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G R A P H I C A L A B S T R A C T

A B S T R A C T

To link short-term exposures of air pollutants to health outcomes, scientists must use high temporal and spatial resolution estimates of PM2.5 concentrations. In this
work, we develop a daily PM2.5 product at 1×1 km2 spatial resolution across the eastern United States (east of 90° W) with the aid of 1× 1 km2 MAIAC aerosol
optical depth (AOD) data, 36× 36 km2 WRF-Chem output, 1×1 km2 land-use type from the National Land Cover Database, and 0.125°× 0.125° ERA-Interim re-
analysis meteorology. A gap-filling technique is applied to MAIAC AOD data to construct robust daily estimates of AOD when the satellite data are missing (e.g., areas
obstructed by clouds or snow cover). The input data are incorporated into a multiple-linear regression model trained to surface observations of PM2.5 from the EPA
Air Quality System (AQS) monitoring network. The model generates a high-fidelity estimate (r2= 0.75 using a 10-fold random cross-validation) of daily PM2.5

throughout the eastern United States. Of the inputs to the statistical model, WRF-Chem output (r2= 0.66) is the most important contributor to the skill of the model.
MAIAC AOD is also a strong contributor (r2= 0.52). Daily PM2.5 output from our statistical model can be easily integrated into county-level epidemiological studies.
The novelty of this project is that we are able to simulate PM2.5 in a computationally efficient manner that is constrained to ground monitors, satellite data, and
chemical transport model output at high spatial resolution (1× 1 km2) without sacrificing the temporal resolution (daily) or spatial coverage (> 2,000,000 km2).
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1. Introduction

Inhaling fine particulate matter with an aerodynamic diameter of
less than 2.5 μm (PM2.5) is a serious health hazard (Franklin et al.,
2007; Anenberg et al., 2010; Lelieveld et al., 2015). Health studies
demonstrate that PM2.5 has substantially greater toxicity than larger
particles (Schwartz et al., 1996). Furthermore, some constituents of
PM2.5, such as organic carbon matter and elemental carbon, may be
more toxic than others (Peng et al., 2009; Krall et al., 2013). Due to the
difficulties of measuring particles with such small size and the emerging
science demonstrating that the smallest particles pose the greatest risk,
the U.S. EPA did not require measurement of PM2.5 until 1997 (U.S.
EPA, 1997; Noble et al., 2001).

EPA-approved PM2.5 monitors are often located in urban areas or
areas of known concern, leaving residents in many areas, especially
rural areas, with a limited idea of their exposure to air pollution.
Furthermore, epidemiological studies often rely on these sparse ground
networks to link air pollution to health outcomes. This leaves a sub-
stantial knowledge gap between what people are actually exposed to
and what we “think” people are exposed to. This suggests that any al-
ternative observations or robust models may be powerful in providing
constraints on the range of surface concentrations.

Satellite observations of AOD can be helpful in providing a first-
order estimate of PM2.5 at the surface (Wang and Christopher, 2003;
Chu et al., 2003; Engel-Cox et al., 2004; Al-Saadi et al., 2005; Gupta
et al., 2006; Zhang et al., 2009). Satellite instruments can be advanta-
geous because they capture greater spatial coverage than any other
observational technique. Satellite instruments measure AOD by quan-
tifying how much light at certain wavelength (e.g., 550 nm; yellow-
green light) is attenuated between the Earth's surface and the in-
strument's detector (Remer et al., 2005). Therefore, AOD measurements
are indicative of the total atmospheric column content and not ne-
cessarily the surface concentration. There are three different algorithms
used to retrieve AOD from MODerate-resolution Imaging Spectro-
radiometer (MODIS) spectral reflectance: Dark Target (DT) (Levy et al.,
2013), Deep Blue (DB) (Hsu et al., 2013), and Multi-Angle Im-
plementation of Atmospheric Correction (MAIAC) (Lyapustin et al.,
2018). No algorithm has shown the ability to retrieve AOD over ice/
snow or cloudy scenes (Sayer et al., 2014). The DT algorithm has the
longest legacy and works best over dark surfaces (i.e., vegetated land or
ocean). The DB algorithm has been developed more recently and was
specifically refined to acquire AOD over bright surfaces (i.e., deserts or
dry brush). Both the DT and DB products are both retrieved at 10 km,
with DT having an additional product at 3 km (Remer et al., 2013). The
MAIAC product became operational in June 2018 and reports AOD at
1 km spatial resolution. The MAIAC algorithm is fundamentally dif-
ferent from previous AOD algorithms because it remembers the mea-
surements over time and corrects for atmospheric and reflectance
parameters that are specific to each pixel (Lyapustin et al., 2018). Be-
cause of this, the MAIAC algorithm is more computationally demanding
and the MAIAC product is only available for land areas.

Satellite AOD measurements can be merged with other variables
known to be strongly correlated with surface air quality, such as me-
teorology (Gupta and Christopher, 2009a) and land-use type (Hoek
et al., 2008), to better estimate PM2.5 concentrations. These models
must be trained to surface observations. Initial studies showed how
AOD can be joined with meteorological predictors to estimate PM2.5

with reasonable skill in the eastern United States (Liu et al., 2005, 2007,
2009; Lee et al., 2011; Kloog et al., 2011, 2012, 2014; Hu et al., 2013).
Some of the newest approaches use neural networks (Gupta and
Christopher, 2009b; Di et al., 2016a,b) and a random forest approach
(Hu et al., 2017) to estimate PM2.5.

A fundamentally different approach to estimate surface PM2.5 is to
apply the AOD-PM2.5 relationship from a chemical transport model to
satellite data (Liu et al., 2004; van Donkelaar et al., 2006, 2010, 2013).
A distinct advantage of this technique is the ability to estimate PM2.5 at

high spatial coverage in areas with no ground monitors. This technique
can be further improved by using geographic weighted regression,
which uses land-cover type, elevation, and surface observations to
further refine the PM2.5 estimate (van Donkelaar et al., 2015, 2016).
However, this approach is computationally expensive, relies on the
model's capability to provide an accurate estimate of PM2.5-AOD ratios,
and is proven more accurate when estimates are averaged over longer
time periods.

A known limitation with the use of AOD to predict PM2.5 is the
satellite's inability to provide a valid retrieval over snowy and cloudy
scenes. This is particularly problematic because some polluted days
occur when clouds or snow obstruct the retrieval, especially in the mid-
latitudes. For example, in the winter, snow cover or warm-air advection
aloft associated with a cloudy warm front can cause strong temperature
inversions to develop near the surface layer trapping air pollution close
to the ground level. Therefore, some PM2.5 episodes cannot be captured
by passive satellite data. A novel solution to this is by gap-filling AOD
when daily satellite data are missing (Lv et al., 2016, 2017). The “ar-
tificial” AOD is an observed seasonal mean adjusted based on the daily
PM2.5 measurements by ground stations. This allows for the use of daily
AOD covering an entire domain. Lv et al., 2016, 2017 applied this
technique to the Beijing metropolitan area and was able to predict
PM2.5 with a cross-validated skill of r2= 0.78.

Marshall et al. (2008) discussed how using a chemical transport
model output as an independent variable in a land-use regression model
could be an optimal solution. De Hoogh et al. (de Hoogh et al., 2016)
demonstrate the incremental utility of adding satellite data and a che-
mical transport model as independent inputs to a typical land-use re-
gression model. They found that satellite data adds the most skill in-
creasing the “hold-out” validation r2 from 0.27 to 0.56 for monitors in
Europe. Chemical transport model data further increases the skill to
r2= 0.58.

In this study, we employ a statistical regression technique with
meteorological data, land-use parameters, satellite data, and chemical
transport model output as independent inputs to estimate daily 24-h
averaged PM2.5 at 1× 1 km2 spatial resolution throughout the eastern
United States. Our approach most closely matches the methodology
followed by de Hoogh et al. (de Hoogh et al., 2016), but instead we
estimate daily PM2.5. To provide daily AOD, we utilize a gap-filling
AOD methodology (Lv et al., 2016) to fill-in missing AOD pixels. The
novelty in this project lies in the fact that we are able to simulate high
spatial resolution data (1× 1 km2) without sacrificing the temporal
resolution (daily) or spatial coverage (> 2,000,000 km2).

2. Methods

2.1. Regression model

We calculate daily PM2.5 in the eastern United States by fitting a
temporally varying multiple least-squares linear regression model to
daily 24-h averaged PM2.5 from the EPA ground monitor observations.
The model is derived from eleven input variables: MAIAC AOD, WRF-
Chem SO4

−2, WRF-Chem NO3
−, WRF-Chem NH4

+, WRF-Chem sec-
ondary organic aerosol (SOA), 2-m air temperature, total water column,
forest percentage, high-density urban percentage, medium-density
urban percentage, and open-area urban percentage. Variables were
chosen based on their individual cross-validated r2 skill greater than
0.4, as shown in Table 1.

Multiple least-squares linear regression determines the best-fitting
predictor coefficients (i.e., αi, β1,i, β2,i, etc.) by minimizing the sum of
the squares between observed values and the resulting estimates, as
shown in Equation (1).

= + + + +PM α β x β x β x. 2. 5 ...i j i i i j i i j n i n i j, 1, 1, , 2, 2, , , , , (1)

PM2.5 for day i and grid cell j is calculated by adding the constant α
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and multiplicative sum of the regression parameters βn and the spatial
value xn at each day i and grid cell j. AOD, meteorological, and WRF-
Chem variables vary spatially and temporally, while land-use para-
meters vary only spatially. The ‘regress’ function in the IDL software
package is used to determine the coefficients for each individual day.
Once the coefficients are determined, the model can be applied to all
land-based locations within the eastern United States. Since the model
is only fit to monitors located on the land in the eastern United States,
we do not attempt to apply the model to areas in eastern Canada or over
water bodies, such as the Atlantic Ocean, Great Lakes, and other large
land-locked lakes. The model, as currently developed, is not speciated
by chemical constituents of PM2.5, but this is under our consideration
for implementation in future model versions. The model is evaluated
using a 10-fold cross-validation, which is further described in the
Results section. A block flow diagram of the methodology can be found
in Fig. 1.

2.2. MAIAC AOD

Two MODIS instruments are onboard NASA low-earth-orbiting sa-
tellites: Terra and Aqua. Both Terra and Aqua provide near daily global
coverage with local equatorial overpass times of 10:30 and 13:30 re-
spectively. MODIS has a broad swath – 2330 km in width – allowing for
a complete picture of the Earth once per day with minimal gaps in
tropical regions. MODIS collects information within thirty-six spectral
bands spanning the visible and infrared spectrum (0.41–14.5 μm), with
individual pixel sizes ranging from 250 to 1000m; the aerosol retrievals
make use of seven of these channels (0.47–2.13 μm) (Remer et al.,
2005).

For this study, AOD was retrieved from the NASA MAIAC Collection
6 Level 2G product, which utilizes the MODIS sensors on both the Terra
and Aqua satellites (Lyapustin et al., 2018). We use all reported MAIAC
data, which includes pixels with partly cloudy scenes and pixels ad-
jacent to cloudy scenes. Applying a “clear-only” filter erroneously
eliminates many pixels in urban areas and smoke plumes (Lyapustin
et al., 2018), which are important for our study. From the daily product,

Table 1
A 10-fold cross-validation of the statistical model with various inputs used. The italicized model is the one used to generate Figs. 7, 9a and 10.

Name of run Random CV Spatial CV

R2 Slope Const NME R (Anenberg et al., 2010) Slope Const NME

Met 0.46 0.68 3.5 29.2% 0.43 0.70 3.3 29.6%
LUT 0.41 0.66 3.8 30.5% 0.37 0.68 3.5 31.0%
WRF-Chem 0.66 0.82 2.0 22.3% 0.64 0.83 1.9 23.0%
Met, LUT & WRF-Chem 0.72 0.87 1.4 20.0% 0.70 0.87 1.4 20.8%
AOD 0.52 0.77 3.0 27.3% 0.51 0.73 3.0 27.6%
AOD, Met, LUT & WRF-Chem 0.75 0.89 1.3 19.0% 0.73 0.89 1.2 19.8%
AODallgf, Met, LUT & WRF-Chem 0.77 0.90 1.2 18.4% 0.76 0.90 1.2 18.9%
WRF-Chem-PM2.5* 0.23 1.13 −2.2 40.5% 0.23 1.13 −2.20 40.5%

Met=Meteorological variables (2-m afternoon temperature & total water column from ERA-Reanalysis).
LUT= Land-use Type; forest and urban percentages from the 2011 National Land Cover Database.
WRF-Chem=Concentrations of NH4, NO3, SO4, and Black Carbon from WRF-Chem simulation.
AOD=MAIAC AOD from Terra & Aqua; for the daily fit, the gap-filling technique is used.
AODallgf=Daily observed Aerosol Optical Depth is overwritten with gap-filled AOD.
WRF-Chem-PM2.5= PM2.5 from the WRF-Chem simulation.
*Not a cross-validation.

Fig. 1. Methodology used to estimate daily PM2.5 concentrations. Model inputs are shown in orange, the gap-filling procedure is shown in gray, the regression model
is shown in green, and the model outputs are shown in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the Web
version of this article.)
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we develop three “seasonal” mean products used for the gap-filling
procedure: fall and winter (October–March), spring (April–May), and
summer (June–September). The gap-filling procedure is described in
detail later. In Fig. 2, we show the seasonal means of MAIAC AOD in the
eastern United States for 2008. On average, AOD in the eastern United
States is lower in the cold season than in the warm season. Fall and
winter values generally range between 0.05 and 0.1 (mean: 0.076,
standard deviation (sd): 0.023), while, spring values range between
0.12 and 0.22 (mean: 0.17, sd: 0.048) and summer values range be-
tween 0.15 and 0.3 (mean: 0.23, sd: 0.066). The larger AOD during the
summer months in the eastern United States is due to secondary aerosol
formation processes (Hand et al., 2012), which rely on sunlight, warm
temperatures, humidity, and biogenic volatile organic compound
emissions. Winter values are low because most residential areas in the
northern United States use natural gas in lieu of coal or biomass to heat
(Energy Information Administration (EIA), 2011): natural gas com-
bustion emits almost no sulfate or black carbon, which are important
components of particulate matter. In the winter, despite AOD being
relatively low, local maximums occur near the agricultural areas of the
Midwest U.S.; the lowest values occur in the rural forested areas. In the
warm season, AOD is the largest over major cities and the forested areas
of the southeastern U.S.

2.3. EPA Air Quality System (AQS) monitors

Daily 24-h averaged PM2.5 concentrations were acquired from the
EPA AQS pre-generated data files (https://aqs.epa.gov/aqsweb/
airdata/download_files.html). Most EPA monitoring stations measure
24-hr averaged PM2.5 every third day (∼120 samples per year) using a
Federal Reference Method (FRM): a procedure involving gravimetric
sample collection on filter paper (Noble et al., 2001). Starting in 2008,
EPA began to install continuous Federal Equivalence Method (FEM)
PM2.5 monitors, which acquire data on an hourly basis (Gobeli et al.,
2009). In our eastern United States domain, approximately 90 monitors
measure PM2.5 every day using continuous the FEM, while an addi-
tional ∼400 monitors measure daily PM2.5 every third day using the
FRM. We used over 80,000 observations of 24-h averaged PM2.5 in the
eastern United States during 2008. Calibration and quality control of
the monitors are conducted by the organizations operating the moni-
tors, which are often state environmental agencies. On any given day, a
few monitors, usually less than 10, register values that are inconsistent

with the overall trends in the region. These monitors are outliers and
are not representative of the local region perhaps because they are af-
fected by a hyperlocal influence, such as a plume from a small factory, a
small wildfire, or a roadway. For this reason, we filter out the top 2.5%
of observed values when training and evaluating our regression model.

2.4. WRF-Chem

The WRF-Chem simulation was conducted by North Carolina State
University using an improved version of WRF-Chem v3.7.1 that in-
corporates the advanced Volatility Basis Set (VBS) secondary organic
aerosol (SOA) treatment (Yahya et al., 2017) over a domain that covers
the continental U.S. (CONUS) in 2008. The simulation was performed at
a horizontal grid resolution of 36-km with 148×112 grid cells and a
vertical resolution of 34 layers from surface to 100 hPa. This improved
version of WRF-Chem uses the 2005 Carbon Bond (CB05) gas-phase
mechanism with additional chloride chemistry coupled with the aerosol
model Modal for Aerosol Dynamics in Europe (MADE) available in the
standard released version as described by Wang et al. (2015) but with
an improved VBS SOA module as described in Yahya et al. (2017). The
anthropogenic emissions used for the simulation are based on the 2008
National Emission Inventory (NEI). The chemical initial and boundary
conditions (ICONs/BCONs) are from the global simulations using the
modified CESMv1.2.2/CAMv5.3 (Glotfelty et al., 2017; Glotfelty and
Zhang, 2017). More details on the WRF-Chem model configuration can
be found in Yahya et al. (2017)

2.5. Other spatiotemporal predictors

Meteorological data were obtained from the European Center for
Medium-Range Forecast (ECMWF) Re-Analysis Interim (ERA-Interim)
dataset at a downscaled spatial resolution of 0.125°× 0.125° (Dee
et al., 2011). We utilized mid-afternoon values (18:00 UTC; 14:00 local
time) of 2-m temperature and total water column content from the re-
analysis; temperature and humidity are the two strongest meteor-
ological predictors of PM2.5 in the eastern United States (Zhang et al.,
2017). Land-cover data were obtained from the Biogenic Emission
Land-use Database (BELD) version 4.1 (ftp://ftp.epa.gov/
EmisInventory/2011v6/v3platform/beld4.1/tiles/), which compiles
land-cover data at 1× 1 km2 spatial resolution across the United States.
BELD is derived from the 2011 National Land-Cover Database (NLCD).

Fig. 2. MAIAC AOD Collection 6 in the eastern United States for 2008. Both Terra MODIS and Aqua MODIS data are included; 1 km grid cells with fewer than 5 valid
AOD retrievals have no data. Values over water and in Canada are masked.
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For this study, we utilized the following variables from BELD: high-
density urban, medium-density urban, open-area urban, and total forest
percentages.

2.6. Gap-filling MAIAC AOD

Missing AOD was gap-filled on a daily basis using a technique first
described by Lv et al. (2016) and integrated in this study in a similar
manner. Gap-filled AOD (AODgf) is calculated using Equation (2).

⎜ ⎟= ⎛
⎝

⎞
⎠

+AODgf a
PM
PM

AOD b
. 2. 5
. 2. 5i j s j

i j

s j
s j s j, ,

,

,
, ,

(2)

AODgf for day i at grid cell j is a function of a slope (as,j) during
season s, the ratio of daily observed 24-h averaged PM2.5 (PM2.5i,j) to
seasonal PM2.5 (PM2.5s,j), the observed seasonal mean AOD (AODs,j),
and a seasonal constant (bs,j). The coefficients, as,j and bs,j, are derived
using a linear fit to the observed daily/seasonal AOD and PM2.5 at each
ground monitor. The daily mean PM2.5 anomaly (PM2.5i,j/PM2.5s,j) is
assumed to be analogous to the anomaly at the MODIS overpass time
(10:30 or 13:30 local time). To obtain estimates of PM2.5i,j, PM2.5s,j, as,j,
bs,j within grid cells with no ground monitoring data we use an inverse-
distance weighted method with a 50 km smoothing distance using the
IDL function “GridData”. We define the “cold” season as
October–March and the “warm” season as April–September. The warm
season is further segregated into two portions, April–May and
June–September, for a total of three “seasons”. The warm season was
separated into two parts due to the varying aerosol characteristics
within the warm season. In the cold season and the early part of the
warm season, aerosols in the eastern United States are dominated by a
nitrate component due to the longer photochemical lifetime of NO2; in
the mid-summer, the nitrate component is overtaken by a secondary
organic aerosol (SOA) component (Bell et al., 2007).

4. Results

In this study, we first demonstrate the skill of the gap-filling tech-
nique in the eastern United States by comparing to the AERONET
ground-based spectrometer network and MAIAC AOD under clear skies.
We then develop daily PM2.5 estimates at 1× 1 km2 spatial resolution
for the eastern United States. Finally, we compare PM2.5 concentrations
output by our statistical model to the PM2.5 concentrations output from
the WRF-Chem simulation.

4.1. Gap-filling AOD

The amount of valid MAIAC AOD spatial coverage within our do-
main during 2008 ranges from a minimum of 0.2% (February 22, 2008)
to 92.3% (October 31, 2008), with the median value being 28.8%. As

seen in Fig. 3, the lowest spatial coverage values occur in the mid-
winter due to snow cover, while the largest spatial coverage values
occur in the autumn; this is consistent with results shown in Lv et al.
(2016) Overall, there are more days with valid pixels in the southern
states than northern states, but it varies by season. In the southeastern
United States, more valid AOD pixels occur during the winter months
than the summer months, while the opposite is true in the northeastern
United States. Similar results were found by Gupta et al. (Gupta and
Christopher, 2008; Christopher and Gupta, 2010)

To demonstrate the importance of AOD gap-filling, a day re-
presenting the average amount of valid MAIAC AOD pixels amongst all
days in 2008 is shown in Fig. 4. On August 22, 2008, clear skies exist
throughout much of the Northeast United States yielding a valid AOD
retrieval in these areas. However, cloud cover associated with a frontal
boundary in the Midwest and Tropical Storm Fay in the Southeast ob-
structed the AOD retrieval in a large fraction of our domain: only 25.9%
of the region had a valid AOD retrieval. Using equation (1), the area
with no retrieval is re-populated with an artificial, best-guess estimate
of daily AOD. The gap-filled AOD matches the general spatial pattern of
PM2.5 observed by the ground EPA AQS sites: higher AOD in the Mid-
west, lower AOD in the Southeast. This example serves as a reminder
that the surface PM2.5 can be both higher or lower than average in the
presence of cloud cover.

Daily MAIAC AOD and gap-filled daily MAIAC AOD are compared to
AOD from the ground-based AERONET observing network. MAIAC
AOD is calculated at 550 nm, while the AERONET spectrometers record
AOD at a spectrum of wavelengths between 340 nm and 1640 nm. An
interpolation of AERONET AOD at 550 nm was created from a log-log
best fit of AOD within the AERONET spectrum. For AERONET, we use
all valid data acquired between a timeframe of 10:00–15:00 local time
and average it into a single value. For MAIAC AOD, we use an average
of all valid Terra and Aqua pixels within a 5 km radius of the mon-
itoring site; the area encompassing the entire 5 km radius must have
complete data in order to be considered valid. In Fig. 5, we show
AERONET vs. MAIAC AOD and gap-filled MAIAC AOD during days in
which there are valid collocated measurements (in our domain, there
are 436 valid collocated 5-h daily averages). The r2 between observed
MAIAC and AERONET AOD is 0.90. A slope near one indicates excellent
performance of the MAIAC product and is consistent with other studies
validating the MAIAC Collection 6 product. The r2 between gap-filled
MAIAC and AERONET AOD is 0.52, which represents worse but still
appropriate correlation, while the slope of the best-fit line is similar to
the observed MAIAC. This demonstrates that urban bias in the original
retrieval will be inherent in a gap-filled retrieval. The r2 is lower in the
gap-filled product because it is not a true observation, but instead an
estimate. We show that when using a seasonal AOD mean to gap-fill, the
performance is degraded even further (r (Anenberg et al.,
2010)= 0.31).

In Fig. 6, we directly compare the MAIAC gap-filled product to the

Fig. 3. The percentage of valid MAIAC AOD pixels within our domain (eastern U.S.) (a) temporally by day with the monthly mean denoted by a line, (b) spatially for
an annual average, (c) spatially for the winter months, (d) spatially for the spring months, (e) spatially for the summer months.
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observed MAIAC AOD, and find good agreement at lower values
(AOD < 0.6; 98.5% of all pixels), but poor agreement at the highest
observed AOD values (AOD > 0.6; 1.5% of all pixels). This is to be
expected as the gap-filled product cannot account for anomalous events
such as small wildfires or aerosol plumes that do not reach the surface;
some of high observed AOD values may be artificially due to cloud
contamination.

4.2. Daily PM2.5

Fig. 7 depicts daily PM2.5 concentrations averaged over the entire
year in the eastern United States; insets of four metropolitan areas are
also shown: Chicago, New York City, Baltimore/Washington D.C., and
Atlanta. The model is tested using a random 10-fold cross-validation. A
random 10-fold cross-validation is a technique in which the model is
trained using 90% of the sites, and then is used to predict the values at
the remaining 10% of the sites; this process is repeated ten times until
there are predictions at all ground sites. To further test the robustness of
the model, a spatial 10-fold cross-validation is performed. A spatial
cross-validation is identical to a random cross-validation, but instead of
randomly removing sites, all sites in a particular region are removed.
For example, the model is trained on all sites except the northeastern
United States, and then is used to predict data in the northeastern
United States. All of the sites and their respective location bins for the
spatial cross-validation are shown in Fig. 8.

The model predicts daily PM2.5 with high skill (r2= 0.75 using a

random cross validation and r2= 0.73 using a spatial cross-validation)
as shown in Fig. 9 and Table 1. The slope of the 10-fold cross-validation
best-fit line is close to one (m=0.89), indicating that the model can
reasonably capture low and high observations with similar skill. The
median observed daily PM2.5 concentration in the eastern United States
is 10.1 μg/m3, while the mean is 11.2 μg/m3. Table 2 lists the mean and
range of the daily coefficients derived by the multiple linear regression
model.

Fig. 4. Procedure showing AOD “gap-filling” on August 22, 2008: a) True color visible imagery from Aqua MODIS showing clouds obstructing the AOD measurement
in many areas, b) Observed MAIAC AOD from Terra & Aqua, c) Observed + “Gap-filled” AOD, d) Surface observations of PM2.5 from the EPA AQS (note: there are
very few observations in Tennessee for 2008). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this
article.)

Fig. 5. MAIAC AOD vs. AERONET AOD at 550 nm for all locations within the eastern United States during 2008. (left) Observed daily MAIAC AOD, (center) Gap-
filled-only daily MAIAC AOD, (right) Observed seasonal MAIAC AOD.

Fig. 6. Gap-filled MAIAC AOD vs. observed MAIAC AOD for all valid MAIAC
pixels (Terra and Aqua) during 2008.
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When replacing all of the daily AOD with gap-filled AOD – pre-
viously we only replaced missing AOD with gap-filled AOD – the skill
improves further (r2= 0.77 using a random cross validation and
r2= 0.75 using a spatial cross-validation). This demonstrates the utility
of using an artificial daily retrieval MAIAC constrained by a seasonal
mean. To determine which independent variables are most important to
the regression, we run the model for each set of input variables: me-
teorology, land-use, WRF-Chem, and AOD; 10-fold cross-validation re-
sults (random and spatial) are shown in Table 1. The strongest

predictors of daily PM2.5 are WRF-Chem (r2= 0.65) and MAIAC gap-
filled AOD (r2= 0.52); the land-use type parameters (r2= 0.41) and
meteorological data (r2= 0.46) are also useful inputs. When all in-
dependent variables are used, the model performs better (r2= 0.75).
Because the model is trained to the observations, the normalized mean
bias (NMB) for all model set-ups is under 0.1%. The more relevant
statistic, in this case, is the mean normalized error (NME), which re-
presents the average percentage error of each prediction. The NME is
19.0% for the full regression model. In Fig. 10, we depict daily ex-
amples of output from the regression model.

4.3. Comparison to WRF-Chem

Chemical transport models, such as WRF-Chem, are often used to
determine how changes in emissions yield changes in secondary pol-
lutants. It is a superior tool to better under the complex chemical re-
lationships in the atmosphere when compared to statistical models.
However in this study, our goal is different and narrower: to create a
high spatial and temporal resolution re-analysis of PM2.5. To do so,
running a high spatial resolution chemical transport model is eco-
nomically unfeasible. It is important to know how much improvement,
if any, can be gained by using a high-resolution statistical model to
estimate PM2.5 concentrations while also using a chemical transport
model at coarser spatial resolution as an input.

The WRF-Chem model performance is excellent when compared to
other simulations of similar spatial resolution. The PM2.5 normalized
mean bias (NMB) of the WRF-Chem simulation is −7.2% indicating
that the model has a minimal low bias. The statistical model generally
performs better than WRF-Chem primarily because the statistical model
is trained by the observations and is at a higher spatial resolution. The
r2 for estimating daily PM2.5 is meaningfully higher for the statistical
model (r2= 0.75) than WRF-Chem (r2= 0.23) (Fig. 9). When we train
the individual PM2.5 chemical constituents from WRF-Chem to PM2.5

observations, the r2 rises dramatically (r2= 0.66), indicating that in-
formation from the WRF-Chem simulation is an essential contributor to
the performance of our statistical model.

In Fig. 11, we demonstrate the seasonal skill of each model. WRF-
Chem's skill in simulating PM2.5 is highest in autumn and worst in the
late spring and early summer. The “AOD-only” model produces the best

Fig. 7. Predicted 2008 Annual PM2.5 for the eastern United States and 4 cities, clockwise from top left: a) Chicago, IL, b) New York City, NY, c) Baltimore, MD/
Washington, DC, and d) Atlanta, GA. Observations of annual PM2.5 are overlaid.

Fig. 8. The bins of each monitoring location used in the spatial cross-validation.
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skill in the summer months. Correspondingly, the skill of the full re-
gression model peaks in the late summer and early fall since WRF-Chem
and AOD are most helpful during this timeframe.

5. Discussion

In this study, ground observations, land-use data, meteorological re-
analyses, chemical transport model output, and satellite data are

Fig. 9. 10-fold random cross-validation of a) the statistical model, and b) the 36 km WRF-Chem simulation matched to closest PM2.5 monitor.

Table 2
The percentiles (10th, 50th, and 90th) of the daily coefficients derived by the
multiple-linear regression model. The column on the right represents the 50th

percentile coefficient multiplied by the mean independent variable to which the
coefficient corresponds.

Variable name 10 %ile 50 %ile 90 %ile 50 %ile × x̄ n (μg/m3)

α −4.86 3.46 13.52 3.46
β1: AOD 0.43 12.90 33.95 0.98
β2: 2-m Temperature −0.26 0.099 0.54 2.10
β3: Precipitation −0.22 0.016 0.27 0.10
β4: High Urban % −0.019 0.013 0.042 0.21
β5: Medium Urban % −0.019 0.0068 0.032 0.16
β6: Open Urban % −0.044 −0.0031 0.028 −0.04
β7: Forest % −0.047 −0.0008 0.034 −0.02
β8: WRF-Chem SO4 −7.71 −1.63 2.48 −1.65
β9: WRF-Chem NO3 −7.24 −2.40 0.76 −2.08
β10: WRF-Chem NH4 −2.71 8.76 24.68 5.68
β11: WRF-Chem SOA −0.94 0.30 2.04 0.77

Fig. 10. Predicted PM2.5 by our statistical model for 4 days: a) January 29, 2008: PM2.5 episode in the northeastern US, b) February 23, 2008: PM2.5 episode in the
Midwest US, c) June 23, 2008: biomass burning plume in North & South Carolina, d) October 2, 2008: a clean day with somewhat elevated PM2.5 in the southeastern
US.

Fig. 11. Daily performance of the WRF-Chem simulation (red), the AOD-only
statistical model (light blue), and the full statistical model (dark blue). WRF-
Chem has highest skill in Aug–Oct, AOD statistical model has best skill
Jun–Sept, while full statistical model always has best skill, which peaks in Sept.
(For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)
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efficiently combined in a statistical model to create a best-estimate of
daily PM2.5 in the eastern United States in 2008. The model developed
herein generates a high-fidelity estimate (r2= 0.76 using a 10-fold
cross-validation) of daily PM2.5 over a large area at a high spatial re-
solution. Information from WRF-Chem is a substantial contributor to
the skill of the model. Gap-filled satellite AOD is also an important
contributor to the performance of the model. Meteorological informa-
tion and land-use data are secondary contributors to model skill. The
statistical model performs better than WRF-Chem as a stand-alone
product.

This study is novel in several ways. First, we show the benefits of a
gap-filled AOD product for the eastern United States. Less than half of
the eastern United States returns a valid AOD pixel on any given day
due to clouds and snow cover, which obstruct the retrieval – more
obstructed retrievals occur in the northern US and during winter. Days
with obstructed retrievals may also have poor surface air quality, which
goes undetected by the MODIS instrument. We demonstrate that the
gap-filled AOD product is a reasonable estimate of AOD in areas when
actual satellite AOD is missing. This allows us to generate an estimate of
daily PM2.5 in areas that have no other indicators of air quality. The
error characterization of the gap-filled AOD remains challenging due to
limited AERONET measurements under cloudy conditions.

The regional chemical transport model is a critical contributor to
the overall skill of our statistical model. When speciated components of
particulate matter regional chemical transport models are combined in
a statistical manner with other variables correlated with air quality, it
proves to be a useful contributor, especially during the late summer and
autumn.

The domain size includes many metropolitan areas at high spatial
resolution. Many previous studies focus on smaller regions which en-
compass only a few cities, or larger regions at coarse spatial resolution.
Here, we develop a daily 1× 1 km2 product for most major cities in the
United States east of the Mississippi River including New York City,
Baltimore/Washington D.C., Atlanta, and Chicago among others.
Despite the large domain, the model generates a high-fidelity estimate
(r2= 0.76 using a 10-fold cross-validation) of daily PM2.5 throughout
the eastern United States. By enhancing the satellite data to be an im-
portant contributor in estimating daily PM2.5, we can better fit the
needs of those linking PM2.5 to health outcomes, which are often con-
ducted at the county level. This 1×1 km2 PM2.5 product could be very
helpful for epidemiological studies.

Our study yields comparable statistics to other studies producing
similar PM2.5 products. Lv et al., 2016, 2017 applied a similar gap-
filling AOD technique to the Beijing metropolitan area and was able to
predict PM2.5 with a cross-validated skill of r (Anenberg et al.,
2010)= 0.78. Cross-validation from similar studies in the varying re-
gions of the United States for the year 2008 are between r (Anenberg
et al., 2010)= 0.67 and r (Anenberg et al., 2010)= 0.8827−33. How-
ever, in some cases, the areas of focus are smaller (Kloog et al., 2011,
2012, 2014; Hu et al., 2013; Gupta and Christopher, 2009b) and in all
cases many more covariates (≫11) are used to train the model. A
benefit of this study is that we only use 11 covariates that are most
correlated to PM2.5, which allows us to be more computationally effi-
cient and minimizes overfitting.

While this study focuses only on 2008, future work will extend this
forward to the current year using the same techniques described herein.
Additional work will also focus on developing a statistical model that
can simulate speciated PM2.5. We also intend to update this model as
future AOD products are publicly released. In particular, AOD data from
a geostationary satellite such as GOES-16 could be especially helpful in
improving daily PM2.5 estimation.
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