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This article describes advances in satellite remote sensing for exploring 
neighborhood-scale air pollution inequities, including recent applications, 
current limitations, and potential opportunities.
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Criteria air pollutant concentrations have decreased 
dramatically in the United States since the passage of the
1970 U.S. Clean Air Act and its 1990 Amendments.1

Air pollution inequality has also declined.2 However, com-
munities of color and those with lower household income
and educational attainment still experience higher exposure
levels.3,4 With complete geographical coverage and relatively
high spatial resolution, satellite remote sensing is opening
new avenues for identifying communities that are experienc-
ing disproportionate exposures and associated health risks.

Actions to Advance Environmental Justice
Several U.S. states have recently implemented ground-
breaking programs to address air pollution inequality in 
their air quality management programs. In 2017, California 
established the Community Air Protection Program to reduce
exposures in the communities most impacted by air pollution
by conducting community air monitoring and emissions 
reductions programs, targeting incentive funding and grants
to deploy cleaner technologies that address localized air 
pollution, requiring accelerated retrofit of pollution controls on
industrial sources, and enhancing transparency and availability
of air pollution and emissions data. In 2020, New Jersey
passed a new law requiring the New Jersey Department of
Environmental Protection to only grant or renew permits for
certain facilities if there are no disproportionate, cumulative
environmental impacts on overburdened communities. 
Other states (e.g., Connecticut, Indiana, Minnesota, and 
Oregon) have also taken more limited steps to address 
disparities in environmental exposures.

At the federal level, in January 2021, the Biden Administra-
tion released Executive Order 14008, which directs federal
agencies to integrate environmental justice (EJ) into their
programs, policies, and activities. Among other actions, it 
sets a goal of delivering 40% of the benefits of relevant fed-
eral investments to disadvantaged communities and initiates
the development of a national-scale Climate and Economic 
Justice Screening Tool. In April 2021, the U.S. Environmental
Protection Agency (EPA) Administrator directed all EPA 
offices to integrate EJ considerations into their plans and 
actions.

Approaches for Characterizing 
Neighborhood-Scale Air Quality
Addressing air pollution inequities requires information about
air pollution levels within at-risk communities, which is beyond
the intent and capability of the existing air monitoring network.
Federal and state-level EJ mapping tools, including EJSCREEN
developed by EPA and CalEnviroScreen developed by the 
California Office of Environmental Health Hazard Assessment,
integrate environmental and sociodemographic data from
many sources to identify disproportionately burdened neigh-
borhoods and population sub-groups.5

The functionality of these tools depends on the quality and
characteristics (e.g., spatial extent and resolution) of the data
they use. Fortunately, a variety of new and maturing technolo-
gies can now provide high-quality, spatially complete, and
granular information about various environmental exposures,
including air quality.
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Several studies have used portable air pollution sensors that
are either wearable6 or mounted on vehicles to capture 
concentrations at the street-level.7,8 These approaches pro-
vide empirical measurements at scales that are meaningful
for exposure at the individual or street-level, but are 
resource intensive and typically limited in temporal duration
(e.g., campaigns lasting several weeks) and spatial coverage
(e.g., within one neighborhood or city).

Distributed networks of “low-cost” sensors are another ap-
proach taken in several cities, including the Imperial Valley,
CA, Los Angeles, CA, Portland, OR, Denver, CO, Chicago,
IL, Baltimore, MD, and Pittsburgh, PA.9–14 Some private
companies (e.g., PurpleAir) also provide global, real-time
maps of readings from their devices. These sensors are 
valuable for capturing variation within cities and during
events such as wildfire smoke episodes. However, the results
must be appropriately adjusted and used with caution as the

sensors operate differently than federal reference monitors
and are often limited by challenges with calibration and 
drift. EPA has developed guidance (https://www.epa.gov/air-
sensor-toolbox) for setting up, maintaining, and interpreting
results from low-cost sensors.

Both process-based models and statistical models are rapidly
advancing in spatial resolution, speed, and accuracy, enabled
by advances in computing power and scientific understand-
ing. The range of models used to analyze exposure dispari-
ties includes chemical transport models3,15,16 and statistical
models such as land-use regressions.17 These modeling 
approaches are valuable for filling the spatial gaps between
monitors, but also have limitations. Chemical transport 
models often run at coarser spatial resolutions that preclude
comparisons at the neighborhood scale. Land-use regression
models are limited by the regionally representative monitor
data used to train them, degrading their ability to capture

Figure 1. (a) Racial NO2 disparities for all, urban, and rural census tracts in the contiguous United
States and the 15 largest metropolitan statistical areas determined with annual average TROPOMI
NO2 for 2019 (adapted from Kerr et al.26 with a different time period). Here, least (most) white 
corresponds to census tracts with their percentage of the white population in less than (greater than)
the 10th (90th) percentile. (b) Annual average tropospheric column NO2 from TROPOMI (~1km x
1km) for 2019 in the Chicago metropolitan area. (c) The percentage of non-white residents in each
census tract from the 2014–2018 U.S. Census Bureau’s American Community Survey. Interstates
and point sources of NOx emissions (e.g., power plants, other industrial facilities) are denoted in (b)–
(c) by the thick black lines and scatter points, respectively. The size of each scatter point represents
the magnitude of NOx emissions in 2019. Thin black lines show county and state boundaries. 
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the highest (e.g., nearby large industrial facilities) or lowest
(e.g., rural) concentrations.

Satellite remote sensing is emerging as a valuable information
source for air quality surveillance, with key advantages from
complete geospatial coverage and relatively high spatial resolu-
tion.18,19 Unlike their polar-orbiting predecessors, new geosta-
tionary satellites will bring full daytime temporal coverage.
Thus, new satellites such as the Tropospheric Emissions: 
Monitoring of Pollution (TEMPO) instrument launching in
2022, will offer the potential to analyze temporal and spatial
variations in pollutant concentrations within cities.

Leveraging Satellite Data
Several studies have begun using satellite data for analyzing
environmental injustice, including for green space,20 heat,21

particulate matter (PM2.5),22,23 and nitrogen dioxide (NO2).24–26

Results demonstrate how disproportional environmental 
burdens are often linked with historical racially-biased policies,
such as redlining and roadway placement.20,21,27

Satellite-derived NO2 concentrations are particularly valuable
for understanding the inequitable distribution of air pollu-
tants and their health impacts. Compared with total PM2.5

mass, NO2 has a shorter atmospheric lifetime (i.e., hours
compared with days) and less influence from regional pollu-
tion sources (e.g., agriculture, wildfire smoke, dust), leading
to sharper gradients for NO2 near emission sources. For
these reasons, NO2 is often considered to be an effective
surrogate for urban combustion-related air pollution, includ-
ing PM2.5 components that exhibit more spatial variation
than total PM2.5 mass, such as black carbon (BC) and parti-
cle-bound polycyclic aromatic hydrocarbons (PAHs). In addi-
tion, while aerosol optical depth and surface PM2.5 are more
loosely associated, satellite NO2 “column” observations (i.e.,
the number of molecules between the satellite instrument
and the Earth’s surface) are tightly correlated with NO2

observed at ground monitors, providing an observational
record of spatial patterns in urban combustion-related air
pollution.26

Recent studies using data from the TROPOspheric Monitor-
ing Instrument (TROPOMI) reveal that marginalized and mi-
noritized populations still experience higher NO2 levels,
despite the fact that NO2 concentrations have dropped and
ethnoracial and socioeconomic disparities have narrowed in
recent decades. For example, Demetillo et al.25 showed that
TROPOMI NO2 levels (and on-road transportation, indus-
trial, and petrochemical emissions) are disproportionately
higher in low income, non-white census tracts in the Hous-
ton metropolitan area. Similarly, we found that TROPOMI
NO2 levels were substantially higher in census tracts with
more diverse populations, lower income, and lower educa-
tional attainment across all urban areas throughout the conti-
nental U.S. (see Figure 1 and Kerr et al.26).

Mapping satellite-derived NO2 levels with information on
race and the location of NOx emitters (e.g., roadways, indus-
trial facilities, power plants) can shed light on the reasons
that marginalized populations experience higher levels of
NO2 than other demographic groups (Figure 1). For exam-
ple, the highest concentration of industrial facilities in the
Chicago metropolitan area and the convergence of Inter-
states 90, 94, and 65 are located in South Chicago and
Gary, Indiana (Figure 1b–c). These sources lead to high 
levels of satellite derived NO2 (Figure 1b), and this part of
the city is home to a large percentage of non-white residents
(Figure 1c). However, there are other parts of the city with
high NO2 concentrations or NOx sources but a predomi-
nantly white population, which underscores the nuance
needed for understanding how patterns of injustice can 
also vary within cities.

Using the COVID-19 pandemic as a natural experiment, 
we also found that NO2 levels in the least white census tracts
during COVID-19 precautions exceeded those in most
white census tracts prior to the pandemic, despite the 
unprecedented drop in emissions.26 These studies add to the
previous literature illustrating the power of space-based ob-
servations to understand neighborhood-scale NO2 levels,24

now with unprecedented sensitivity at fine spatial resolution

Satellite remote sensing is emerging as a
valuable information source for air quality
surveillance.



em • The Magazine for Environmental Managers • A&WMA • September 2021

Leveraging Satellite Data by Susan C. Anenberg, et al.

(1km x 1km).28,29 As a whole, these studies provide empiri-
cal evidence of the persistent inequity in air pollution levels
within individual cities and across the continental United
States. 

Moving beyond exposure to consider air pollution-related
health risks, studies using satellite data for the Bay Area, CA,
and Washington, DC, highlight how PM2.5- and NO2-related
health risks vary dramatically within individual cities, resulting
from disparities in both concentrations and population 
vulnerability.30,31 These studies also found that street-level
mobile monitoring captured more within-city variation com-
pared with grid cell average satellite-derived concentrations,
and that the spatial pattern of estimated air pollution-related
health risks was driven more by the stark variation in disease
rates compared with the relatively less resolved concentra-
tion estimates. These findings point to the need for in-
creased spatial resolution and temporal coverage of satellite
observations for understanding the contributions of emission
source sectors (e.g., traffic) on disparities in air pollution-re-
lated health risks.

Limitations and Future Opportunities
Satellite remote sensing is opening new opportunities for
mapping EJ. However, some limitations remain. First, the
limited temporal coverage of polar orbiting satellite observa-
tions (one snapshot per day) is unable to capture the full 
diurnal variation of pollution levels. PM2.5 and NO2

concentrations and their spatial heterogeneities are often
largest in the early morning (6:00 a.m.–9:00a.m.), and cur-
rent satellite instruments miss this timeframe. For now, early
afternoon satellite measurements can be adjusted to daily

averages using more temporally complete model simulations
or surface observations. In the future, new geostationary
satellites (e.g., TEMPO) will overcome this limitation by
taking hourly U.S. air quality measurements throughout 
the daytime.

A second issue is spatial resolution. Post-processing tech-
niques (e.g., averaging over many observations on different
days) can yield surface concentration datasets with relatively
high spatial resolutions (e.g., 1km x 1km), but native resolu-
tion of the satellite (3.5 x 5.5 km) tends to smear out pollu-
tion. Previous studies have shown that 1-km resolution can
resolve NO2 concentration differences within cities,25,26 but
even more granular information may be needed, particularly
in dense urban areas where census tracts are small. Satellites
are also unable to directly observe pollutants that may be 
of greatest concern for EJ, including black carbon and haz-
ardous air pollutants. Satellite-derived NO2 concentrations
could potentially be used as a proxy for these spatially 
heterogeneous pollutants from fuel combustion, but 
methods have not yet been developed.

The recent, rapid proliferation of spatially explicit air quality
assessment tools, including satellite remote sensing, mobile
monitoring, and low-cost sensors, is opening new avenues
for identifying air pollution inequities. Combining these tools
with personal exposure measurements, federal reference
monitor observations, and statistical techniques can leverage
the strengths of each approach. In the future, these tools
may provide more complete, refined, and accurate informa-
tion to enable air quality management approaches that ad-
dress inequities in exposure and associated health risks. em
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In Next Month’s Issue…
Natural Emissions and 
Their Impacts on Air Quality
Emissions from natural sources can have important impacts on 
air quality. Examples of natural-source emissions include windblown
dust; organosulfur, halogen, and sea-salt emissions from oceans; 
volcanic emissions; wildfires emissions; nitrogen oxides emissions
from lightning; and biogenic/soil emissions. The October issue 
explores these natural emissions and their impacts on atmospheric
ozone and particulate matter.


