
In this sense, such systems begin to generate their own reflexive spaces. The novel and 
self-reproducing forms that emerge from them can be seen in a similar light.  

All these observations are made by an observer. The observer is clever only in the 
distinctions that he or she makes, and that is enough to found an entire universe. 

12. Discussion 

In this paper we have covered a number of mathematical structures related to the concept 
of reflexivity. We have defined the notion of a reflexive domain D as a domain where the 
elements of that domain and the mappings of the domain to itself are in 1–1 
correspondence. 

In such a context, every object is inherently a process, and the structure of the domain as 
a whole comes from the relationships whose exploration constitutes the domain. There is 
no place to hide in a reflexive domain, no fundamental particle, no irreducible object or 
building block. Any given entity acquires its properties through its relationships with 
everything else. The sense of such a domain is not at all like the set theoretic notion of 
collections or unrelated things, or things related by an identifiable property. It is more 
like a conversation or an improvisation, held up and moving in its own momentum, 
creating and lifting sound and meaning in the process of its own exchange. Conversations 
create spaces and events, and these events create further conversations. The worlds 
appearing from reflexivity are worlds nevertheless, with those properties of partial 
longevity, emergence of patterns, and emergence of laws that we have come to associate 
with seemingly objective reality.  
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