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We introduce the concept of Minkowski normality, a different 
type of normality for the regular continued fraction expansion. 
We use the ordering
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of rationals obtained from the Kepler tree to give a concrete 
construction of an infinite continued fraction whose digits 
are distributed according to the Minkowski question mark 
measure. To do this we define an explicit correspondence 
between continued fraction expansions and binary codes to 
show that we can use the dyadic Champernowne number to 
prove normality of the constructed number. Furthermore, we 
provide a generalised construction based on the underlying 
structure of the Kepler tree, which shows that any construction 
that concatenates the continued fraction expansions of all 
rationals, ordered so that the sum of the digits of the 
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continued fraction expansion are non-decreasing, results in 
a number that is Minkowski normal.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Normality as introduced by Borel focuses on integer base expansions and the Lebesgue 
measure. We say that x ∈ [0, 1) is normal in base b if for any block d = d1d2 · · · dk of k
digits, di ∈ {0, 1, . . . , b − 1}, we have

lim
n→∞

1
n
Gn(x, d) = λ(Δ(d)) = b−k.

Here, λ is Lebesgue measure, Δ(d) is the set of numbers whose decimal expansions start 
with d and Gn(x, d) denotes the number of occurrences of d in the first n digits of the 
base b expansion of x. Borel showed that λ almost every x ∈ [0, 1) is normal. However, for 
common explicit numbers that seem to be normal, for example 

√
2− 1, e − 2, π− 3, it is 

unknown in all cases whether or not they are. The first and most well-known construction 
of an explicit normal number is due to David Champernowne [6]. He proved that the 
number that is obtained by concatenating the natural numbers, i.e.

C10 = 0. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 · · · ,

is normal in base 10. Later, Copeland and Erdös gave a generalised construction of 
a normal number [7], which they used to prove the normality of the number that is 
obtained by concatenating all the primes. A small selection of further generalisations 
and results include that of Davenport and Erdos [9] and Nakai and Shiokawa [18]. Some 
similar constructions of normal numbers for β-expansions (i.e. expansions with respect to 
a non-integer base β), determined by the absolutely continuous so-called Parry measure 
[20], can be found in [12] and [22].

The definition of normality can also be extended to continued fractions. Any real 
number x can be represented as a — possibly finite — continued fraction expansion

x =
1

a1(x) +
1

a2(x) +
1

a3(x) +
1
. . .

,

where the digits ai(x) ∈ N are the partial quotients of x, i ≥ 1. In shorthand, we write 
x = [a1, a2, a3, · · · ]. For any irrational x, the continued fraction expansion is infinite and 
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unique [19, Theorem 5.11]. Moreover, any rational has exactly two expressions as a finite 
continued fraction [a1, a2, · · · , an − 1, 1] = [a1, a2, · · · , an]. We use the convention that 
any rational continued fraction is written in its reduced form: the one on the right, where 
an ≥ 2.

The type of normality that is related to the continued fraction expansion comes from 
the Gauss measure γ that, for any Lebesgue set A ⊂ [0, 1), is defined by

γ(A) := 1
log 2

∫
A

1
1 + x

dx. (1.1)

Therefore, we say that x ∈ [0, 1) is continued fraction normal, if for any k ≥ 1 and any 
block d = d1, d2, · · · , dk, di ∈ N, we have

lim
n→∞

1
n
Gn(x, d) = γ(Δ(d)),

where Δ(d) = {y ∈ [0, 1) : y = [d1, d2, · · · , dk, · · · ]} is the cylinder set corresponding to d. 
In the above and henceforth, Gn(x, d) will denote the number of occurrences of d in the 
first n digits of the continued fraction expansion of x. It follows from Birkhoff’s Ergodic 
Theorem, applied to the γ-preserving, ergodic Gauss map G, that Lebesgue almost all 
numbers are continued fraction normal.

In contrast to the case of normality for radix base expansions, where there are a large 
number of explicit constructions of normal numbers, there are relatively few results to 
date about continued fraction normality. So far, there are at least six construction results. 
The first is due to Postnikov [21], who used Markov chains to construct a continued 
fraction normal number. Another construction is due to Adler, Keane and Smorodinsky 
[1]. They first construct a (sub)sequence of rationals by taking all non-reduced fractions 
with denominator n in increasing order

1
2 ,

1
3 ,

2
3 ,

1
4 ,

2
4 ,

3
4 ,

1
5 ,

2
5 ,

3
5 ,

4
5 , . . . ,

n− 1
n

,
1

n + 1 , · · · . (1.2)

Their continued fraction normal number is then obtained by concatenating the - finite -
continued fraction expansions of these rationals

xaks = [2, 3, 1, 2, 4, 2, 1, 3, 5, 2, 2, 1, 1, 2, 1, 4, · · · ] ≈ 0.44034.

It took about 30 years before the constructions of Postnikov and Adler, Keane and 
Smorodinsky were generalized. The generalisation of Postnikov’s construction is due to 
Madritsch and Mance [15]. Both of these works define a sequence of blocks of symbols 
such that each block better approximates the desired frequency. The (continued frac-
tion) normal number is then obtained by concatenating (repetitions) of the elements 
of the sequence. This is different from the work of Adler, Keane and Smorodinsky 
and the generalisation of their work, which is due to Joseph Vandehey [30]. Among 
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Fig. 1. The Minkowski question mark function ?(·).

other things, Vandehey proves that some explicit subsequences of (1.2) can be used 
to construct a continued fraction normal number. For the proof, he uses metrical re-
sults to get asymptotics on how many rationals have good small-scale properties. In 
turn, these asymptotics imply conditions that determine whether the constructed num-
ber is continued fraction normal. One of the constructions, for instance, considers the 
subsequence of rationals that have integer numerators and prime denominators. An-
other normality result due to Vandehey is the theoretical existence of numbers that 
are both continued fraction normal and absolutely abnormal [29]. The proof, how-
ever, is conditional on the Generalized Riemann Hypothesis. Furthermore, Scheerer 
constructed a number that is both continued fraction normal and absolutely normal 
[22]. Becher and Yuhjtman [3] improved on Scheerer’s construction, reducing the num-
ber of operations to obtain n binary digits from O(22n) to O(n4). The key idea in 
their proof is to construct a sequence of nested intervals that satisfy certain con-
ditions. Most of these conditions are related to discrepancy in the sense that they 
ensure an arbitrary small bound on the discrepancy of the numbers in that interval. 
The normal number is then obtained by taking the intersection of all these -sequences 
of nested- intervals. All known examples of (computable) absolutely normal numbers, 
are given in the form of an algorithm [16]. Up to the authors’ knowledge, the afore-
mentioned constructions are the only constructions of continued fraction normal num-
bers.

All the constructions of normal numbers discussed so far are for a distribution of digits 
according to Lebesgue measure or, in the cases of Gauss measure for regular continued 
fractions and Parry measure for β-expansions, absolutely continuous measures. However, 
in this article we consider a measure that is singular with respect to Lebesgue measure. 
We consider the Minkowski question mark measure μ?, which is specified by the following 
distribution function (see Fig. 1)



K. Dajani et al. / Journal of Number Theory 211 (2020) 455–476 459
?(x) := 2
∞∑
i=1

(−1)i+1

2a1(x)+a2(x)+···+ai(x) .

Here, ai(x) comes from the continued fraction expansion of x ∈ [0, 1), i ≥ 1. In particular, 
we introduce a different type of normality for regular continued fraction expansions 
that we call Minkowski normality. Informally, we say that a number x is Minkowski 
normal if its digits (ai(x))i≥1 are distributed according to the Minkowski question mark 
measure.

The idea of a normal number with respect to an ergodic invariant measure that is 
not either Lebesgue measure or at least an absolutely continuous measure is not new. 
In [15], Madritsch and Mance construct explicit normal numbers (or generic point as 
they are called in ergodic theory) for an arbitrary ergodic invariant Borel probability 
measure μ on a finite or countable alphabet symbolic dynamical system that satisfies a 
weak version of the specification property. In particular, a symbolic sequence x is generic 
(or equivalently, the corresponding number x is generic) if every length k block occurs in 
x with a frequency equal to the measure of the corresponding cylinder set (the measure 
of any inadmissible block is zero). As usual, an application of the ergodic theorem shows 
that μ almost every number is normal.

Various earlier versions of constructions similar to [15], generally much more restrictive 
in their assumptions and less general their results, can be found, for example, in: [4], [12], 
[22], [26] and [27]. For continued fractions, the symbolic dynamical system involved is 
the full shift with (countable) alphabet N. Since this obviously satisfies the specification 
[15], their construction is general enough to produce both continued fraction normal 
numbers and Minkowski normal numbers. However, all these constructions involve many 
repetitions of longer and longer approximately generic blocks (with respect to μ), and 
the result is a number that is generic yet not easy to write down. A simplified version of 
this construction is due to Vandehey [28].

The main goal of the article is to construct an explicit Minkowski normal number, 
whose digits are easy to write down and have a number theoretic description. We con-
struct an infinite continued fraction expansion and show that the corresponding sequence 
of digits is distributed according to the Minkowski question mark measure. Specifically, 
we consider the ordering of rationals that is given by the Kepler tree. This is a specific 
binary tree that orders the rationals in the unit interval. The constructed number is 
obtained by concatenating the continued fraction expansions of the rationals using the 
Kepler order. For the proof of normality, we show that there is a correspondence be-
tween binary codes and rationals in the Kepler tree. Moreover, we show that we can 
use the dyadic Champernowne number to determine the distribution of the sequence 
of digits that represent the constructed number. Finally, we use generalised Cham-
pernowne numbers to extend normality of the constructed number to more general 
cases.
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2. The construction

The crucial factor in determining the limiting distribution of the partial quotients 
of the constructed number, is the ordering that is chosen. In the case of Adler, Keane 
and Smorodinsky, the ordering of rationals they use leads to normality with respect to 
the Gauss measure. Hence, the constructed number is continued fraction normal. In this 
section, we consider the ordering of the rationals that results from the Kepler tree. We 
use this ordering to construct a number whose partial quotients are distributed according 
to the Minkowski question mark measure.

The first part of the Kepler tree is found in Johannes Kepler’s magnum opus, a book 
containing his most important work. See [13, p. 163] for an English translation. Though 
Johannes Kepler starts from 1/1, the binary tree starts from 1/2 and then uses the rule

p/q

p/(p + q) q/(p + q) .

As rationals can be represented by finite continued fractions and vice versa, this is 
equivalent to

[a1, a2, · · · , an]

[(a1 + 1), a2, · · · , an] [1, a1, a2, · · · , an] .

This representation allows us to understand the behaviour of the sequence of digits that 
is obtained from the construction. Here, note that a left move increases the first digit 
in the continued fraction by one and does not alter the total number of digits in the 
continued fraction. A right move however, inserts a 1 as a first digit and thus increases 
the length of the continued fraction by one. This also means that a left move does not 
preserve the block of digits that form the continued fraction of the mother node, whereas 
a right move does preserve the block. Lastly, note that both moves increase the sum of 
the digits of the continued fraction expansion by one. Hence, the Kepler tree orders the 
rationals into levels based on the sum of the digits of their continued fraction expansion. 
The first four levels of the tree are displayed in Fig. 2.

The key idea in proving normality of the constructed number is that we create a 
one-to-one correspondence between rationals and binary codes. This correspondence is 
based on the fact that there exists a unique path between the root and any rational in 
the Kepler tree. In turn, we use this unique path to define a one-to-one correspondence 
between rationals and binary codes.

The root corresponds to the empty path and therefore to the empty binary code. More-
over, given an arbitrary rational, we can retrace its path as follows. Let [a1, a2, · · · , an]
denote the continued fraction of an arbitrary rational p/q in the Kepler tree. Then by 
going (a1 − 1) steps from the left up, we end up at the rational that corresponds to 
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Fig. 2. The first 4 levels of the Kepler tree.

[1, a2, · · · , an]. Subsequently, going from the right up we end at [a2, a3, · · · , an]. By re-
peating this process for a2, a3, . . . , an−1 and an we can find the path to the root. We 
summarise these steps symbolically by writing L for a left move and R for a right move. 
Subsequently, we reverse the path and apply the substitution {L �→ 0, R �→ 1} to asso-
ciate a binary code to p/q. Hence,

p/q
cfe←→ [a1, a2, · · · , an] upward path←→ La1−1RLa2−1R · · ·Lan−2

downward path←→ Lan−2 · · ·RLa2−1RLa1−1

binary code←→ 0an−2 · · · 10a2−110a1−1.

The binary code that is associated to a rational contains a lot of information. It gives 
the continued fraction expansion of the rational that it represents and its exact location 
within the tree. Namely, it gives the level in which the rational occurs and the position 
within that level. The level is given by the total number of 0’s and 1’s in its binary code 
and its position within the level can be read from the ordering of the 0’s and 1’s. The 
following lemma is an immediate consequence of the binary coding and the concept of 
retracing paths in the tree.

Lemma 2.1. There exists a unique path between the root of the Kepler tree that starts at 
1/2 and any arbitrary rational p/q. If we denote p/q by its continued fraction expansion 
[a1, a2, · · · , an], then the corresponding path is

Lan−2 · · ·RLa2−1RLa1−1, (2.1)

which corresponds to the binary code

0an−2 · · · 10a2−110a1−1. (2.2)

This path consists of a1 + a2 + · · ·+ an − 2 moves, which also corresponds to the level in 
which the rational occurs for the first and only time.
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Apart from providing information about the occurrence of rationals, the concept of 
retracing paths also tells us how blocks of the form d = d1, d2, · · · , dk are formed by the 
Kepler tree, how these blocks are preserved and how we can identify them using binary 
codes.

For the construction, we order the rationals in the Kepler tree going top-down, left-
right. The ordering of the rationals that result from this procedure is

1
2 ,

1
3 ,

2
3 ,

1
4 ,

3
4 ,

2
5 ,

3
5 ,

1
5 , · · · . (2.3)

If we concatenate the corresponding binary codes of these rationals in the given order, 
we obtain an infinite sequence of binary digits. This infinite sequence corresponds to the 
dyadic Champernowne number

C2 := 0. 0 1 00 01 10 11 000 · · · , (2.4)

which is known to be normal in base 2. This and other properties of C2 can for instance be 
found in [10] or [25]. For our construction of a Minkowski normal number, we concatenate 
the continued fraction expansions of the rationals in the ordering that results from the 
Kepler tree. We obtain an infinite continued fraction, which corresponds to a unique 
irrational number [8, Proposition 4.1.1]. This number is given by

K := [2, 3, 1, 2, 4, 1, 3, 2, 2, 1, 1, 2, 5, · · · ] ≈ 0.44031. (2.5)

3. Minkowski normality

So far, different types of normality correspond to different number expansions. Next, 
however, we use the Minkowski question mark measure to define another type of normal-
ity for the continued fraction expansion. We define Minkowski normality for continued 
fractions as follows.

Definition 3.1 (Minkowski normal number). We say that x = [a1, a2, a3, · · · ] ∈ [0, 1) is 
Minkowski normal, if for any k ≥ 1 and any block d = d1, d2, · · · , dk, with di ∈ N, we 
have that

lim
n→∞

1
n
Gn(x, d) = μ?(Δ(d)) = 2−(d1+d2+···+dk). (3.1)

Theorem 3.2. μ? almost every number in [0, 1) is Minkowski normal.

Proof. The Gauss map G, defined G(x) = 1/x mod 1, is known to be ergodic under the 
Minkowski question mark measure μ?. This follows from the fact that the Minkowski 
acts on cylinders as a product measure, which implies that we have an isomorphism with 
a Bernoulli shift. Therefore, the Gauss map with the Minkowski question mark measure 
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is ergodic (and mixing and Bernoulli). Let x ∈ [0, 1). Then for any k ≥ 1 and any block 
d = d1, d2, · · · dk, di ∈ N, it follows from Birkhoff’s Ergodic Theorem that

lim
n→∞

1
n

n−1∑
i=0

1Δ(d)(Gix) = μ?(Δ(d)) = 2−(d1+d2+···+dk) μ? a.e. �

We note that λ almost every number is continued fraction normal and μ? almost every 
number is Minkowski normal. This is possible because Lebesgue measure and Minkowski 
question mark measure are singular. Furthermore, it is interesting to note that the set 
of Minkowski normal numbers satisfies the following properties typical for sets of normal 
numbers.

• Its complement has full Hausdorff dimension. This follows from the fact that the set 
of Minkowski normal numbers in [0, 1) has full measure, hence has Lebesgue measure 
0. Therefore the complement has measure 1, which in turn implies that it has full 
Hausdorff dimension [23].

• Its complement is a winning set in the sense of Schmidt’s game. As the set of 
non-Minkowski normal numbers contains the set of badly approximable numbers, 
it follows from [24, Theorem 3] that this set is α-winning for all α < 1/2.

• It is first category (see the comment after Proposition 4.6).

The rest of this section is dedicated to proving the Minkowski normality of K. To do 
this, we identify explicit binary codes that correspond to different types of occurrences 
of an arbitrary block d. Consequently, we use the base 2 normality of C2 to determine 
the frequency that corresponds to these types of occurrences. We then distinguish the 
following four types of occurrences of a block d in K.

• The block d occurs at the start of a continued fraction expansion of a rational in K;
• The block d occurs in the middle of the continued fraction expansion of a rational 

in K;
• The block d occurs at the end of the continued fraction expansion of a rational in K;
• The block d occurs in K as a result of concatenating the continued fraction expansions 

of different rationals. We refer to this type of occurrences as divided occurrences.

Lemma 3.3. Let d = d1, d2, · · · , dk be an arbitrary block of length k, di ∈ N. The asymp-
totic frequency of divided occurrences of d in K is equal to 0.

Proof. The l-th level of the Kepler tree consists of 2l rationals. Hence, there are 2l − 1
concatenations. As d consists of k digits, there is a maximum of k − 1 positions where 
d can be divided. Therefore, the number of divided occurrences can be bounded from 
above by k2l.
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Each rational in the l-th level of the tree is formed by i left moves and l − i right 
moves, where i varies between 0 and l. A left move does not alter the number of digits 
and a right move increases the number of digits by 1. As we start off with one digit at 
level 0, we find that the total number of digits in level l is given by

l∑
i=0

(i + 1)
(
l

i

)
= (l + 2)2l−1, l ≥ 0.

Suppose that the n-th digit of K occurs within the L-th level of the Kepler tree. The 
number of divided occurrences in the first n digits of K is then bounded from above by

L−1∑
l=0

k2l + O(2L) = k(2L − 1) + O(2L).

Furthermore, the total number of possible occurrences of d in the first n digits of K is

L−1∑
l=0

(l + 2)2l−1 − k + 1 + O(2L) = L2L−1 − k + 1 + O(2L).

When we consider the asymptotic frequency of occurrences, we note that n → ∞ implies 
that L → ∞. Therefore the asymptotic frequency of this type of occurrences is

lim
L→∞

k(2L − 1) + O(2L)
L2L−1 − k + 1 + O(2L) = 0. �

Theorem 3.4. The number K, defined in (2.5), is Minkowski normal.

Proof. Let d = d1, d2, · · · , dk be an arbitrary block of length k, di ∈ N. In or-
der to determine the frequency of d in K it is sufficient to count the binary blocks 
10dk−1 · · · 10d2−110d1−11 and 10dk−1 · · · 10d2−110d1−10 in C2. We argue this by consider-
ing the four different types of occurrences.

It follows from Lemma 3.3 that the frequency of divided occurrences of d tends to 0.
Now, let p/q be an arbitrary rational in the Kepler tree that corresponds to the 

continued fraction [a1, a2, · · · , an]. By Lemma 2.1, the path from 1/2 to p/q is unique 
and given by

Lan−2 · · ·RLa2−1RLa1−1.

Similarly, there exists a unique path to the rational [d1, d2, · · · , dk, a1, a2, · · · , an]. By 
(2.1), this path is

Lan−2· · ·RLa2−1RLa1−1RLdk−1 · · ·RLd2−1RLd1−1.



K. Dajani et al. / Journal of Number Theory 211 (2020) 455–476 465
Considering the latter path, we see that it passes through the rational p/q, of which the 
path is marked in bold. As this path and that to p/q are unique, we conclude that there 
exists a unique subpath from p/q to [d1, d2, · · · , dk, a1, a2, · · · , an] that is given by

RLdk−1 · · ·RLd2−1RLd1−1.

Therefore, the following binary code corresponds to d occurring at the start of a continued 
fraction expansion

10dk−1 · · · 10d2−110d1−1. (A)

The binary code associated to occurrences of d in the middle of a continued fraction 
expansion is similar. The difference with (A) is that another right move is needed in 
the Kepler tree. This preserves the block forever and causes it to occur in the middle. 
Therefore, the binary code associated to this type of occurrence is the same as that in 
(A) with a 1 appended. Hence

10dk−1 · · · 10d2−110d1−11. (B)

Lastly we consider what happens when d occurs at the end of a continued fraction. 
Due to the fact that the Kepler rule alters the start of continued fraction expansions, 
these types of occurrences are descendants from the rational [d1, d2, · · · , dk]. In order to 
preserve the block d, another right move is needed. Using this and Lemma 2.1 we find 
that the corresponding binary code is

0dk−2 · · · 10d2−110d1−11, (C)

where the last 1 results from the extra right move. However, occurrences of this binary 
code in C2 do not always correspond to an occurrence of d in K. This is due to the fact 
that the digit 2 is used to form dk. That is, dk is formed from the digit 2, whereas in the 
other type of occurrences, the block d is formed from scratch. Hence for the binary code 
in (C) to correspond to an occurrence of d in K, this occurrence of d should originate from 
a rational of the form [2, b2, · · · , bj−1, bj ]. By Lemma 2.1, this corresponds to rationals 
that have a binary code given by

0bj−2 · · · 10b2−110.

In other words, for (C) to correspond to an occurrence of d in K, we need to consider 
occurrences of d that originate from rationals whose corresponding binary code ends in 
10. If d is formed through a subpath that starts from such a rational, the binary code 
that is associated to this subpath is appended to that of the rational it originates from. 
We conclude that we can count these occurrences by looking at the frequency of the 
block
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100dk−2 · · · 10d2−110d1−11 = 10dk−1 · · · 10d2−110d1−11. (C*)

This is similar to (B). Moreover by counting the blocks in (A), we count (B) and (C*) as 
well. In order to prevent double counts, we append a 0 to the code in (A). In conclusion, in 
order to find the frequency of d in K, it is sufficient to consider the asymptotic frequencies 
of 10dk−1 · · · 10d2−110d1−11 and 10dk−1 · · · 10d2−110d1−10 in C2. Both blocks occur with 
relative frequency

2−(d1+d2+···+dk+1).

This results from the fact that the binary codes are of length d1 + d2 + · · ·+ dk + 1 and 
that C2 is normal in base 2. Adding these frequencies gives the desired result

1
2d1+d2+···+dk+1 + 1

2d1+d2+···+dk+1 = 2−(d1+···+dk).

We conclude that K is Minkowski normal. �
4. Extending Minkowski normality

When constructing a normal number, it is the ordering that is chosen that deter-
mines the distribution. Apparently, ordering the rationals based on their denominator 
leads to the distribution given by the Gauss measure, e.g. see Vandehey [30]. Although 
the sequence of rationals in (1.2) is distributed according to the Lebesgue measure and 
not the Gauss, it is not that surprising that the number constructed by Adler, Keane 
and Smorodinsky is continued fraction normal. When we consider the frequency of oc-
currences of an arbitrary block d = d1, d2, · · · , dk starting at the n-th position of a 
continued fraction expansion of a number in a uniformly distributed sequence, this fre-
quency is given by the Lebesgue measure of the set G−nΔ(d) [1], where G denotes the 
Gauss map. Gauss showed that, as n → ∞, λ(G−nΔ(d)) converges in distribution to 
γ(Δ(d)). In a similar manner, we can argue that K should be Minkowski normal. Namely, 
the sequence of rationals that is obtained by ordering the rationals in the Kepler tree 
top-down left-right, see (2.3), is distributed according to the Minkowski question mark. 
Then it follows that the frequency of occurrences of d, starting at the n-th position of 
a continued fraction expansion of a number in a Minkowski question mark distributed 
sequence, is given by the Minkowski measure of G−nΔ(d). As μ? is G-invariant, this 
measure is simply μ?(Δ(d)). The fact that the sequence in (2.3) is distributed according 
to μ? has implicitly been proved by Viader, Paradís and Bibiloni [31]. In the article, they 
first define a one-to-one correspondence q : N → (0, 1). The first few terms of q are

q(1) = [2] = 1/2 q(5) = [1, 3] = 3/4

q(2) = [3] = 1/3 q(6) = [2, 2] = 2/5

q(3) = [1, 2] = 2/3 q(7) = [1, 1, 2] = 3/5
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q(4) = [4] = 1/4 q(8) = [5] = 1/5,

which result from the following definition. If n = 2a1 + 2a2 + · · · + 2ak with 0 ≤ a1 <

a2 < · · · < ak, then

q(n) :=
{

[k + 2] if n = 2k,
[a1 + 1, a2 − a1, a3 − a2, · · · , ak − ak−1 + 1] otherwise.

(4.1)

Among other things, Viader, Paradís and Bibiloni prove that, for any x ∈ [0, 1],

lim
n→∞

#{q(i) ≤ x : 1 ≤ i ≤ n}
n

=?(x), (4.2)

see [31, Theorem 2.7]. Here #A denotes the cardinality of the set A. We next show that 
the sequence of rationals in (2.3) is distributed according to the Minkowski question 
mark. More specifically, we prove that this sequence coincides with the sequence (q(i))i≥1. 
Let the sequence in (2.3) be represented by (ki)i≥1. That is, ki denotes the i-th rational 
in (2.3).

Lemma 4.1. The sequence (ki)i≥1 is distributed according to the Minkowski question mark 
measure. That is, for any x ∈ [0, 1], we have that

lim
n→∞

#{ki ≤ x : 1 ≤ i ≤ n}
n

=?(x),

where #A denotes the cardinality of the set A.

Proof. We prove that q(n) = kn for all n ∈ N . It is clear that q(1) = k1 = 1/2. We next 
show that the Kepler rule coincides with

q(n)

q(2n) q(2n + 1) ,

which concludes the proof. Let n = 2a1 + 2a2 + · · · + 2ak with 0 ≤ a1 < a2 < · · · < ak. 
Suppose that n = 2l for some l. Then 2n = 2l+1 and 2n + 1 = 20 + 2l+1. Using (4.1), we 
find

q(n) = [l + 2]

q(2n) = [(l + 1) + 2] = [(l + 2) + 1] q(2n + 1) = [0 + 1, (l + 1) − 0 + 1] = [1, l + 2].
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Next, assume that n = 2a1 + 2a2 + · · · + 2ak �= 2l. Then q(n) = [a1 + 1, a2 − a1, a3 −
a2, · · · , ak − ak−1 + 1], and

2n = 2a1+1 + 2a2+1 + · · · + 2ak+1;

2n + 1 = 20 + 2a1+1 + 2a2+1 + · · · + 2ak+1.

Applying (4.1) to the above, we get

q(2n) = [(a1 + 1) + 1, (a2 + 1) − (a1 + 1), (a3 + 1) − (a2 + 1), · · · , (ak + 1)

− (ak−1 + 1) + 1]

= [(a1 + 1) + 1, a2 − a1, a3 − a2, · · · , ak − ak−1 + 1];

q(2n + 1) = [0 + 1, (a1 + 1) − 0, (a2 + 1) − (a1 + 1), (a3 + 1)

− (a2 + 1), · · · , (ak + 1) − (ak−1 + 1) + 1]

= [1, (a1 + 1), a2 − a1, a3 − a2, · · · , ak − ak−1 + 1].

We conclude that (q(i))i≥1 coincides with (ki)i≥1. Therefore, there is an equivalence 
between the statement in (4.2) and the limit in Lemma 4.1. �

Thus, the sequence in (2.3) is distributed according to μ?. Apart from this fact, there 
is an important underlying structure in the sequence that causes normality. We discuss 
this structure and show that it can be used to construct a class of Minkowski normal 
numbers. Moreover, we provide an explicit example using the Farey tree.

The continued fraction normality of xaks results from the ordering of rationals based 
on their denominator. This ordering causes the sequence of rationals in (1.2) to be dis-
tributed uniformly and hence xaks to be continued fraction normal. Minkowski normality 
of K, however, results from a completely different underlying structure. The underlying 
structure in this case comes from fact that the rationals are ordered increasingly, based 
on the sum of the digits of their continued fraction expansion. That is, the l-th level of 
the Kepler tree contains all possible rationals that have a continued fraction expansion 
whose sum of digits is equal to l+2. By ordering these top-down, left-right, the ordering 
is done as claimed. To see that the Kepler tree has this structure, we start by considering 
the root. The root of the tree, which corresponds to level 0, is given by 1/2 = [2]. Then, 
every next level, the sum of digits of the continued fraction expansion is increased by 1
through the Kepler rule. Furthermore, the l-th level of the Kepler tree contains 2l ratio-
nals, which is exactly the number of distinct2 rationals that have a continued fraction 
expansion whose digits sum up to l + 2.

Lemma 4.2. There exist exactly 2l distinct rationals that have a continued fraction ex-
pansion of which the sum of the digits equals l + 2, l ≥ 0. That is,

2 We say that two rationals p/q and r/s are distinct if and only if ps �= qr.
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#
{p

q
∈ [0, 1) : p

q
= [a1, a2, · · · , an],

n∑
i=1

ai = l + 2
}

= 2l,

where #A denotes the cardinality of the set A.

We omit a proof, as it follows directly from [31, p. 215]. Due to this lemma, we 
conclude that K is a concrete example of a number that is obtained by concatenating the 
(reduced) continued fraction expansions of all rationals based on the sum of their digits, 
in increasing order. That is, one first concatenates the continued fraction expansions 
of rationals that have a continued fraction expansion of which the digits sum up to 2, 
then those that sum up to 3, etc. It turns out that all such constructions are Minkowski 
normal. In order to prove this, we use the fact that generalised Champernowne numbers 
are normal. That is, if we take C2 and rearrange the blocks of the same length in any 
order, the resulting number is normal in base 2 [10]. Due to the structure that underlies 
our construction, we can use this to extend our results. Again, the key idea is the unique 
correspondence between binary codes of length l and continued fractions whose digits 
sum up to l + 2. Let [a1, a2, · · · , an] be such that 

∑n
i=1 ai = l + 2, then recall that this 

correspondence is given by

[a1, a2, · · · , an] binary code←→ 0an−2 · · · 10a2−110a1−1︸ ︷︷ ︸
binary code of length l

. (4.3)

The proof of Theorem 3.4 shows that we can count arbitrary blocks in K through 
binary codes and explains why and how by referring to the structure of the Kepler 
tree. However, it is the coding that is important. Moreover, it is the explicit one-to-
one correspondence between continued fraction expansions and binary codes that allows 
us to obtain frequencies and extend our results. This is due to the fact that divided 
occurrences are negligible and that the binary codes used in the proof result from the 
coding that is used. That is, if we convert a continued fraction expansion [a1, a2, · · · , an]
to its binary code 0an−2 · · · 10a2−110a1−1, we can use the binary codes in the proof to 
obtain the frequency of occurrences of d in [a1, a2, · · · , an]. As such, we can extend the 
normality of K to more general cases.

Theorem 4.3. Let the constructed number K be denoted by

K = [κ1
1, κ1

2, κ2
1, κ2

2, κ2
3, κ2

4, κ3
1, · · · ],

where κl
1, κ

l
2, · · · , κl

2l is the concatenation of the continued fraction expansions of the 
rationals in the l-th level of the Kepler tree, ordered from left to right. Furthermore, for 
all l ∈ N, let πl be a permutation of {1, 2, . . . , 2l}. Then

Kπ := [κ1
π1(1), κ1

π1(2), κ2
π2(1), κ2

π2(2), κ2
π2(3), κ2

π2(4), κ3
π3(1), · · · ]

is Minkowski normal.
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Fig. 3. The rule of the Farey tree for (a) n is odd and (b) n is even.

Proof. Let C2 be denoted by

C2 = 0. c11 c12 c21 c22 c23 c24 c31 · · · ,

where cl1c
l
2 · · · cl2l denotes the concatenation of all binary codes in the l-th level of the 

binary Kepler tree, ordered from left to right. It follows from [10] and [25] that

Cπ
2 := 0. c1π1(1) c1π1(2) c2π2(1) c2π2(2) c2π2(3) c2π2(4) c3π3(1) · · ·

is normal in base 2. Let d = d1, d2, · · · , dk be an arbitrary block of length k. Note that 
Cπ
2 corresponds to the concatenation of the binary codes of the continued fraction ex-

pansions that are concatenated in Kπ. As these binary codes and continued fraction 
expansions are (uniquely) related by the correspondence in (4.3), we can count the num-
ber of occurrences of d in Kπ by considering the frequency of 10dk−1 · · · 10d2−110d1−11
and 10dk−1 · · · 10d2−110d1−10 in Cπ

2 . The rest of the proof is analogous to the proof of 
Theorem 3.4. We conclude that Kπ is Minkowski normal. �

In particular, Theorem 4.3 proves Minkowski normality of the number that is obtained 
by concatenating the continued fraction expansions of the rationals in the Farey tree 
top-down, left-right. The tree starts with 1/2 = [2] at the root and forms new rationals 
according to the tree rule displayed in Fig. 3, see [5]. Consequently, the ordering of the 
rationals that is obtained by this, is

1
2 ,

1
3 ,

2
3 ,

1
4 ,

2
5 ,

3
5 ,

3
4 ,

1
5 , · · · .

It was implicitly shown by Kessebömer and Stratmann [14] that this sequence is dis-
tributed according to μ?. Therefore it should not be surprising that the following holds.

Proposition 4.4. The number that is obtained by concatenating the continued fraction 
expansions of the rationals in the Farey tree top-down left-right is Minkowski normal.

Proof. It can be seen from the tree rules that, regardless of whether n is even or odd, 
the Farey tree rule increases the sum of the digits of the continued fraction expansion by 
1 each next level. Therefore, the underlying structure of the tree is similar to that of the 
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Kepler tree. Namely, the rationals are ordered increasingly, based on the sum of the digits 
of their continued fraction expansion. Hence, the l-th level of the Farey tree contains all 
possible rationals that have a continued fraction expansion whose sum of digits is equal 
to l+2. By concatenating the continued fraction expansions of the rationals in the Farey 
tree top-down, left-right, we obtain a permutation of K that satisfies the conditions in 
Theorem 4.3. Therefore, we conclude that the number that is obtained by concatenating 
the continued fraction expansions of the rationals in the Farey tree top-down left-right 
is Minkowski normal. �
Remark. The extension in Theorem 4.3 is based on work of Shiokawa and Uchiyama [25], 
which extends normality of the dyadic Champernowne number. Moreover, our extension 
is based on a specific case of [25, Lemma 4]. This extension exploits the underlying struc-
ture of the Kepler tree to extend the Minkowski normality of K to more general cases. As 
such, we preserve the underlying structure and hence - in some way - preserve normality. 
We have not been able to prove a full analogue of Shiokawa and Uchiyama’s result. One 
of the reasons that we cannot extend normality to this general case, is that we can no 
longer use the normality of Cπ

2 to count frequencies. That is, our extension allows one 
to reorder the continued fraction expansions of rationals that have a continued fraction 
expansion of which the partial quotients sum up to the same number. A full analogue of 
the work of Shiokawa and Uchiyama would allow one to break up the continued fraction 
expansion of the same rationals into smaller parts and reorder these arbitrarily. How-
ever, when we break up continued fraction expansions into smaller parts, one creates 
subblocks of which the sum of its digits will vary and the composition of binary codes 
will change. Consider for instance the continued fraction [2, 1, 1, 3], which corresponds 
to the binary code 01110. Suppose we break this up into [2] and [1, 1, 3]. Then these 
correspond to the binary codes ∅ and 011 respectively. Conversely, break up 01110 into 
the blocks 011 and 10. These binary codes correspond, respectively, to the continued 
fraction expansions [1, 1, 3] and [1, 3]. This shows that the underlying structure is not 
preserved when breaking up continued fraction expansions into smaller parts. However, 
it should be possible to find a similar extension.

We now use the normality of K to explicitly prove the existence of some other normal 
numbers. For this, we first consider the Farey map F on [0, 1], defined

F(x) :=
{

x
1−x if x ∈ [0, 1/2),
1−x
x if x ∈ [1/2, 1].

This map has an infinite ergodic absolutely continuous invariant measure (the density 
is 1/x), but no finite absolutely continuous invariant measure. However, the Minkowski 
question mark measure is an ergodic invariant measure for the Farey map. By the defi-
nition of μ?, it is the push forward of Lebesgue measure
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(?∗λ)([0, x)) = λ([0, ?(x)) =?(x) = μ?([0, x)). (4.4)

In turn, this implies that

(F◦ ?)(x) = (? ◦ T )(x), for x ∈ [0, 1], (4.5)

where T (x) = 1 −2|x −1/2| is the tent map on [0, 1], see [17]. The tent map is ergodic and 
measure preserving for the Lebesgue measure, which is the measure of maximal entropy. 
Note that it is essentially the (1/2, 1/2)-Bernoulli measure of the 2-shift. Since (4.5) is a 
topological conjugacy, it follows that μ? is the measure of maximal entropy for μ? [17]. 
Therefore, we claim the following.

Proposition 4.5. The number K is normal for the Farey map with the Minkowski question 
mark measure.

Proof. The Gauss map G is the “jump” of the Farey map, see [17]. That is, for x =
[a1, a2, a3, · · · ] ∈ [0, 1] one has

G(x) = Fa1−1(x). (4.6)

The binary Farey expansion of x is given by f(x) = f1f2f3 · · · where fn = 0 if 
Fn−1(x) ∈ [0, 1/2) and fn = 1 if Fn−1(x) ∈ [1/2, 1]. It follows from (4.6) that 
f(x) = 0a1−110a2−110a3−11 · · · . Thus f(F(x)) = S(f(x)), where S denotes the left 
shift. When viewed as a map from continued fraction expansions to Farey expansions, 
it is clear that f respects concatenation. Thus, using the notation of Theorem 4.3, we 
have that

f(K) = f([κ1
1, κ1

2, κ2
1, κ2

2, κ2
3, κ2

4, κ3
1, · · · ])

= f(κ1
1) f(κ1

2) f(κ2
1) f(κ2

2) f(κ2
3) f(κ2

4) f(κ3
1) · · ·

= 1c1π1(1) 1c1π1(2) 1c2π2(1) 1c2π2(2) 1c2π2(3) 1c2π2(4) 1c3π3(1) · · · .

Here πl is the permutation on {1, 2, . . . , 2l} such that πl(1 + b0 + b12 + · · ·+ bl−12l−1) =
1 + bl−1 + bl−22 + · · · + b12l−1 where bk ∈ {0, 1}. Notice that f(K) is just Cπ

2 with some 
extra 1s between the blocks cjπj(k). As these 1s have density zero, it follows that all the 
binary blocks in f(K) occur with the same frequency as in Cπ

2 . �
Now consider the two generalized Lüroth (GLS) maps L1 and L2 on (0, 1], defined for 

x ∈ (1/2n, 2/2n], n ≥ 1,

L1(x) = 2 − 2−nx and L2(x) = 2nx− 1.

Like all GLS maps, both of these preserve Lebesgue measure, and it is easy to see that 
both are ergodic. The latter follows from the fact that both are isomorphic to a one-sided 
shift S on a countable alphabet, with a Bernoulli (product) measure. Let
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Fig. 4. The function φ(·).

φ(y) =
∞∑
i=1

1
2a1+a2+···+ai

,

for y = [a1, a2, a3, · · · ] (see Fig. 4). We then have the following.

Proposition 4.6.

(i) One has (G◦ ?)(x) = (? ◦ L1)(x) and (G ◦ φ)(x) = (φ ◦ L2)(x) for x ∈ [0, 1], with 
(?∗λ) = (φ∗λ) = μ?. Thus L1 with Lebesgue measure and L2 with Lebesgue measure 
are both isomorphic to G with μ?. It follows that G with μ? is ergodic.

(ii) Let K ∈ [0, 1] (i.e., view K as the continued fraction expansion of the sequence 
(2.5)). Then x1 =?(K) is normal for L1 and x2 = φ(K) is normal for L2.

(iii) As a sequence, K (2.5) is the L1 generalized Lüroth expansion of x1 and also the 
L2 generalized Lüroth expansion of x2.

Proof. The first conjugacy is well known (see [17]) and the push forward is (4.4). It 
follows that ?(K) is normal, and the sequence K is the L1 expansion of this number.

For L2, we show that

ΔL2(a1, a2, · · · , an) = φ(ΔG(a1, a2, · · · , an)). (4.7)

Since L2(x) = 2a1x − 1, it follows that x = 1
2a1 + L2(x)

2a1 . Continuing by induction, any 
x ∈ ΔL2(a1, a2, · · · , an) has the form

x = 1 + 1 + · · · + 1 + Ln
2 (x)
2a1 2a1+a2 2a1+a2+···+an 2a1+a2+···+an
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=
∞∑
i=1

1
2a1+a2+···+ai

= φ([a1, a2, a3, . . . , an, . . . ]).

Since Ln
2 varies linearly from 0 to 1 on this (fundamental) interval, we see that

ΔL2(a1, a2, · · · , an) =
( n∑

i=1

1
2a1+a2+···+ai

,
n∑

i=1

1
2a1+a2+···+ai

+ 1
2a1+a2+···+an

]
.

It follows that the endpoints of ΔL2(a1, a2, · · · , an) are φ(y1) and φ(y2) where y1 =
[a1, a2, · · · , an] and y2 = [a1, a2, · · · , an + 1]. Since y1 and y2 are the endpoints of 
ΔG(a1, a2, · · · , an) — possibly in reversed order — one has

λ(ΔL2(a1, a2, · · · , an)) = 2−(a1+a2+···+an) = μ?(ΔG(a1, a2, · · · , an)),

and everything follows. �
Comment. The proof shows that G is conjugate to the countable-alphabet one-sided shift 
S on NN and μ? pushes forward to a Bernoulli (product) measure π. For any S-invariant 
measure μ on NN (there are many of them) let Gμ be the set of points X ∈ NN that 
are normal (generic) for μ. That is, the frequency of any finite sequence of digits in 
X is the μ-measure of the corresponding cylinder. The quasi-regular points are defined 
QS = ∪Gμ, where the union is taken over all ergodic S-invariant measures. It follows 
from [11], Theorem 1.1, that QS is of first category (since NN is Polish, and being a full 
shift, S satisfies a very strong specification property), so Gπ ⊂ QS is also of the first 
category. In a similar way, [2] show Gπ is Π0

3-complete.

Final remark. Similar to the case of the Kepler tree, it follows that the number that 
is obtained by concatenating the continued fraction expansions of the rationals in the 
Calkin-Wilf tree top-down left-right is Minkowski normal. This tree starts with 1/1 at 
the root and uses the tree rule

p/q

p/(p + q) (p + q)/q .

Notice that the left tree rule is similar to that of the Kepler tree and that the right one is 
different. Furthermore, note that the Kepler tree contains all rationals in (0, 1), whereas 
the Calkin-Wilf tree contains all rationals in R. Due to this difference, we distinguish 
two cases when considering the tree rule of the Calkin-Wilf tree using continued fraction 
expansions. Let [a0; a1, a2, · · · ] denote the continued fraction expansion of an arbitrary 
rational p/q ∈ R. Then we distinguish the cases a0 = 0 and a0 �= 0. For the first case, 
the left and right children are given by

[0; a1 + 1, a2, · · · , an] and [1; a1, a2, · · · , an],
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respectively. Alternatively, for a0 �= 1, the left and right children are, respectively, given 
by

[0; 1, a0, a1a2, · · · , an] and [a0 + 1; a1, a2, · · · , an].

Neglecting the 0s, which are inadmissible in a continued fraction expansion, we see that 
in both cases either the first digit is increased by 1 or a 1 is inserted as a first digit. 
Thus, from a symbolical perspective, the Kepler tree and the Calkin-Wilf tree have a 
similar behaviour when forming blocks of digits. Therefore, if we concatenate the (non-
zero) digits of the continued fraction expansions of the rationals in the Calkin-Wilf tree 
top-down left-right, we obtain another Minkowski normal number.
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