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used to infer CO2.
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decreasing, but NOx is decreasing faster
over time.

• Our inferred CO2 emissions agree well
with other top-down methods in the
LA basin.
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Fossil-fuel CO2 emissions and their trends in eight U.S. megacities during 2006–2017 are inferred by combining
satellite-derivedNOX emissionswith bottom-up city-specific NOX-to-CO2 emission ratios. A statisticalmodel isfit
to a collection NO2 plumes observed from the OzoneMonitoring Instrument (OMI), and is used to calculate top-
down NOX emissions. Decreases in OMI-derived NOX emissions are observed across the eight cities from 2006 to
2017 (−17% inMiami to−58% in Los Angeles), and are generally consistent with long-term trends of bottom-up
inventories (−25% inMiami to−49% in Los Angeles), but there are some interannual discrepancies. City-specific
NOX-to-CO2 emission ratios, used to calculate inferred CO2, are estimated through annual bottom-up inventories
of NOX and CO2 emissions disaggregated to 1 × 1 km2 resolution. Over the study period, NOX-to-CO2 emission ra-
tios have decreased by ~40% nationwide (−24% to−51% for our studied cities), which is attributed to a faster re-
duction in NOX when compared to CO2 due to policy regulations and fuel type shifts. Combining top-down NOX

emissions and bottom-up NOX-to-CO2 emission ratios, annual fossil-fuel CO2 emissions are derived. Inferred
OMI-based top-down CO2 emissions trends vary between+7% inDallas to−31% in Phoenix. For 2017,we report
annual fossil-fuel CO2 emissions to be: Los Angeles 113 ± 49 Tg/yr; New York City 144 ± 62 Tg/yr; and Chicago
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55 ± 24 Tg/yr. A study in the Los Angeles area, using independent methods, reported a 2013–2016 average CO2

emissions rate of 104 Tg/yr and 120 Tg/yr, which suggests that the CO2 emissions from our method are in good
agreementwith other studies' top-down estimates.We anticipate future remote sensing instruments –with bet-
ter spatial and temporal resolution –will better constrain the NOX-to-CO2 ratio and reduce the uncertainty in our
method.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Carbon dioxide (CO2) emissions from fossil fuel combustion are the
main cause for the observed increase in atmospheric CO2 concentration
and subsequent global warming (Hansen et al., 1981; IPCC, 2013). Due
to CO2's central role in global warming, it is critical to understand the
quantities of anthropogenic fossil-fuel CO2, so that policymakers can
better devise strategies to reduce its emissions and warming effect on
the globe.

Urban areas account for approximately 70% of fossil-fuel CO2 emis-
sions globally (International Energy Agency, 2008). Despite the large
role of urban CO2 emissions in the total global carbon budget, there
are gaps in our current understanding of urban dynamics that cause
their emissions (Mitchell et al., 2018). Fossil-fuel CO2 emissions are
often reported at national or regional scales rather than locally because
energy usage data are often provided at aggregated spatial scales, and
are reported with widely varying guidelines and procedures. Down-
scaled CO2 emissions have been developed globally by applying spatial
surrogates to national or regional emissions inventories, and are consid-
ered an important first step in estimating the spatial allocation of CO2

emissions (Gately et al., 2015; Gurney et al., 2012; Nangini et al.,
2019; Oda et al., 2018; Oda and Maksyutov, 2011; Patarasuk et al.,
2016). The uncertainties associated with downscaled emissions in
urban areas could be substantial (N20%) (Gately and Hutyra, 2017;
Gurney et al., 2019).

To better refine the magnitude and spatial heterogeneities of the
fossil-fuel CO2 emissions from urban areas, intensive experimental
field campaignshave been conducted overmegacities. These techniques
are loosely defined as a “top-down” approach of constraining emissions.
These campaigns use aircraft and other in situ observations to calculate
a CO2 flux from the metropolitan area (Lauvaux et al., 2016; Mitchell
et al., 2018; Sargent et al., 2018; Turnbull et al., 2018).

While experimental field campaigns often generate accurate CO2

flux estimates, a disadvantage of intensive field campaigns is that they
often: involve many active measurements, focus on short time periods,
are located over a single area, and need to be combinedwithmodel sim-
ulation output at high spatiotemporal resolution in order to calculate
emission fluxes. Instead, satellite data can be more useful to derive
“top-down” long-term trends over larger spatial extents. Japan's Aero-
space Exploration Agency's (JAXA) Greenhouse gases Observing SATel-
lite (GOSAT) and NASA's Observing Carbon Observatory 2 (OCO-2) are
two current satellite instruments, which have long-termmeasurements
(4+ years) of column-averaged CO2 mixing ratios (XCO2) over cloud
and aerosol free scenes (Crisp et al., 2004; Kuze et al., 2009). Studies
have used these two satellite instruments to: derive regional fluxes of
CO2 (A. Eldering et al., 2017; Hakkarainen et al., 2016; Hammerling
et al., 2012), estimate annual CO2 emissions from individual megacities
(Kort et al., 2012; Schwandner et al., 2017), derive emissions from
power plants (Nassar et al., 2017), and estimate CO2 emissions from
wildfires (Guo et al., 2017; Konovalov et al., 2014). However, the swaths
of OCO-2 and GOSAT are much narrower than other polar-orbiting sat-
ellite instruments routinely used to monitor tropospheric trace gas col-
umn amounts, such as OMI (Levelt et al., 2006). As a result, it is difficult
to get multiple overlapping swaths over many locations on the globe
using OCO-2 or GOSAT in isolation.

Instead, one can use satellite instruments with greater spatial cover-
age in lieu of a satellite that directlymeasures CO2 and apply conversion
factors to calculate CO2 from co-emitted species, such as NOX and CO
(Berezin et al., 2013; Konovalov et al., 2016). Ideally, one would use
emissions ratios derived from satellite data to convert NOX emissions,
but since current CO2-observing satellites have narrow swaths, there
are limited instances of this (Reuter et al., 2019); instead, we must in-
stead rely on bottom-up emissions ratios. Using a combination of OMI
NO2 and bottom-up NOX-to-CO2 emissions ratios, Berezin et al. (2013)
found an underestimate of the CO2 bottom-up emissions in China,
while Konovalov et al. (2016) found a slight overestimate of CO2

bottom-up emissions in western Europe.
Using NO2 to calculate CO2 emissions can be especially powerful be-

cause NO2 has a short lifetime and is better representative of local an-
thropogenic emissions than an atmospheric trace gas with a longer
lifetime, such as CO. Furthermore, using NO2 to calculate CO2 emissions
allows us to quantify fossil-fuel CO2 emissions in the presence of bio-
genic CO2, which is often a challenge in other CO2 top-down studies
(Ye et al., 2017).

In this study, we take advantage of the relatively short lifetime of
NOX during the warm season (April–September) and the fact that NOX

is co-emitted with CO2 during fossil-fuel combustion, to indirectly cal-
culate fossil-fuel based CO2 emissions for eight megacities in the
United States. We do this by first calculating the annual NOX emissions
for each of these cities using an approach outlined and refined in previ-
ous literature (Goldberg et al., 2019; Lu et al., 2015), as discussed in the
Methods and data section.We then apply city-specific CO2-to-NOX con-
version factors, which are generated from the EPA state-level bottom-
up emissions. While there are uncertainties associated with the both
the top-down NOX emissions and the CO2-to-NOX conversion factors,
we carefully account for these during our calculation, as discussed in
the Methods and data section. Furthermore, an advantage of this tech-
nique over others (Berezin et al., 2013; Konovalov et al., 2016) is that
we do not rely on a chemical transport model, which eliminates the
forecasted winds and chemical mechanism of the model as sources of
uncertainty.

2. Methods and data

2.1. OMI NO2

For this project, we use remotely sensed NO2 measurements from
OMI. OMI is a Dutch-Finnish UV–Vis spectrometer on the polar-
orbiting NASA Aura satellite (Levelt et al., 2006, 2018). OMI NO2 slant
column densities are derived from backscattered radiance measure-
ments in the 405–465 nm spectral window of the UV–Vis spectrometer.
OMI measures backscatter radiances in a 2600 km swath with a nadir
(center of the swath) pixel size of 13 × 24 km2. The instrument acquires
once-daily snapshots in the mid-afternoon (~13:45 local time) at each
location on the globe. Since the development of the “row anomaly” in
2007 (Dobber et al., 2008), which obstructs ~30% of the field of view,
it now has global coverage once every 2–3 days.

OMI NO2 satellite data version 3.1 is operationally released by NASA
(Krotkov et al., 2017). We filter the Level 2 OMI NO2 data to ensure only
valid pixels are used. Daily pixelswith solar zenith angles ≥80°, cloud ra-
diance fractions ≥0.5, or surface albedo ≥0.3 are removed as well as the
five largest pixels at the swath edges (i.e., pixel numbers 1–5 and
56–60). We also remove any pixel flagged by NASA including pixels
with NaN values and those affected by the row anomaly. We further
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re-process the operational slant column density data to create tropo-
spheric vertical column density data using high spatial resolution air
mass factors (AMFs) as provided by Environment Canada (McLinden
et al., 2014). AMFs are quantities used to convert the slant column
data directly observed by the satellite instrument to vertical column
data, which is more representative of surface concentrations and emis-
sions. The AMFs are a function of NO2 vertical column profiles as pro-
vided by a chemical transport model and scattering weights from a
radiative transfer model (which are a function of satellite viewing
angle, surface albedo, aerosols, and clouds). For the re-processed AMFs
in this study, we use a 10 × 10 km2 Global Environmental Multi-scale
–Modelling Air quality and CHemistry (GEM-MACH)model simulation
(Akingunola et al., 2018) to provide NO2 profile shapes below 2 km in
altitude, and above 2 km, NO2 profile shapes from a global chemical
transport model (GEOS-Chem) are used since they include lightning
NOX emissions. The emissions used to drive the GEM-MACH simulation
are representative of 2006; seeMcLinden et al. (2014) for details. Tropo-
spheric vertical columndata are 25–100% larger inmagnitude andmore
accurate in urban areas when using a regional model to re-process the
AMFs (Goldberg et al., 2017; Laughner et al., 2019). The uncertainty in
any daily measurement in the operational v3.1 data has been assigned
to be approximately 1.0 × 1015 molecules-cm−2 (Krotkov et al., 2017).
This equates to roughly a 10–20% uncertainty over polluted areas. How-
ever, becausewe are oversampling overmany days (N200 days), we as-
sume that random errors will cancel due to the large number of
observations used. This leaves only the systematic errors. Here, we as-
sign the AMFs and tropospheric vertical column contents a systematic
uncertainty of 20% following McLinden et al. (2014).

2.2. NOX emissions calculation

We use a top-down inverse statistical modeling technique to directly
derive NOX emissions from a combination of satellite data and re-analysis
meteorology. In this method, all NO2 satellite data over individual city
centers or “hotspots” are compiled and rotated based on the daily-
observed wind direction, so that the oversampled plume is decaying in
a single direction. For our calculation, we only utilize days in which
there is a validNO2 retrieval (cloud radiance fraction b0.3 andnot affected
by the row anomaly) and in which average wind speeds in the lowest 8
model layers of the ERA-Interim re-analysis (approximately 0–500 m
above the surface) (Dee et al., 2011) are N3 m/s. For cities in the north-
eastern US – New York City and Washington, DC – we only utilize data
when the wind directions are from the NW or SE to minimize influence
from nearby cities, which are SW/NE of each other. We then integrate
NO2 vertical column data perpendicularly across the plume to calculate
line densities; across plumewidths (integration limits) vary bymetropol-
itan area – for New York City and Los Angeles, they are 200 km, for Chi-
cago it is 150 km, and 100 km for all other cities. The line densities,
which are parallel to thewind direction, peak near the primaryNOX emis-
sions source and gradually decay downwind as the NOX is transformed
into different chemical species or deposited to the surface. The line densi-
ties are fit to a statistical exponentially modified Gaussian (EMG) model
(Beirle et al., 2011; de Foy et al., 2014; Valin et al., 2013). The parameters
from the fit are then used to calculate the NO2 burden and effective pho-
tochemical lifetime. Finally, the NOX emissions rate from the primary
source can be calculated from the two aforementioned fitted parameters
and the NOX/NO2 ratio, which is assumed to be 1.33 (Beirle et al., 2011;
Valin et al., 2011).

This method can only be applied when NO2 is photochemically ac-
tive and the NO2 lifetime is short. Therefore, we only use OMI NO2

data from April–September. We do not expect any significant system-
atic biases from only using April–September data. Reported emissions
data shows that power generation in the U.S. (and thus pollutant emis-
sions from the power sector) peaks in July and is lowest in April. This
may yield a positive +10% bias in the top-down NOx emissions attrib-
uted to the power sector, however, the power sector often represents
b20% in cities (see Fig. 2). For all other sectors (transportation,
manufacturing, etc.), we assume no seasonality in emissions.

The error associated with this top-down fit is calculated to be 35%,
and is a combination of the errors associatedwith the satellite data itself
(20%), the statistical uncertainty from the EMG fit (10%), sensitivity to
various parameters such as lifetime and across plume width (20%),
the wind speed and direction (10%), and the NOx/NO2 ratio (15%). For
the trend analysis, this uncertainty is much reduced, since the system-
atic uncertainties in the emissions do not have to be considered, thus
leaving only the random EMG fitting error of roughly 10%. For further
information on this method or the uncertainties associated with this
method, please see other literature (de Foy et al., 2014; McLinden
et al., 2014; Goldberg et al., 2019; Lu et al., 2015).

2.3. Bottom-up emissions estimates

To calculate our CO2-to-NOX emissions ratios, we use “bottom-up”
emissions inventories for 2005–2017 as provided by the U.S. EPA. We
account for regional differences in emissions by using bottom-up data
developed at the state and sector levels. The state-level data accounts
for the varying industries in the state and the varying types and ages
of vehicles registered. It is important to use emissions data compiled
at the state level because there can be large regional differences in reg-
ulations, economic activity, and lifestyle that can cause substantial var-
iation in per capita emissions (Gately et al., 2015; Gurney et al., 2019).

For NOX, we take the state-by-state and sector-by-sector emissions as
provided by the Air Pollutant Emissions Trends Data (https://www.epa.
gov/air-emissions-inventories/air-pollutant-emissions-trends-data).
Data for 2005, 2008, 2011 and 2014 are provided by the most up-to-date
versions of EPA's National Emissions Inventory (NEI); for non-power
plant sectors, the years in between are interpolated by EPA. Using the an-
nual state-level emissions data, we spatially allocate the emissions to a 1
× 1 km2 horizontal resolution using the following procedure: for power
plant emissions we use annual continuous emission monitoring system
(CEMS) data (https://ampd.epa.gov/ampd/) and match each power
plant to the closest 1×1km2 grid point; for on-roadmobile sources emis-
sions,we spatially allocate based on a 1×1 km2 road density network; for
all other sources including industrial fuel combustion, off-road vehicles,
and residential heating, we spatially allocate the emissions based on
each state's 1 × 1 km2 gridded population. We do not include wildfire
or biogenic sources of NOX in our bottom-up emissions as these sectors
are minimal contributors in major city centers – the focus of our work.

For CO2, we acquire the data from EPA's State CO2 Emissions from
Fossil Fuel Combustion (https://www.epa.gov/statelocalenergy/state-
co2-emissions-fossil-fuel-combustion), which are based on energy con-
sumption data from EIA's State Energy Data System and is reported an-
nually and on a similar state-by-state and sector-by-sector basis. Data is
spatially allocated using the same procedure for NOX outlined above. To
maintain consistencywith the NOX bottom-up emissions, nowildfire or
biogenic sources are included in our spatially allocated CO2 bottom-up
emissions. CO2 bottom-up emissions data is only available through
2016, so for 2017 we assume bottom-up CO2 emissions to be identical
to 2016 emissions.

2.4. Top-down CO2 emissions calculation

The OMI top-down NOX emissions are divided by the city-specific
NOX-to-CO2 bottom-up emissions ratio to get fossil-fuel based CO2

emissions. To develop the city-specific NOX-to-CO2 emissions ratios,
we aggregate the 1 × 1 km2 bottom-up emissions to a city-specific ra-
dius (varies between 50 and 75 km; 75 km for New York City and Los
Angeles, 62.5 km for Chicago, and 50 km for all other cities) around
the city center to minimize any artificial spatial heterogeneities. After
aggregating the bottom-up emissions, we compute the ratio. We esti-
mate the error associated with this ratio to be 25%. The total error asso-
ciated with the top-down CO2 emissions fit is 43% and is computed by

https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data
https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data
https://ampd.epa.gov/ampd/
https://www.epa.gov/statelocalenergy/state-co2-emissions-fossil-fuel-combustion
https://www.epa.gov/statelocalenergy/state-co2-emissions-fossil-fuel-combustion
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taking the square root of the sum of errors associated with the top-
down NOX fit and NOX-to-CO2 ratio.
3. Results and discussion

3.1. NOX and CO2 bottom-up emissions inventories

Fig. 1 shows the annual bottom-upNOX and CO2 emissions disaggre-
gated to 1 × 1 km2 and the difference between 2005 and 2016 emis-
sions. Dominant sources of NOX and CO2 are clearly visible in urban
areas and alongmajor transportation routes. While perhaps less identi-
fiable, emissions from power plants are also included. There are clear
downward trends in NOX emissions in almost all areas during this 12-
year period, likely due to a combination of more effective NOX-
conversion technologies (e.g., selective catalytic reduction, catalytic
converters), aswell as switches tomore NOX-efficient combustion tech-
niques (e.g., low-NOX boilers, switches to fossil fuels that emit less NOX

per unit of energy) (de Gouw et al., 2014). For CO2 emissions, the trends
are mixed: in east coast, northern Midwest, and west coast states
(e.g., New York, Illinois, California), the reported CO2 emissions have
dropped, while inmany central US states (e.g., Texas, North Dakota, Col-
orado) the reported CO2 emissions have increased. This may be related
to the increase in oil & gas activities in these areas over this period. In
states where there are increases in CO2 emissions, but decreases in
Fig. 1. Bottom-up emissions for (top)NOX and (bottom) CO2 spatially allocated to 1× 1 km2. (Le
and 2005.
NOX emissions (e.g., Texas), it appears that NOX-control strategies
more than compensated for the reported increase in fossil-fuel usage.

We also separate the spatially disaggregated bottom-up inventory
into three different sectors: power plants in the CEMS database, on-
road mobile sources, and all other sources (e.g., industrial fuel combus-
tion, off-road vehicles, and residential heating). Each sector's individual
contribution to the total emissions can vary substantially by grid box.
For that reason,we calculate each sector's contribution to the total emis-
sionswithin each grid box. These are then aggregated to 100 × 100 km2

grid boxes and shown in Fig. 2. In most rural areas, emissions from
transportation dominate – especially in areas with no power plants or
agricultural activities. In urban areas, themix ismore even. For example,
in New York City, non-on-road transportation and non-power plant
emissions represent the largest fraction of emissions (~40%), while on-
road transportation (~35%) and power plant (~25%) emissions are also
non-trivial. This is important information for our uncertainty analysis
because the spatial disaggregation of NOX and CO2 emissions are
known with the most certainty from power plants, with medium-
certainty from vehicles, and with low certainty from all other sources.
3.2. NOX-to-CO2 emissions ratios

Fig. 3 shows the annual NOX-to-CO2 ratios across theUS for 2005 and
2016 as well as the interannual trends of the ratio for eight cities spread
ft) Annual emissions for 2016. (Right) Difference between annual emissions between 2016



Fig. 2. Each sector's individual contribution to the total emissions by percentage for 2016 aggregated to 100 × 100 km2 for (top) NOX emissions and (bottom) CO2 emissions. Left panels
represent the transportation sector, center panels represent power plants in the CEMS, and right panels represent all other sources.
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across the United States between 2005 and 2016. The spatial figures
show the ratio aggregated to 100 × 100 km2, while the city-specific ra-
tios represent the area within a 50–75 km radius of the city center de-
pending on the size of the city (75 km for New York City and Los
Angeles, 62.5 km for Chicago, and 50 km for all other cities). In the spa-
tial plots, the NOX-to-CO2 ratios have decreased over time as NOX emis-
sions are reduced nationwide (Fig. 1) due to NOX-control technologies
and economic shifts of fuel types, while CO2 emissions have decreased
only modestly primarily due to economic-based shifts away from coal
combustion and increases in vehicle combustion efficiency. Areas with
noCO2 orNOX emissions in N90%of the 100×100 km2 box are removed.
The NOX-to-CO2 ratios are lowest near large and isolated power plants
denoted on the spatial plots because large power plants typically re-
move N95% of their NOX emissions using advanced control technologies
(e.g., selective catalytic reduction). The NOX-to-CO2 ratios are also
Fig. 3. The annual NOX-to-CO2 emissions ratio based on the EPANEI for NOX and the EPA state bo
aggregated to 1° × 1° grid boxes, and then the ratio is computed. Areas outside of the continenta
annual NOX-to-CO2 emissions ratio between 2005 and 2017 for eight metropolitan areas in the
center.
relatively low in the largest metropolitan areas (e.g., New York City,
Los Angeles, Chicago), which have more actively reduced their NOX

emissions due to their metropolitan areas' legacy of exceedances of
the surface O3 standard. The NOX-to-CO2 ratios are highest in the Cen-
tral Plains' and northern Rockies' states; this is due to a lack of monitor-
ing of NOX from transportation in these states (Fig. 4) and less stringent
NOX regulations due to their current attainment of the surface O3

standards.
According to the bottom-up emissions, the NOX-to-CO2 ratio has de-

creased by approximately 40% nationwide over the 12-year period, al-
though there are some states, which have reduced their NOX-to-CO2

ratio N50% (i.e., Texas, California, and New York), while other states
have seen small decreases or slight increases (i.e., Colorado, Wyoming,
and North Dakota) potentially due to industrial activities related to nat-
ural gas fracking. Of the eight cities we focus on, New York City has the
ttom-up emissions for CO2 for (a) 2005 and (b) 2017. The spatial bottom-up emissions are
l United States and areaswith no emissions in N90% of the 1° × 1° box are removed. (c) The
United States are shown. Ratios are representative of a 50–75 km radius around the city



Fig. 4. State reported NOX/CO2 ratios for the transportation sector in 2015.

Table 1
Top-down OMI NOX and OMI CO2 emissions for 2006 and 2017 compared to the bottom-
up NOX and CO2 emissions for the eight metropolitan areas of interest. Data for all years
can be found in Table S1.

City Inventory NOx (Gg/yr) CO2 (Tg/yr)

2006 2017 % change 2006 2017 % change

New York City Top-down 407 216 −46.9% 165 144 −13.1%
Bottom-up 340 188 −44.6% 119 107 −9.5%

Chicago Top-down 197 126 −35.8% 60 55 −9.0%
Bottom-up 287 165 −42.5% 75 61 −18.2%

Los Angeles Top-down 445 193 −56.7% 147 113 −23.0%
Bottom-up 261 134 −48.6% 72 67 −6.6%

Dallas Top-down 64 48 −25.2% 20 21 6.5%
Bottom-up 128 96 −24.9% 33 35 6.9%

Atlanta Top-down 61 35 −42.9% 13 13 0.0%
Bottom-up 77 47 −39.3% 14 15 6.3%

Washington, DC Top-down 82 43 −47.3% 18 13 −26.3%
Bottom-up 94 54 −42.7% 18 15 −19.2%

Miami Top-down 56 46 −16.9% 7 7 4.0%
Bottom-up 54 41 −24.5% 6 6 −5.5%

Phoenix Top-down 78 39 −49.6% 14 10 −31.1%
Bottom-up 53 37 −29.2% 8 8 −3.1%
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lowest reported NOX-to-CO2 ratio throughout the majority of the
2005–2016 period, while Los Angeles has the largest decrease in the
ratio during the same thirteen-year timeframe (Fig. 3).

3.3. OMI NOX emissions estimates for major US cities

Top-down OMI NOX estimates have been generated for eight major
cities in the United States; these estimates are shown in Table 1 (all
years are shown in Table S1). The OMI NOX estimates are 3-year aver-
ages during the warm season (April–September) centered on the year
of interest (approximately 150–300 valid retrievals per 549-day period
depending on the year and location). Bottom-up emissions that are
temporally allocated suggest that emissions between 12 and 3 PM –
the time of the OMI overpass – are 30–50% larger than the 24-hour av-
erage reported by the annual bottom-up emissions (Goldberg et al.,
2019). For that reason, we divide the top-down emissions by a factor
of 1.4 for these US cities in order to conduct a fair comparison with
the annual bottom-up emissions. For the bottom-up emissions, we
gather the total emissions within a specified radius of the city center –
75 km for New York City and Los Angeles, 62.5 km for Chicago, and
50 km for all other cities. These radii were estimated based on plume
width in the top-down approach.

For the rest of this paper, we focus on the three largest metropolitan
areas in theUnited States –NewYork City, Los Angeles, and Chicago – as
these areas have the most robust results due to the large magnitude of
their NO2 plumes, which are easily differentiated from diffuse back-
ground sources. Fig. 5 depicts the rotated OMI NO2 plume and subse-
quent top-down NOX derivation from these three cities for the 3-year
average centered on 2006. Heterogeneous topography and regional
mountain/sea/lake breezes are effects that may shorten the effective
photochemical lifetime and bias the top-down emissions calculation.
We partially account for this bias by only selecting days with strong
winds (N3 m/s); on days with faster winds speeds, the mountain/sea/
lake breezes are secondary to the synoptic flow. Our top-down NOX

emissions may be too large in later years since we are using AMFs de-
rived from a chemical transport model simulation driven by 2006 emis-
sions; we expect this bias to be about +10% in later years. Future work
will be focused on deriving long-terms trends of NOX using model sim-
ulations driven by year-varying emissions (Laughner et al., 2019;
Silvern et al., 2019).

Fig. 6 depicts the NOX estimates for our three focus cities from 2006
through 2017. For Los Angeles, our top-down approach suggests a de-
cline in NOX emissions by 57% between 2006 and 2017, while the
bottom-up emissions suggest a decline of 48% over the same period.
Our results suggest an underestimate in the NOX bottom-up emissions
during the early period and better agreement in the more recent
years. For New York City and Chicago, both the top-down estimates
have similar trends – a sharp decline in NOX emissions between 2006
and 2010, and a leveling off since then. The NOX bottom-up emissions
do not capture this bifurcated trend. These results are consistent with
recent literature suggesting that NOX emissions across much of the
United States declined quicker than anticipated between 2008 and
2010 due to the economic recession (de Foy et al., 2016; Russell et al.,
2012; Tong et al., 2016) and then slower than expected since 2011
(Jiang et al., 2018). However, the trends during the entire 12-year pe-
riod match the bottom-up trends well for both cities.
3.4. “OMI” CO2 emissions estimates for major US cities

We then calculate the top-down “OMI” CO2 emissions for these
major metropolitan areas using the top-down OMI NOX estimates and
the NOX-to-CO2 ratios suggested by the bottom-up emissions. The bot-
tompanels of Fig. 6 illustrate these values and trends. For NewYork City,
CO2 emissions decreased from165±71 Tg/yr in 2006 to 144±62Tg/yr
in 2017 and represent a 13% decrease over the 12-year period. For Chi-
cago, CO2 emissions decreased modestly from 60 ± 26 Tg/yr in 2006 to
55± 24 Tg/yr in 2017 and represent a 9% decrease over the 12-year pe-
riod. The magnitude of the change in New York City and Chicago over
the 12-year period is similar to the bottom-up emissions; however,
this 12-year trend is not indicative of the interannual trends in both cit-
ies. Between 2006 and 2008 there is a slight increase, a sharp decrease
in 2009 and 2010 due to the economic downturn, a temporary increase
between 2010 and 2014 due to the economic recovery and a stabiliza-
tion since then. For Los Angeles, CO2 emissions are 147 ± 63 Tg/yr in
2006 and decrease to 81± 35 Tg/yr by 2014, and then increase slightly
to 113 ± 49 Tg/yr in 2017, representing a 23% decrease over this 12-
year period, while the bottom-up emissions suggest a 7% decrease
over the same time frame.

For Los Angeles, we can compare our result to other top-down stud-
ies – satellite and in situ. For a 2013–2016 average, Hedelius et al.
(2018) suggest a top-down estimate of 104 ± 26 Tg/yr using in situ
monitors from the Total Carbon Column Observing Network and 120
± 30 using OCO-2 July 2013–August 2016. We report a value of 96 ±
41 Tg/yr in 2015. Values reported by Hedelius et al. (2018) are larger
than the mean values reported here; however, our estimates represen-
tative of a smaller spatial domain. The aforementioned studies quantify
CO2 emissions over a larger area that include portions of the California
Central Valley and the San Diego metropolitan area, while our study
quantifies CO2 from only the Los Angeles basin. Second, our study only
quantifies CO2 emissions from fossil-fuel combustion, and not the total



Fig. 5.Top rowpanels represent theoversampled (1×1 km2)OMINO2 plumes fromour threemetropolitan areas of focus (NewYorkCity, Chicago, and Los Angeles) rotated based onwind
direction over a non-continuous18-monthperiod, Apr–Sept 2005–2007 centeredon2006. Second rowpanels represent theOMINO2 line densities integrated over the across plumewidth
(for NYC & LA:−100 km to 100 km along the y-axis of the top panels, Chicago:−75 km to 75 km) and the corresponding EMG fit for the 18-month period shown in the top panels; NOX

emissions estimates are in units of Gg/yr NO2 equivalent.

7D.L. Goldberg et al. / Science of the Total Environment 695 (2019) 133805
CO2 emissions. Ourmethod is unable to quantify CO2 emitted from land-
use changes, but we expect these net changes on annual basis to be
small in a major metropolitan area. More recently, Cui et al. (2019) cal-
culated a fossil-fuel CO2 flux of 124±31 Tg/yr between June 2013–May
2014 for the South Coast Basin, but it is unclear how they defined the
South Coast basin.

It is also important to note the uncertainty from ourmethod is larger
than other studies (i.e., ~43% uncertainty in our study vs. ~25% uncer-
tainty in Hedelius et al. (2018) and Cui et al. (2019)). The cause of our
larger uncertainty is due to our reliance on the bottom-up emissions in-
ventory for theNOX to CO2 ratio. Unfortunately, emissions from low cer-
tainty sources (e.g., industrial activities) are often widespread in major
urban areas and generally have larger NOX-to-CO2 ratios than sources
with known emissions such as power plants (Fig. 7). While bottom-up
ratios may be not identically representative of reality, we do account
for regional variations of the NOX-to-CO2 ratio, which have large spatial
heterogeneities and are due towidely varying regulations, economic ac-
tivities, and lifestyles. In the future, the simultaneous use of satellite NO2

and CO2 measurements to derive the ratio will be preferable, but
Fig. 6. Third rowpanels depict top-downOMINOX trends (solid line), and bottom-up emissions
CO2 trends (solid line) and bottom-up emissions (dotted line) during the same timeframe. A d
currently there are only a few collocated enhancements over cities
and there are other uncertainties inherent in using collocated satellite
data to derive the ratio (Reuter et al., 2019). With that said, it is encour-
aging thatwe showgood agreementwith other top-down studies in Los
Angeles; therefore, we believe that our initial estimates of the uncer-
tainty may be conservative.

4. Conclusions

In this study, we calculate fossil-fuel CO2 emissions and their trends
in eight U.S. megacities during 2006–2017 by combining satellite-
derived NOX emissions with bottom-up city-specific NOX-to-CO2 emis-
sion ratios. Decreases in OMI-derived NOX emissions are observed
across studied cities from 2006 to 2017 (−17% in Miami to −58% in
Los Angeles), and are consistent with bottom-up inventories (−25% in
Miami to −49% in Los Angeles). Combining top-down NOX emissions
and bottom-upNOX-to-CO2 emission ratios, annual fossil-fuel CO2 emis-
sions are derived. OMI-based top-down CO2 emissions trends vary be-
tween +7% in Dallas to −31% in Phoenix. Good agreement of CO2
(dotted line) between 2006 and 2017. Bottom rowpanels depict trends of top-down “OMI”
escription of the uncertainty calculations can be found in the Methods and Data section.



Fig. 7. Reported annual bottom-up NOX-to-CO2 ratios by sector for the eight metropolitan areas of interest.
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emissions is found in comparison with other studies' top-down esti-
mates in Los Angeles.

The distinct advantage of ourmethodology is the ability to apply it to
any large metropolitan area extending back to 2005 (and potentially
earlier if using other satellite datasets such as SCIAMACHY) with no
new additional measurements needed. In this manner, we can calculate
top-down trends in CO2 with some certainty. In particular, we note an
increase in CO2 emissions in New York City and Chicago between
2009 and 2014 that is not captured in the bottom-up emissions inven-
tory. This increase is in alignmentwith the economic recovery following
the U.S. recession in 2008.

Our method works best for cities with consistently large NO2

plumes, isolation from other large cities, homogenous topography, and
reasonable bottom-up NOX and CO2 emissions. Although we focus on
metropolitan areas in the United States, this technique can be applied
to other metropolitan areas across the globe. If investigating a region
with bottom-up emissions that are more uncertain, the top-down CO2

estimates will also be more uncertain.
Future applications of this technique may be of most interest to

policymakers of cities whowant to better quantify changes in their car-
bon footprint over decadal timeframes, and track progress towards cli-
mate goals. Satellite data, as a stand-alone product, should not be used
determine compliance, but instead could be used as one of many met-
rics to assess progress. New remote sensing instruments with higher
spatial resolution and higher signal-to-noise ratios, such as the Tropo-
spheric Monitoring Instrument (TROPOMI) (Veefkind et al., 2012) on
ESA's Sentinel 5 Precursor satellite, NASA's Earth Venture geostationary
Tropospheric Emissions: Monitoring Pollution (TEMPO) (Zoogman
et al., 2017), and NASA's Orbiting Carbon Observatory-3 (OCO-3) on
the International Space Station (Eldering et al., 2019), will reduce the
uncertainties in our top-down emissionsmethod and provide estimates
at higher temporal (daily) resolution.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2019.133805.
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