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Abstract  
This paper extends the Kaldor-Kalecki model 
of business cycle with retardation to include 
anticipatory capabilities. There is a time shift 
between a decision of investment and its ac-
tual installation. The results, presented in this 
paper, deal with the inclusion of an antici-
pated capital stock in the Kaldor-Kalecki 
model. A third equation is added to the classi-
cal two equations of Kaldor-Kalecki. This an-
ticipated capital stock is directly related to the 
future potential value of the current capital 
stock, that is KA(t) = K(t + τ). Numerical 
simulations on computer confirm the feasibil-
ity of such a method that can be applied to 
many other systems with delay in economy 
ecology, biology, physics and engineering.      

1 Introduction 
This paper addresses the problem of the mathematical 
implementation of anticipatory capabilities in models 
of business cycle. Most models published in the scien-
tific literature deal mainly with the implementation of 
retardation with no anticipation (e.g. Hale and Ver-
duyn Lunel, 1993). Cybernetics with the feed-back 
process in control systems deals with an explicit goal 
or purpose given to a system. The anticipatory systems 
discussed in this paper deal with a behaviour for which 
the future state of the system is built by the system 
itself, without explicit goal. A system with weak an-
ticipation is based on a predictive model of the system, 
while a system with strong anticipation builds its own 
future by itself (Dubois, 2000).  
In this paper, the Kaldor-Kalecki model, described by 
functional differential equations with retardation, is 
extended by the inclusion of anticipatory capabilities, 
described by an anticipation time, t + τ, added to the 
current time, t, and the retardation time, t − τ. 
Initially, this model was created to include decisions 
of investments. There is a time lag, τ, between the 
investment decision and installation of investment 
goods. So the Kaldor-Kalecki model is represented by 
two differential difference equations of the gross 

product Y(t), Y(t − τ), at current time and with retarda-
tion, and the capital stock K(t), at the current time. 
This paper extends this model to include a new equa-
tion giving a computational anticipated capital stock 
KA(t), at the current time. This anticipated capital 
stock is directly related to the future potential value of 
the current capital stock, that is KA(t) = K(t + τ).   
This extended model is simulated on computer and 
shows how well it works.  
Methods of resolution of such functional differential 
equations with both retardation and anticipation were 
proposed recently (Dubois, 2001, 2002).  
These methods are very general and can be applied to 
a lot of problems dealing with delayed systems, in 
economy, ecology, biology, physics and engineering.  

2 The Linear Kalecki Model with Re-
tardation 

The following formalization of the Kalecki model of 
capital stock in continuous time, due to R.G.D. Allen 
(1963), can be found, for example, in G. Gabisch and 
H.W. Lorenz (1987). For Kalecki (1935), the evolution 
of the capital K(t) is given by the following differen-
tial difference retarded equation 

dK(t)/dt = (α/τ)K(t) − (δ + α/τ).K(t − τ) (1) 

where α is the adjustment coefficient in the goods 
market, and δ the depreciation rate of the capital, and τ 
is the retardation of the decision to invest before the 
equipment is installed. It is assumed that the retarda-
tion time τ is constant. When the retardation is small, 
K(t − τ) can be developed as  

K(t − τ) = K(t) − τ.dK(t)/dt  

so the equation (1) is then written as 

dK(t)/dt = (α/τ)K(t) − (δ + α/τ).(K(t) − τ.dK(t)/dt)  

or 

dK(t)/dt = (− δ/(1 − α − δτ)).K(t) (2) 

which gives a solution as a simple growth or decay 
process. 
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If taking the second order of the development,  

K(t − τ) = K(t) − τ.dK(t)/dt + (τ2/2).d2K/dt2  

the equation (1) becomes 

d2K(t)/dt2 + [2.(1 − δτ − α)/(δτ2 + ατ)].dK(t)/dt =              

[− 2.δ/(δτ2 + ατ)].K(t) (3) 

the solution of which is given by an oscillatory behav-
iour. Sustained oscillations occur for 1 − δτ − α = 0,  
with a frequency equal to ω2 = 2.δ2/(1 − α), and the 
period of oscillations is given by T = 2πτ/√[2.(1 − α)]. 
Figures 1-abc give the simulation of equation 1 with 
the following values of the parameters: α = 0.25, δ = 
0.0115, and τ = 90, 100, and 110. From the second 
order approximation the period would be T ≈ 500.   

 
Figure 1a: Simulation of the retarded system given by eq. 1 
with τ = 110. 

 
Figure 1b: Simulation of the retarded system given by eq. 1 
with τ = 100. 

Figure 1c: Simulation of the retarded system given by eq. 1 
with τ = 90. 

In looking at Figure 1b, the sustained oscillations are 
well seen, and the period is in agreement with the 
second order approximation of the retardation. Figure 
1a is the same simulation with τ = 90, and it is seen 
that the amplitude increases. Figure 1c is the same 
simulation with τ = 110, and it is seen that the ampli-
tude decreases. Thus these simulations confirm the 
results given for the second order approximation.  

Now, let us consider the more practical application 
of a model of business cycle. 

3 Anticipatory Modelling and Com-
puting of the Kaldor-Kalecki 
Model of Business Cycle 

Let us consider the Kaldor-Kalecki model of business 
cycle. 

3.1 The Kaldor-Kalecki Model 
The Kalecki model of business cycle (Kalecki, 1935) 
assumes that the saved part of profit is invested and 
the capital growth is due to past investment decisions. 
There is a time shift after which capital equipment is 
available for production. The Kaldor-Kalecki model of 
business cycle (Krawiec, Szydlowski, 2001) is repre-
sented by the Kaldor model of trade cycle (Kaldor, 
1940) in considering the Kalecki time shift of invest-
ment. Kaldor assumed that the investment function 
I(Y) and saving function S(Y) are increasing functions 
with the gross product Y as a s-shape function. So, the 
Kaldor-Kalecki model is represented as the following 
differential difference equation system with retarda-
tion: 

dY(t)/dt = α[I(Y(t), K(t)) − S(Y(t), K (t))] (4a) 

dK(t)/dt = I(Y(t − τ), K (t)) − δK(t) (4b) 

where Y is the gross product and K the capital stock; I 
is the investment, S the saving function; α is the ad-
justment coefficient in the goods market, and δ the 
depreciation rate of capital stock; τ is the retardation. 
It is assumed that the time delay τ is constant.  
It is also assumed that the investment function    
I(Y(t), K(t)) = I(Y(t)) + I(K(t)), and I(K(t)) are linear 
such that 

I(Y(t), K(t)) = I(Y(t)) − βK(t), with β > 0  

(cfr Krawiec, Szydlowski, 2001). With these assump-
tions the equation system 4-ab becomes 

dY(t)/dt = α[I(Y(t)) − βK(t) − S(Y(t), K(t))] (5a) 

dK(t)/dt = I(Y(t − τ)) − (δ + β)K(t) (5b) 

3.2 Extension of  the Kaldor-Kalecki 
Model with an Anticipatory Capital 
Stock 

It is of great interest for businessman to know by an-
ticipation the capital stock at the future time. By incur-
sive synchronization (Dubois, 2001, 2002), it is possi-



 

 

ble to extend this model for computing the anticipated 
capital stock. Indeed, in considering the Kaldor-
Kalecki equation system 5-ab as a master system, a 
slave equation for the anticipated capital stock, KA(t), 
can be added to the master system as follows: 

dY(t)/dt = α[I(Y(t)) − βK(t) − S(Y(t), K (t))] (6a) 

dK(t)/dt = I(Y(t − τ)) − (δ + β)K(t) (6b) 

dKA(t)/dt = I(Y(t)) − (δ + β)KA(t) (6c) 

In noting the difference between KA(t) and K(t + τ) as 

DK(t) = KA(t) − K(t + τ)  

the differential equation of DK(t) can be written as 

dDK(t)/dt = dKA(t)/dt − dK(t + τ)/dt =  

I(Y(t)) − (δ + β)KA(t) − I(Y(t)) + (δ + β)K(t + τ) =  

− (δ + β)[KA(t) − K(t + τ)] = − (δ + β)DK(t) (6d) 

and the analytical solution of DK(t) can be obtained as 
DK(t) = DK(0).exp(− (δ + β)t) 
Starting with any initial condition for DK(0), the an-
ticipatory capital stock KA(t) will tend to the future 
potential value of the capital stock, K(t + τ). 

3.3 The Linear Extended Kaldor-
Kalecki Model 

Let us assume (Krawiec, Szydlowski, 2001) that the 
saving function S only depends on Y and is linear such 
that  

S(Y(t), K(t)) = γY(t), with γ ∈  (0,1) 

and also that the investment function is linear such that 

 I(Y(t)) = εY(t), with ε > 0 

the system 6-abc is then written as 

dY(t)/dt = α[(ε − γ)Y(t) − βK(t)] (7a) 

dK(t)/dt = εY(t − τ) − (δ + β)K(t) (7b) 

dKA(t)/dt = εY(t) − (δ + β)KA(t) (7c)                     

Simulations of eqs. 7abc are given in Figure 2, without 
retardation, and in Figures 3-ab, with retardation.  

 
Figure 2: Simulation of the linear extended Kaldor-Kalecki 
model 7-abc without retardation (τ = 0):  
Y(t) is the gross product and K(t) the capital stock. 

 
Figure 3a: Simulation of the gross product Y(t) and the 
capital stock K(t) of the linear extended Kaldor-Kalecki 
model 7-abc with the retarded gross product Y(t − τ),  
with τ = 100.  

 
Figure 3b: Simulation of the linear extended Kaldor-Kalecki 
model 7-abc with retardation:  
KA(t) is the anticipated capital stock and K(t) the capital 
stock: KA(t) = K(t + τ) with τ = 100. 
 
Remark: In practice, the functions S and I are, of 
course, positive as well as Y and K. So, for a practical 
use of such equation systems, a coordinate transforma-
tion should be made such that the system becomes 
centred at positive steady states S* and I*, and Y* and 
K*. 

3.3.1 Linear Kaldor-Kalecki Model Without 
Retardation 
Without retardation, the system 7-abc is given by 

dY(t)/dt = α[(ε − γ)Y(t) − βK(t)] (8a) 

dK(t)/dt = εY(t) − (δ + β)K(t) (8b) 

With the following successive transformations:  

εY(t) = dK(t)/dt + (δ + β)K(t) 

d2K(t)/dt2 + (δ + β)dK(t)/dt = α[(ε − γ)[dK(t)/dt +  

(δ + β)K(t)] − εβK(t)] 

a second order equation is obtained: 

d2K(t)/dt2 + [(δ + β) − α(ε − γ)]dK(t)/dt =  

− α[− (ε − γ)(δ + β) + εβ]K(t) (9) 



 

 

With εβ > (ε − γ)(δ + β), this equation gives oscilla-
tory solutions.  
Sustained oscillations occur when the factor of the first 
derivative vanishes, so when (δ + β) = α(ε − γ). 
If (δ + β) > α(ε − γ), the capital stock oscillatory am-
plitude decreases, and if (δ + β) < α(ε − γ), it in-
creases. 

3.3.2 Linear Kaldor-Kalecki Model with Re-
tardation 
The linear system with retardation (7-ab), 

dY(t)/dt = α[(ε − γ)Y(t) − βK(t)] (10a) 

dK(t)/dt = εY(t − τ) − (δ + β)K(t) (10b) 

can also be transformed, successively as follows: 

εY(t) = dK(t + τ)/dt + (δ + β)K(t + τ) 

d2K(t + τ)/dt2 + (δ + β)dK(t + τ)/dt =  

α[(ε − γ)[dK(t + τ)/dt + (δ + β)K(t + τ)] − εβK(t)] 

to the following single second order equation 

d2K(t)/dt2 + [(δ + β) − α(ε − γ)]dK(t)/dt =   

 α[(ε − γ)[(δ + β)K(t)] − εβK(t − τ)] (11) 

For small values of the time shift τ, the retarded func-
tion K(t − τ) can be approximated by a development in 
Taylor's series as,  
K(t − τ) = K(t) − τ.dK(t)/dt + (τ2/2).d2K(t)/dt2 − ....  (12) 
In taking into account this development in Taylor's 
series, eq. 11 becomes 

d2K(t)/dt2 +  

[[(δ + β) − α(ε − γ) − ταεβ]/(1 + τ2αεβ/2)]dK(t)/dt =  

α[(ε − γ)[(δ + β)K(t)] − εβK(t)]/(1 + τ2αεβ/2) (13) 

and sustained oscillations occur for  
(δ + β) − α(ε − γ) = ταεβ 
The factor in τ2 has the effect to change the period of 
oscillations, the period increases with the time shift, 
and the factor of the first derivative. The factor in τ 
has the effect to change the stability of oscillations, the 
instability increases with the time shift.  

3.4 A Nonlinear Extended Kaldor-
Kalecki Model 

With a nonlinear investment, the solution of the Kal-
dor-Kalecki can exhibit a limit cycle solution (see for 
example, Krawiec, Szydlowski, 2001), that exhibits  
oscillations with a constant amplitude depending on 
the parameters of the equation system.  
So, let us now consider the extended Kaldor-Kalecki 
model 6-abc, with the linear saving function S = γY(t), 

dY(t)/dt = α[I(Y(t)) − βK(t) − γY(t)] (14a) 

dK(t)/dt = I(Y(t − τ)) − (δ + β)K(t) (14b)  

dKA(t)/dt = I(Y(t)) − (δ + β)KA(t) (14c) 

and with a s-shape investment function of the form: 

I(Y(t)) = ε.Y(t)/(1 + ε1.Y(t) ) (15) 

where Y(t) is the absolute value of Y(t), and ε1 is a 
new parameter.  
The numerical simulations of eqs. 14-ab, with the 
nonlinear function 15, without retardation, are given in 
the Figures 4-abc. The solution is then given now by a 
limit cycle: this is an oscillatory behaviour with an 
amplitude given by the parameters.  

 
Figure 4a: Simulation of eqs. 14-ab  
with initial conditions inside the limit cycle. 

 
Figure 4b: Simulation of eqs. 14-ab  
with initial conditions on the limit cycle. 

 
Figure 4c: Simulation of eqs. 14-ab  
with initial conditions outside the limit cycle. 
 
When the initial conditions are inside the limit cycle, 
the amplitude increases to the limit cycle, as shown in 
Fig. 4a. When the initial conditions are on the limit 
cycle, the amplitude does not change, as shown in Fig. 
4b. When the initial conditions are outside the limit 
cycle, the amplitude decreases to the limit cycle. 



 

 

The numerical simulations of eqs. 14-abc, with the 
nonlinear function 15, with a retardation, τ = 100, are 
given in the following Figures 5-ab.  

Figure 5a: Simulation of eqs. 14-ab  
with a retardation τ = 100. 

Figure 5b: Simulation of eqs. 14-bc  
with a retardation τ = 100. 

3.5 Including Anticipated Investment 
and Saving Functions 

When a system is described by two differential differ-
ence equations with two variables, it is possible to 
create an anticipation on one variable and a retardation 
on the other one, with the method proposed recently 
(Dubois, 2002).  
In considering an anticipated investment depending on 
the anticipated capital stock, such as  
I(Y(t), K(t)) = I(Y(t)) − βK(t + τ)  
with an anticipatory saving function S also depending 
on the anticipated capital stock as  

S(Y(t), K(t)) = S(Y(t), K(t + τ))  

the system 6-abc becomes 

dY(t)/dt = α[I(Y(t)) − βK(t + τ) − S(Y(t), K(t + τ))] (16a) 

dK(t)/dt = I(Y(t − τ)) − (δ + β)K(t) (16b) 

dKA(t)/dt = I(Y(t)) − (δ + β)KA(t) (16c) 

As KA(t) tends to K(t + τ), we can replace K(t + τ) in 
the first equation 16a by KA(t) as follows 

dY(t)/dt = α[I(Y(t)) − βKA(t) − S(Y(t), KA(t))] (17a)  

dK(t)/dt = I(Y(t − τ)) − (δ + β)K(t) (17b) 

dKA(t)/dt = I(Y(t)) − (δ + β)KA(t) (17c) 

The first and third equations 17-a-c form a system 
defined at the current time t, without any time retarda-
tion nor anticipation.  
With the assumptions, given above:  

S(Y(t), K(t)) = γY(t), with γ ∈  (0,1), and  

I(Y(t)) = εY(t), with ε > 0  

the system of eqs. 17-abc becomes: 

dY(t)/dt = α[εY(t) − βKA(t) − γY(t)] (18a) 

dK(t)/dt = εY(t − τ) − (δ + β)K(t) (18b) 

dKA(t)/dt = εY(t) − (δ + β)KA(t) (18c) 

Simulation of this equation system 18-abc is given in 
Figures 6-ab. 
 

 
Figure 6a : Simulation of the linear extended Kaldor-Kalecki 
model 18-ab, with an anticipated investment.  
The time shift τ = 100 of K(t) is well seen in comparison 
with figure 2.  

 
Figure 6b: Simulation of the linear extended Kaldor-Kalecki 
model 18-bc,  
with an anticipated investment KA(t) = K(t + τ). 
 
The effect of the anticipated investment is to change 
the phase between the oscillations of the capital stock 
and the investment. It could be important to control 
such a phase in practical business applications. 
It must be pointed out that the phase shift can be cho-
sen within a range of values: the example given here, 
with only one single fixed anticipatory time t + τ, is 
just a first attempt to show the feasibility of such an 
approach.  



 

 

4 Conclusion 
This paper deals with the modelling of retardation and 
anticipation in business models (Dubois, 2003b). 

Firstly, the retarded Kalecki model of business, 
given by one differential difference equation with 
retardation, describes the evolution of the capital K(t) 
related to the retarded capital K (t − τ). The oscillatory 
behaviour of the Kalecki retarded model is only possi-
ble because there is a retardation: without this retarda-
tion, the Kalecki model would give rise to a simple 
decay (the capital would go the zero) and the system 
would not survive.  

Secondly, the more general Kaldor-Kalecki model 
of business cycle is studied in view of showing its 
anticipatory capabilities. The instrumental relationship 
was to take into account a constant retardation, 
τ, between the investment decision and installation of 
investment goods. So the Kaldor-Kalecki model is 
represented by two functional differential equations of 
the gross product Y(t), at current time, and Y(t − τ), 
with retardation, and the capital stock K(t), at the cur-
rent time. In this paper, this model is extended to in-
clude a new equation giving a computational antici-
pated capital stock KA(t), at the current time. This 
anticipated capital stock is directly related to the future 
potential value of the current capital stock, that is 
KA(t) = K(t + τ). Numerical simulations show the 
feasibility of such a method that can be applied to 
many other similar problems in all areas of science. 

The anticipated capital K(t + τ) and the retarded in-
vestment Y(t − τ) play conjugated roles. As explained 
in Dubois (2002), an anticipated event can be com-
puted, at the strong sense, at the condition that another 
event is defined with a time retardation. The time re-
tardation may be interpreted as a memory that is a 
necessary condition for computing a strong anticipa-
tion. Recall that a strong anticipation is an anticipation 
that is computed by the system itself without a predic-
tive model. Recall that an anticipatory system, as de-
fined by Robert Rosen (1985), is built on a predictive 
model of the system, and is thus a weak anticipation. 
So, the strong anticipation is not simply an extrapola-
tion of the past to the future, but a dynamical behav-
iour of the system that takes explicitly into account 
past, present, and future events. Mathematical founda-
tions of discrete and functional systems with strong 
and weak anticipations appeared in (Dubois, 2003a). 

Strong anticipation can be modelled with functional 
retarded differential equations coupled to an anticipa-
tive synchronized equation (e.g. Voss, 2000, Dubois, 
2001). This paper demonstrates that functional differ-
ential equations with both retardation and anticipation 
are a useful tool for modelling anticipatory systems in 
a closed form. 
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