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This paper is dedicated to our advisors.

Abstract. We introduce the concept of Minkowski normality, a different type

of normality for the regular continued fraction expansion. We use the ordering
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of rationals obtained from the Kepler tree to give a concrete construction of

an infinite continued fraction whose digits are distributed according to the

Minkowski question mark measure. To do this we define an explicit correspon-
dence between continued fraction expansions and binary codes to show that

we can use the dyadic Champernowne number to prove normality of the con-
structed number. Furthermore, we provide a generalised construction based

on the underlying structure of the Kepler tree, which shows that any con-

struction that concatenates the continued fraction expansions of all rationals,
ordered so that the sum of the digits of the continued fraction expansion are

non-decreasing, results in a number that is Minkowski normal.

1. Introduction

Normality as introduced by Borel focusses on integer base expansions and the
Lebesgue measure. We say that x ∈ [0, 1) is normal in base b if for any block
d = d1d2 · · · dk of k digits, di ∈ {0, 1, . . . , b− 1}, we have

lim
n→∞

1

n
Gn(x, d) = λ(∆(d)) = b−k.

Here, λ is Lebesgue measure, ∆(d) is the set of numbers whose decimal expansions
start with d and Gn(x, d) denotes the number of occurrences of d in the first n
digits of the base b expansion of x. Borel showed that λ almost every x ∈ [0, 1)
is normal. However, for common explicit numbers that seem to be normal, for
example

√
2 − 1, e − 2, π − 3, it is unknown in all cases whether or not they

are. The first and most well-known construction of an explicit normal number is
due to David Champernowne [6]. He proved that the number that is obtained by
concatenating the natural numbers, i.e.

C10 = 0. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 · · · ,
is normal in base 10. Later, Copeland and Erdös gave a generalised construction
of a normal number [7], which they used to prove the normality of the number
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that is obtained by concatenating all the primes. A small selection of further gen-
eralisations and results include that of Davenport and Erdos [9] and Nakai and
Shiokawa [18]. Some similar constructions of normal numbers for β-expansions (i.e.
expansions with respect to a non-integer base β), determined by the absolutely
continuous so-called Parry measure [20], can be found in [12] and [22].

The definition of normality can also be extended to continued fractions. Any real
number x can be represented as a — possibly finite — continued fraction expansion

x =
1

a1(x) +
1

a2(x) +
1

a3(x) +
1

. . .

,

where the digits ai(x) ∈ N are the partial quotients of x, i ≥ 1. In shorthand, we
write x = [a1, a2, a3, · · · ]. For any irrational x, the continued fraction expansion
is infinite and unique [19, Theorem 5.11]. Moreover, any rational has exactly two
expressions as a finite continued fraction [a1, a2, · · · , an − 1, 1] = [a1, a2, · · · , an].
We use the convention that any rational continued fraction is written in its reduced
form: the one on the right, where an ≥ 2.

The type of normality that is related to the continued fraction expansion comes
from the Gauss measure γ that, for any Lebesgue set A ⊂ [0, 1), is defined by

(1.1) γ(A) :=
1

log 2

∫
A

1

1 + x
dx.

Therefore, we say that x ∈ [0, 1) is continued fraction normal, if for any k ≥ 1 and
any block d = d1, d2, · · · , dk, di ∈ N, we have

lim
n→∞

1

n
Gn(x, d) = γ(∆(d)),

where ∆(d) = {y ∈ [0, 1) : y = [d1, d2, · · · , dk, · · · ]} is the cylinder set corresponding
to d. In the above and henceforth, Gn(x, d) will denote the number of occurrences
of d in the first n digits of the continued fraction expansion of x. It follows from
Birkhoff’s Ergodic Theorem, applied to the γ-preserving, ergodic Gauss map G,
that Lebesgue almost all numbers are continued fraction normal.

In contrast to the case of normality for radix base expansions, where there are a
large number of explicit constructions of normal numbers, there are relatively few
results to date about continued fraction normality. So far, there are at least six
construction results. The first is due to Postnikov [21], who used Markov chains
to construct a continued fraction normal number. Another construction is due to
Adler, Keane and Smorodinsky [1]. They first construct a (sub)sequence of rationals
by taking all non-reduced fractions with denominator n in increasing order

(1.2)
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Their continued fraction normal number is then obtained by concatenating the -
finite - continued fraction expansions of these rationals

xaks = [2, 3, 1, 2, 4, 2, 1, 3, 5, 2, 2, 1, 1, 2, 1, 4, · · · ] ≈ 0.44034.

It took about 30 years before the constructions of Postnikov and Adler, Keane
and Smorodinsky were generalized. The generalisation of Postnikov’s construction
is due to Madritsch and Mance [15]. Both of these works define a sequence of blocks
of symbols such that each block better approximates the desired frequency. The
(continued fraction) normal number is then obtained by concatenating (repetitions)
of the elements of the sequence. This is different from the work of Adler, Keane
and Smorodinsky and the generalisation of their work, which is due to Joseph Van-
dehey [30]. Among other things, Vandehey proves that some explicit subsequences
of (1.2) can be used to construct a continued fraction normal number. For the
proof, he uses metrical results to get asymptotics on how many rationals have good
small-scale properties. In turn, these asymptotics imply conditions that determine
whether the constructed number is continued fraction normal. One of the con-
structions, for instance, considers the subsequence of rationals that have integer
numerators and prime denominators. Another normality result due to Vandehey is
the theoretical existence of numbers that are both continued fraction normal and
absolutely abnormal [29]. The proof, however, is conditional on the Generalized
Riemann Hypothesis. Furthermore, Scheerer constructed a number that is both
continued fraction normal and absolutely normal [22]. Becher and Yuhjtman [3]
improved on Scheerer’s construction, reducing the number of operations to obtain
n binary digits from O(22n

) to O(n4). The key idea in their proof is to construct
a sequence of nested intervals that satisfy certain conditions. Most of these con-
ditions are related to discrepancy in the sense that they ensure an arbitrary small
bound on the discrepancy of the numbers in that interval. The normal number is
then obtained by taking the intersection of all these -sequences of nested- intervals.
All known examples of (computable) absolutely normal numbers, are given in the
form of an algorithm [16]. Up to the authors’ knowledge, the aforementioned con-
structions are the only constructions of continued fraction normal numbers.

All the constructions of normal numbers discussed so far are for a distribution
of digits according to Lebesgue measure or, in the cases of Gauss measure for regu-
lar continued fractions and Parry measure for β-expansions, absolutely continuous
measures. However, in this article we consider a measure that is singular with re-
spect to Lebesgue measure. We consider the Minkowski question mark measure µ?,
which is specified by the following distribution function (see Figure 1)

?(x) := 2

∞∑
i=1

(−1)i+1

2a1(x)+a2(x)+···+ai(x)
.

Here, ai(x) comes from the continued fraction expansion of x ∈ [0, 1), i ≥ 1. In
particular, we introduce a different type of normality for regular continued fraction
expansions that we call Minkowski normality. Informally, we say that a number x is
Minkowski normal if its digits (ai(x))i≥1 are distributed according to the Minkowski
question mark measure.
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Figure 1. The Minkowski question mark function ?(·).

The idea of a normal number with respect to an ergodic invariant measure that
is not either Lebesgue measure or at least an absolutely continuous measure is not
new. In [15], Madritsch and Mance construct explicit normal numbers (or generic
point as they are called in ergodic theory) for an arbitrary ergodic invariant Borel
probability measure µ on a finite or countable alphabet symbolic dynamical system
that satisfies a weak version of the specification property. In particular, a symbolic
sequence x is generic (or equivalently, the corresponding number x is generic) if
every length k block occurs in x with a frequency equal to the measure of the cor-
responding cylinder set (the measure of any inadmissible block is zero). As usual,
an application of the ergodic theorem shows that µ almost every number is normal.

Various earlier versions of constructions similar to [15], generally much more
restrictive in their assumptions and less general their results, can be found, for
example, in: [4], [12], [22], [26] and [27]. For continued fractions, the symbolic
dynamical system involved is the full shift with (countable) alphabet N. Since this
obviously satisfies the specification [15], their construction is general enough to
produce both continued fraction normal numbers and Minkowski normal numbers.
However, all these constructions involve many repetitions of longer and longer ap-
proximately generic blocks (with respect to µ), and the result is a number that is
generic yet not easy to write down. A simplified version of this construction is due
to Vandehey [28].

The main goal of the article is to construct an explicit Minkowski normal number,
whose digits are easy to write down and have a number theoretic description. We
construct an infinite continued fraction expansion and show that the corresponding
sequence of digits is distributed according to the Minkowski question mark measure.
Specifically, we consider the ordering of rationals that is given by the Kepler tree.
This is a specific binary tree that orders the rationals in the unit interval. The
constructed number is obtained by concatenating the continued fraction expansions
of the rationals using the Kepler order. For the proof of normality, we show that
there is a correspondence between binary codes and rationals in the Kepler tree.
Moreover, we show that we can use the dyadic Champernowne number to determine
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the distribution of the sequence of digits that represent the constructed number.
Finally, we use generalised Champernowne numbers to extend normality of the
constructed number to more general cases.

2. The construction

The crucial factor in determining the limiting distribution of the partial quo-
tients of the constructed number, is the ordering that is chosen. In the case of
Adler, Keane and Smorodinsky, the ordering of rationals they use leads to normal-
ity with respect to the Gauss measure. Hence, the constructed number is continued
fraction normal. In this section, we consider the ordering of the rationals that re-
sults from the Kepler tree. We use this ordering to construct a number whose partial
quotients are distributed according to the Minkowski question mark measure.

The first part of the Kepler tree is found in Johannes Kepler’s magnum opus, a
book containing his most important work. See [13, p. 163] for an English transla-
tion. Though Johannes Kepler starts from 1/1, the binary tree starts from 1/2 and
then uses the rule

p/q

p/(p+ q) q/(p+ q)
.

As rationals can be represented by finite continued fractions and vice versa, this is
equivalent to

[a1, a2, · · · , an]

[(a1 + 1), a2, · · · , an] [1, a1, a2, · · · , an]
.

This representation allows us to understand the behaviour of the sequence of digits
that is obtained from the construction. Here, note that a left move increases the
first digit in the continued fraction by one and does not alter the total number of
digits in the continued fraction. A right move however, inserts a 1 as a first digit
and thus increases the length of the continued fraction by one. This also means that
a left move does not preserve the block of digits that form the continued fraction of
the mother node, whereas a right move does preserve the block. Lastly, note that
both moves increase the sum of the digits of the continued fraction expansion by
one. Hence, the Kepler tree orders the rationals into levels based on the sum of
the digits of their continued fraction expansion. The first four levels of the tree are
displayed in Figure 2.

The key idea in proving normality of the constructed number is that we create
a one-to-one correspondence between rationals and binary codes. This correspon-
dence is based on the fact that there exists a unique path between the root and any
rational in the Kepler tree. In turn, we use this unique path to define a one-to-one
correspondence between rationals and binary codes.

The root corresponds to the empty path and therefore to the empty binary
code. Moreover, given an arbitrary rational, we can retrace its path as follows.
Let [a1, a2, · · · , an] denote the continued fraction of an arbitrary rational p/q in
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Figure 2. The first 4 levels of the Kepler tree.

the Kepler tree. Then by going (a1 − 1) steps from the left up, we end up at the
rational that corresponds to [1, a2, · · · , an]. Subsequently, going from the right up
we end at [a2, a3, · · · , an]. By repeating this proces for a2, a3, . . . , an−1 and an we
can find the path to the root. We summarise these steps symbolically by writing
L for a left move and R for a right move. Subsequently, we reverse the path and
apply the substitution {L 7→ 0, R 7→ 1} to associate a binary code to p/q. Hence,

p/q
cfe←→ [a1, a2, · · · , an]

upward path←→ La1−1RLa2−1R · · ·Lan−2

downward path←→ Lan−2 · · ·RLa2−1RLa1−1

binary code←→ 0an−2 · · · 10a2−110a1−1.

The binary code that is associated to a rational contains a lot of information.
It gives the continued fraction expansion of the rational that it represents and its
exact location within the tree. Namely, it gives the level in which the rational
occurs and the position within that level. The level is given by the total number
of 0’s and 1’s in its binary code and its position within the level can be read from
the ordering of the 0’s and 1’s. The following lemma is an immediate consequence
of the binary coding and the concept of retracing paths in the tree.

Lemma 2.1. There exists a unique path between the root of the Kepler tree that
starts at 1/2 and any arbitrary rational p/q. If we denote p/q by its continued
fraction expansion [a1, a2, · · · , an], then the corresponding path is

(2.1) Lan−2 · · ·RLa2−1RLa1−1,

which corresponds to the binary code

(2.2) 0an−2 · · · 10a2−110a1−1.

This path consists of a1 + a2 + · · · + an − 2 moves, which also corresponds to the
level in which the rational occurs for the first and only time.

Apart from providing information about the occurrence of rationals, the concept
of retracing paths also tells us how blocks of the form d = d1, d2, · · · , dk are formed
by the Kepler tree, how these blocks are preserved and how we can identify them
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using binary codes.

For the construction, we order the rationals in the Kepler tree going top-down,
left-right. The ordering of the rationals that result from this procedure is

(2.3)
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If we concatenate the corresponding binary codes of these rationals in the given
order, we obtain an infinite sequence of binary digits. This infinite sequence corre-
sponds to the dyadic Champernowne number

(2.4) C2 := 0. 0 1 00 01 10 11 000 · · · ,

which is known to be normal in base 2. This and other properties of C2 can for
instance be found in [10] or [25]. For our construction of a Minkowski normal
number, we concatenate the continued fraction expansions of the rationals in the
ordering that results from the Kepler tree. We obtain an infinite continued fraction,
which corresponds to a unique irrational number [8, Proposition 4.1.1]. This number
is given by

(2.5) K := [2, 3, 1, 2, 4, 1, 3, 2, 2, 1, 1, 2, 5, · · · ] ≈ 0.44031.

3. Minkowski normality

So far, different types of normality correspond to different number expansions.
Next, however, we use the Minkowski question mark measure to define another type
of normality for the continued fraction expansion. We define Minkowski normality
for continued fractions as follows.

Definition 3.1 (Minkowski normal number). We say that x = [a1, a2, a3, · · · ] ∈
[0, 1) is Minkowski normal, if for any k ≥ 1 and any block d = d1, d2, · · · , dk, with
di ∈ N, we have that

(3.1) lim
n→∞

1

n
Gn(x, d) = µ?(∆(d)) = 2−(d1+d2+···+dk).

Theorem 3.2. µ? almost every number in [0, 1) is Minkowski normal.

Proof. The Gauss map G, defined G(x) = 1/x mod 1, is known to be ergodic under
the Minkowski question mark measure µ?. This follows from the fact that the
Minkowski acts on cylinders as a product measure, which implies that we have an
isomorphism with a Bernoulli shift. Therefore, the Gauss map with the Minkowski
question mark measure is ergodic (and mixing and Bernoulli). Let x ∈ [0, 1). Then
for any k ≥ 1 and any block d = d1, d2, · · · dk, di ∈ N, it follows from Birkhoff’s
Ergodic Theorem that

lim
n→∞

1

n

n−1∑
i=0

1∆(d)(Gix) = µ?(∆(d)) = 2−(d1+d2+···+dk) µ? a.e.

�

We note that λ almost every number is continued fraction normal and µ? almost
every number is Minkowski normal. This is possible because Lebesgue measure and
Minkowski question mark measure are singular. Furthermore, it is interesting to
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note that the set of Minkowski normal numbers satisfies the following properties
typical for sets of normal numbers.

• Its complement has full Hausdorff dimension. This follows from the fact
that the set of Minkowski normal numbers in [0, 1) has full measure, hence
has Lebesgue measure 0. Therefore the complement has measure 1, which
in turn implies that it has full Hausdorff dimension [23].
• Its complement is a winning set in the sense of Schmidt’s game. As the set

of non-Minkowski normal numbers contains the set of badly approximable
numbers, it follows from [24, Theorem 3] that this set is α-winning for all
α < 1/2.
• It is first category (see the comment after Proposition 4.6).

The rest of this section is dedicated to proving the Minkowski normality of K.
To do this, we identify explicit binary codes that correspond to different types of
occurrences of an arbitrary block d. Consequently, we use the base 2 normality of
C2 to determine the frequency that corresponds to these type of occurrences. We
then distinguish the following four types of occurrences of a block d in K.

• The block d occurs at the start of a continued fraction expansion of a
rational in K;
• The block d occurs in the middle of the continued fraction expansion of a

rational in K;
• The block d occurs at the end of the continued fraction expansion of a

rational in K;
• The block d occurs in K as a result of concatenating the continued fraction

expansions of different rationals. We refer to this type of occurrences as
divided occurrences.

Lemma 3.3. Let d = d1, d2, · · · , dk be an arbitrary block of length k, di ∈ N. The
asymptotic frequency of divided occurrences of d in K is equal to 0.

Proof. The l-th level of the Kepler tree consists of 2l rationals. Hence, there are
2l − 1 concatenations. As d consists of k digits, there is a maximum of k − 1 po-
sitions where d can be divided. Therefore, the number of divided occurrences can
be bounded from above by k2l.

Each rational in the l-th level of the tree is formed by i left moves and l− i right
moves, where i varies between 0 and l. A left move does not alter the number of
digits and a right move increases the number of digits by 1. As we start off with
one digit at level 0, we find that the total number of digits in level l is given by

l∑
i=0

(i+ 1)

(
l

i

)
= (l + 2)2l−1, l ≥ 0.

Suppose that the n-th digit of K occurs within the L-th level of the Kepler tree.
The number of divided occurrences in the first n digits of K is then bounded from
above by

L−1∑
l=0

k2l +O(2L) = k(2L − 1) +O(2L).
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Furthermore, the total number of possible occurrences of d in the first n digits of
K is

L−1∑
l=0

(l + 2)2l−1 − k + 1 +O(2L) = L2L−1 − k + 1 +O(2L).

When we consider the asymptotic frequency of occurrences, we note that n → ∞
implies that L→∞. Therefore the asymptotic frequency of this type of occurrences
is

lim
L→∞

k(2L − 1) +O(2L)

L2L−1 − k + 1 +O(2L)
= 0.

�

Theorem 3.4. The number K, defined in (2.5), is Minkowski normal.

Proof. Let d = d1, d2, · · · , dk be an arbitrary block of length k, di ∈ N. In or-
der to determine the frequency of d in K it is sufficient to count the binary blocks
10dk−1 · · · 10d2−110d1−11 and 10dk−1 · · · 10d2−110d1−10 in C2. We argue this by con-
sidering the four different types of occurrences.

It follows from Lemma 3.3 that the frequency of divided occurrences of d tends
to 0.

Now, let p/q be an arbitrary rational in the Kepler tree that corresponds to the
continued fraction [a1, a2, · · · , an]. By Lemma 2.1, the path from 1/2 to p/q is
unique and given by

Lan−2 · · ·RLa2−1RLa1−1.

Similarly, there exists a unique path to the rational [d1, d2, · · · , dk, a1, a2, · · · , an].
By (2.1), this path is

Lan−2· · ·RLa2−1RLa1−1RLdk−1 · · ·RLd2−1RLd1−1.

Considering the latter path, we see that it passes through the rational p/q, of which
the path is marked in bold. As this path and that to p/q are unique, we conclude
that there exists a unique subpath from p/q to [d1, d2, · · · , dk, a1, a2, · · · , an] that
is given by

RLdk−1 · · ·RLd2−1RLd1−1.

Therefore, the following binary code corresponds to d occurring at the start of a
continued fraction expansion

(A) 10dk−1 · · · 10d2−110d1−1.

The binary code associated to occurrences of d in the middle of a continued
fraction expansion is similar. The difference with (A) is that another right move is
needed in the Kepler tree. This preserves the block forever and causes it to occur
in the middle. Therefore, the binary code associated to this type of occurrence is
the same as that in (A) with a 1 appended. Hence

(B) 10dk−1 · · · 10d2−110d1−11.

Lastly we consider what happens when d occurs at the end of a continued frac-
tion. Due to the fact that the Kepler rule alters the start of continued fraction ex-
pansions, these type of occurrences are descendants from the rational [d1, d2, · · · , dk].
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In order to preserve the block d, another right move is needed. Using this and
Lemma 2.1 we find that the corresponding binary code is

(C) 0dk−2 · · · 10d2−110d1−11,

where the last 1 results from the extra right move. However, occurrences of this
binary code in C2 do not always correspond to an occurrence of d in K. This is due
to the fact that the digit 2 is used to form dk. That is, dk is formed from the digit
2, whereas in the other type of occurrences, the block d is formed from scratch.
Hence for the binary code in (C) to correspond to an occurrence of d in K, this
occurrence of d should originate from a rational of the form [2, b2, · · · , bj−1, bj ]. By
Lemma 2.1, this corresponds to rationals that have a binary code given by

0bj−2 · · · 10b2−110.

In other words, for (C) to correspond to an occurrence of d in K, we need to
consider occurrences of d that originate from rationals whose corresponding binary
code ends in 10. If d is formed through a subpath that starts from such a rational,
the binary code that is associated to this subpath is appended to that of the rational
it originates from. We conclude that we can count these occurrences by looking at
the frequency of the block

(C*) 100dk−2 · · · 10d2−110d1−11 = 10dk−1 · · · 10d2−110d1−11.

This is similar to (B). Moreover by counting the blocks in (A), we count (B) and
(C*) as well. In order to prevent double counts, we append a 0 to the code in (A).
In conclusion, in order to find the frequency of d in K, it is sufficient to consider the
asymptotic frequencies of 10dk−1 · · · 10d2−110d1−11 and 10dk−1 · · · 10d2−110d1−10 in
C2. Both blocks occur with relative frequency

2−(d1+d2+···+dk+1).

This results from the fact that the binary codes are of length d1 + d2 + · · ·+ dk + 1
and that C2 is normal in base 2. Adding these frequencies gives the desired result

1

2d1+d2+···+dk+1
+

1

2d1+d2+···+dk+1
= 2−(d1+···+dk).

We conclude that K is Minkowski normal. �

4. Extending Minkowski normality

When constructing a normal number, it is the ordering that is chosen that de-
termines the distribution. Apparently, ordering the rationals based on their de-
nominator leads to the distribution given by the Gauss measure, e.g. see Vandehey
[30]. Although the sequence of rationals in (1.2) is distributed according to the
Lebesgue measure and not the Gauss, it is not that surprising that the number
constructed by Adler, Keane and Smorodinsky is continued fraction normal. When
we consider the frequency of occurrences of an arbitrary block d = d1, d2, · · · , dk
starting at the n-th position of a continued fraction expansion of a number in a
uniformly distributed sequence, this frequency is given by the Lebesgue measure
of the set G−n∆(d) [1], where G denotes the Gauss map. Gauss showed that, as
n→∞, λ(G−n∆(d)) converges in distribution to γ(∆(d)). In a similar manner, we
can argue that K should be Minkowski normal. Namely, the sequence of rationals
that is obtained by ordering the rationals in the Kepler tree top-down left-right,
see (2.3), is distributed according to the Minkowski question mark. Then it follows
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that the frequency of occurrences of d, starting at the n-th position of a continued
fraction expansion of a number in a Minkowski question mark distributed sequence,
is given by the Minkowski measure of G−n∆(d). As µ? is G-invariant, this measure
is simply µ?(∆(d)). The fact that the sequence in (2.3) is distributed according to
µ? has implicitly been proved by Viader, Parad́ıs and Bibiloni [31]. In the article,
they first define a one-to-one correspondence q : N→ (0, 1). The first few terms of
q are

q(1) = [2] = 1/2 q(5) = [1, 3] = 3/4

q(2) = [3] = 1/3 q(6) = [2, 2] = 2/5

q(3) = [1, 2] = 2/3 q(7) = [1, 1, 2] = 3/5

q(4) = [4] = 1/4 q(8) = [5] = 1/5,

which result from the following definition. If n = 2a1 + 2a2 + · · · + 2ak with
0 ≤ a1 < a2 < · · · < ak, then

(4.1) q(n) :=

{
[k + 2] if n = 2k,

[a1 + 1, a2 − a1, a3 − a2, · · · , ak − ak−1 + 1] otherwise.

Among other things, Viader, Parad́ıs and Bibiloni prove that, for any x ∈ [0, 1],

(4.2) lim
n→∞

#{q(i) ≤ x : 1 ≤ i ≤ n}
n

=?(x),

see [31, Theorem 2.7]. Here #A denotes the cardinality of the set A. We next show
that the sequence of rationals in (2.3) is distributed according to the Minkowski
question mark. More specifically, we prove that this sequence coincides with the
sequence (q(i))i≥1. Let the sequence in (2.3) be represented by (ki)i≥1. That is, ki
denotes the i-th rational in (2.3).

Lemma 4.1. The sequence (ki)i≥1
is distributed according to the Minkowski ques-

tion mark measure. That is, for any x ∈ [0, 1], we have that

lim
n→∞

#{ki ≤ x : 1 ≤ i ≤ n}
n

=?(x),

where #A denotes the cardinality of the set A.

Proof. We prove that q(n) = kn for all n ∈ N . It is clear that q(1) = k1 = 1/2. We
next show that the Kepler rule coincides with

q(n)

q(2n) q(2n+ 1)
,

which concludes the proof. Let n = 2a1 +2a2 +· · ·+2ak with 0 ≤ a1 < a2 < · · · < ak.
Suppose that n = 2l for some l. Then 2n = 2l+1 and 2n + 1 = 20 + 2l+1. Using
(4.1), we find

q(n) = [l + 2]

q(2n) = [(l + 1) + 2] = [(l + 2) + 1] q(2n+ 1) = [0 + 1, (l + 1)− 0 + 1] = [1, l + 2].
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Next, assume that n = 2a1 + 2a2 + · · ·+ 2ak 6= 2l. Then q(n) = [a1 + 1, a2−a1, a3−
a2, · · · , ak − ak−1 + 1], and

2n = 2a1+1 + 2a2+1 + · · ·+ 2ak+1;

2n+ 1 = 20 + 2a1+1 + 2a2+1 + · · ·+ 2ak+1.

Applying (4.1) to the above, we get

q(2n) = [(a1 + 1) + 1, (a2 + 1)− (a1 + 1), (a3 + 1)− (a2 + 1), · · · , (ak + 1)

− (ak−1 + 1) + 1]

= [(a1 + 1) + 1, a2 − a1, a3 − a2, · · · , ak − ak−1 + 1];

q(2n+ 1) = [0 + 1, (a1 + 1)− 0, (a2 + 1)− (a1 + 1), (a3 + 1)

− (a2 + 1), · · · , (ak + 1)− (ak−1 + 1) + 1]

= [1, (a1 + 1), a2 − a1, a3 − a2, · · · , ak − ak−1 + 1].

We conclude that (q(i))i≥1 coincides with (ki)i≥1. Therefore, there is an equivalence
between the statement in (4.2) and the limit in Lemma 4.1. �

Thus, the sequence in (2.3) is distributed according to µ?. Apart from this fact,
there is an important underlying structure in the sequence that causes normality.
We discuss this structure and show that it can be used to construct a class of
Minkowski normal numbers. Moreover, we provide an explicit example using the
Farey tree.

The continued fraction normality of xaks results from the ordering of rationals
based on their denominator. This ordering causes the sequence of rationals in
(1.2) to be distributed uniformly and hence xaks to be continued fraction normal.
Minkowski normality of K, however, results from a completely different underlying
structure. The underlying structure in this case comes from fact that the rationals
are ordered increasingly, based on the sum of the digits of their continued fraction
expansion. That is, the l-th level of the Kepler tree contains all possible rationals
that have a continued fraction expansion whose sum of digits is equal to l + 2. By
ordering these top-down, left-right, the ordering is done as claimed. To see that
the Kepler tree has this structure, we start by considering the root. The root of
the tree, which corresponds to level 0, is given by 1/2 = [2]. Then, every next level,
the sum of digits of the continued fraction expansion is increased by 1 through the
Kepler rule. Furthermore, the l-th level of the Kepler tree contains 2l rationals,
which is exactly the number of distinct1 rationals that have a continued fraction
expansion whose digits sum up to l + 2.

Lemma 4.2. There exist exactly 2l distinct rationals that have a continued fraction
expansion of which the sum of the digits equals l + 2, l ≥ 0. That is,

#
{p
q
∈ [0, 1) :

p

q
= [a1, a2, · · · , an],

n∑
i=1

ai = l + 2
}

= 2l,

where #A denotes the cardinality of the set A.

1We say that two rationals p/q and r/s are distinct if and only if ps 6= qr.
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We omit a proof, as it follows directly from [31, p. 215]. Due to this lemma, we
conclude that K is a concrete example of a number that is obtained by concatenating
the (reduced) continued fraction expansions of all rationals based on the sum of
their digits, in increasing order. That is, one first concatenates the continued
fraction expansions of rationals that have a continued fraction expansion of which
the digits sum up to 2, then those that sum up to 3, etc. It turns out that all
such constructions are Minkowski normal. In order to prove this, we use the fact
that generalised Champernowne numbers are normal. That is, if we take C2 and
rearrange the blocks of the same length in any order, the resulting number is normal
in base 2 [10]. Due to the structure that underlies our construction, we can use this
to extend our results. Again, the key idea is the unique correspondence between
binary codes of length l and continued fractions whose digits sum up to l + 2. Let
[a1, a2, · · · , an] be such that

∑n
i=1 ai = l + 2, then recall that this correspondence

is given by

(4.3) [a1, a2, · · · , an]
binary code←→ 0an−2 · · · 10a2−110a1−1︸ ︷︷ ︸

binary code of length l

.

The proof of Theorem 3.4 shows that we can count arbitrary blocks in K through
binary codes and explains why and how by referring to the structure of the Kepler
tree. However, it is the coding that is important. Moreover, it is the explicit one-to-
one correspondence between continued fraction expansions and binary codes that
allows us to obtain frequencies and extend our results. This is due to the fact that
divided occurrences are negligible and that the binary codes used in the proof result
from the coding that is used. That is, if we convert a continued fraction expansion
[a1, a2, · · · , an] to its binary code 0an−2 · · · 10a2−110a1−1, we can use the binary
codes in the proof to obtain the frequency of occurrences of d in [a1, a2, · · · , an].
As such, we can extend the normality of K to more general cases.

Theorem 4.3. Let the constructed number K be denoted by

K = [κ1
1, κ

1
2, κ

2
1, κ

2
2, κ

2
3, κ

2
4, κ

3
1, · · · ],

where κl1, κ
l
2, · · · , κl2l is the concatenation of the continued fraction expansions of the

rationals in the l-th level of the Kepler tree, ordered from left to right. Furthermore,
for all l ∈ N, let πl be a permutation of {1, 2, . . . , 2l}. Then

Kπ := [κ1
π1(1), κ

1
π1(2), κ

2
π2(1), κ

2
π2(2), κ

2
π2(3), κ

2
π2(4), κ

3
π3(1), · · · ]

is Minkowski normal.

Proof. Let C2 be denoted by

C2 = 0. c11 c
1
2 c

2
1 c

2
2 c

2
3 c

2
4 c

3
1 · · · ,

where cl1c
l
2 · · · cl2l denotes the concatenation of all binary codes in the l-th level of

the binary Kepler tree, ordered from left to right. It follows from [10] and [25] that

Cπ2 := 0. c1π1(1) c
1
π1(2) c

2
π2(1) c

2
π2(2) c

2
π2(3) c

2
π2(4) c

3
π3(1) · · ·

is normal in base 2. Let d = d1, d2, · · · , dk be an arbitrary block of length k.
Note that Cπ2 corresponds to the concatenation of the binary codes of the continued
fraction expansions that are concatenated in Kπ. As these binary codes and con-
tinued fraction expansions are (uniquely) related by the correspondence in (4.3),
we can count the number of occurrences of d in Kπ by considering the frequency
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of 10dk−1 · · · 10d2−110d1−11 and 10dk−1 · · · 10d2−110d1−10 in Cπ2 . The rest of the
proof is analogous to the proof of Theorem 3.4. We conclude that Kπ is Minkowski
normal. �

In particular, Theorem 4.3 proves Minkowski normality of the number that is
obtained by concatenating the continued fraction expansions of the rationals in the
Farey tree top-down, left-right. The tree starts with 1/2 = [2] at the root and forms
new rationals according to the tree rule displayed in Figure 3, see [5]. Consequently,

[a1, a2, · · · , an]

[a1, a2, · · · , (an + 1)] [a1, a2, · · · , (an − 1), 2]

(a)

[a1, a2, · · · , an]

[a1, a2, · · · , (an − 1), 2] [a1, a2, · · · , (an + 1)]

(b)

Figure 3. The rule of the Farey tree for (a) n is odd and (b) n is even.

the ordering of the rationals that is obtained by this, is

1

2
,

1

3
,

2

3
,

1

4
,

2

5
,

3

5
,

3

4
,

1

5
, · · · .

It was implicitly shown by Kessebömer and Stratmann [14] that this sequence is
distributed according to µ?. Therefore it should not be surprising that the following
holds.

Proposition 4.4. The number that is obtained by concatenating the continued frac-
tion expansions of the rationals in the Farey tree top-down left-right is Minkowski
normal.

Proof. It can be seen from the tree rules that, regardless of whether n is even or
odd, the Farey tree rule increases the sum of the digits of the continued fraction
expansion by 1 each next level. Therefore, the underlying structure of the tree is
similar to that of the Kepler tree. Namely, the rationals are ordered increasingly,
based on the sum of the digits of their continued fraction expansion. Hence, the
l-th level of the Farey tree contains all possible rationals that have a continued
fraction expansion whose sum of digits is equal to l + 2. By concatenating the
continued fraction expansions of the rationals in the Farey tree top-down, left-
right, we obtain a permutation of K that satisfies the conditions in Theorem 4.3.
Therefore, we conclude that the number that is obtained by concatenating the
continued fraction expansions of the rationals in the Farey tree top-down left-right
is Minkowski normal. �

Remark: The extension in Theorem 4.3 is based on work of Shiokawa and
Uchiyama [25], which extends normality of the dyadic Champernowne number.
Moreover, our extension is based on a specific case of [25, Lemma 4]. This exten-
sion exploits the underlying structure of the Kepler tree to extend the Minkowski
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normality of K to more general cases. As such, we preserve the underlying structure
and hence - in some way - preserve normality. We have not been able to prove a full
analogue of Shiokawa and Uchiyama’s result. One of the reasons that we cannot
extend normality to this general case, is that the we can no longer use the nor-
mality of Cπ2 to count frequencies. That is, our extension allows one to reorder the
continued fraction expansions of rationals that have a continued fraction expansion
of which the partial quotients sum up to the same number. A full analogue of the
work of Shiokawa and Uchiyama would allow one to break up the continued frac-
tion expanion of the same rationals into smaller parts and reorder these arbitrarily.
However, when we break up continued fraction expansions into smaller parts, one
creates subblocks of which the sum of its digits will vary and the composition of
binary codes will change. Consider for instance the continued fraction [2, 1, 1, 3],
which corresponds to the binary code 01110. Suppose we break this up into [2]
and [1, 1, 3]. Then these correspond to the binary codes ∅ and 011 respectively.
Conversely, break up 01110 into the blocks 011 and 10. These binary codes cor-
respond, respectively, to the continued fraction expansions [1, 1, 3] and [1, 3]. This
shows that the underlying structure is not preserved when breaking up continued
fraction expansions into smaller parts. However, it should be possible to find a
similar extension.

We now use the normality of K to explicitly prove the existence of some other
normal numbers. For this, we first consider the Farey map F on [0, 1], defined

F(x) :=

{
x

1−x if x ∈ [0, 1/2),
1−x
x if x ∈ [1/2, 1].

This map has an infinite ergodic absolutely continuous invariant measure (the den-
sity is 1/x), but no finite absolutely continuous invariant measure. However, the
Minkowski question mark measure is an ergodic invariant measure for the Farey
map. By the definition of µ?, it is the push forward of Lebesgue measure

(4.4) (?∗λ)([0, x)) = λ([0, ?(x)) =?(x) = µ?([0, x)).

In turn, this implies that

(4.5) (F◦ ?)(x) = (? ◦ T )(x), for x ∈ [0, 1],

where T (x) = 1 − 2|x − 1/2| is the tent map on [0, 1], see [17]. The tent map is
ergodic and measure preserving for the Lebesgue measure, which is the measure of
maximal entropy. Note that it is essentially the (1/2, 1/2)-Bernoulli measure of the
2-shift. Since (4.5) is a topological conjugacy, it follows that µ? is the measure of
maximal entropy for µ? [17]. Therefore, we claim the following.

Proposition 4.5. The number K is normal for the Farey map with the Minkowski
question mark measure.

Proof. The Gauss map G is the “jump” of the Farey map, see [17]. That is, for
x = [a1, a2, a3, · · · ] ∈ [0, 1] one has

(4.6) G(x) = Fa1−1(x).

The binary Farey expansion of x is given by f(x) = f1f2f3 · · · where fn = 0 if
Fn−1(x) ∈ [0, 1/2) and fn = 1 if Fn−1(x) ∈ [1/2, 1]. It follows from (4.6) that
f(x) = 0a1−110a2−110a3−11 · · · . Thus f(F(x)) = S(f(x)), where S denotes the
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left shift. When viewed as a map from continued fraction expansions to Farey
expansions, it is clear that f respects concatenation. Thus, using the notation of
Theorem 4.3, we have that

f(K) = f([κ1
1, κ

1
2, κ

2
1, κ

2
2, κ

2
3, κ

2
4, κ

3
1, · · · ])

= f(κ1
1) f(κ1

2) f(κ2
1) f(κ2

2) f(κ2
3) f(κ2

4) f(κ3
1) · · ·

= 1c1π1(1) 1c1π1(2) 1c2π2(1) 1c2π2(2) 1c2π2(3) 1c2π2(4) 1c3π3(1) · · · .

Here πl is the permutation on {1, 2, . . . , 2l} such that πl(1+b0+b12+· · ·+bl−12l−1) =
1 + bl−1 + bl−22 + · · ·+ b12l−1 where bk ∈ {0, 1}. Notice that f(K) is just Cπ2 with

some extra 1s between the blocks cjπj(k). As these 1s have density zero, it follows

that all the binary blocks in f(K) occur with the same frequency as in Cπ2 . �

Now consider the two generalized Lüroth (GLS) maps L1 and L2 on (0, 1], defined
for x ∈ (1/2n, 2/2n], n ≥ 1,

L1(x) = 2− 2−nx and L2(x) = 2nx− 1.

Like all GLS maps, both of these preserve Lebesgue measure, and it is easy to see
that both are ergodic. The latter follows from the fact that both are isomorphic to
a one-sided shift S on a countable alphabet, with a Bernoulli (product) measure.
Let

φ(y) =

∞∑
i=1

1

2a1+a2+···+ai
,

for y = [a1, a2, a3, · · · ] (see Figure 4). We then have the following.

Proposition 4.6.

(i) One has (G◦ ?)(x) = (? ◦ L1)(x) and (G ◦ φ)(x) = (φ ◦ L2)(x) for x ∈ [0, 1],
with (?∗λ) = (φ∗λ) = µ?. Thus L1 with Lebesgue measure and L2 with
Lebesgue measure are both isomorphic to G with µ?. It follows that G with
µ? is ergodic.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 4. The function φ(·).
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(ii) Let K ∈ [0, 1] (i.e., view K as the continued fraction expansion of the se-
quence (2.5)). Then x1 =?(K) is normal for L1 and x2 = φ(K) is normal
for L2.

(iii) As a sequence, K (2.5) is the L1 generalized Lüroth expansion of x1 and
also the L2 generalized Lüroth expansion of x2.

Proof. The first conjugacy is well known (see [17]) and the push forward is (4.4). It
follows that ?(K) is normal, and the sequence K is the L1 expansion of this number.

For L2, we show that

(4.7) ∆L2
(a1, a2, · · · , an) = φ(∆G(a1, a2, · · · , an)).

Since L2(x) = 2a1x− 1, it follows that x = 1
2a1

+ L2(x)
2a1

. Continuing by induction,
any x ∈ ∆L2

(a1, a2, · · · , an) has the form

x =
1

2a1
+

1

2a1+a2
+ · · ·+ 1

2a1+a2+···+an
+

Ln2 (x)

2a1+a2+···+an

=

∞∑
i=1

1

2a1+a2+···+ai
= φ([a1, a2, a3, . . . , an, . . . ]).

Since Ln2 varies linearly from 0 to 1 on this (fundamental) interval, we see that

∆L2
(a1, a2, · · · , an) =

( n∑
i=1

1

2a1+a2+···+ai
,

n∑
i=1

1

2a1+a2+···+ai
+

1

2a1+a2+···+an

]
.

It follows that the endpoints of ∆L2(a1, a2, · · · , an) are φ(y1) and φ(y2) where
y1 = [a1, a2, · · · , an] and y2 = [a1, a2, · · · , an+1]. Since y1 and y2 are the endpoints
of ∆G(a1, a2, · · · , an) — possibly in reversed order — one has

λ(∆L2
(a1, a2, · · · , an)) = 2−(a1+a2+···+an) = µ?(∆G(a1, a2, · · · , an)),

and everything follows. �

Comment. The proof shows that G is conjugate to the countable-alphabet one-
sided shift S on NN and µ? pushes forward to a Bernoulli (product) measure π.
For any S-invariant measure µ on NN (there are many of them) let Gµ be the set
of points X ∈ NN that are normal (generic) for µ. That is, the frequency of any
finite sequence of digits in X is the µ-measure of the corresponding cylinder. The
quasi-regular points are defined QS = ∪Gµ, where the union is taken over all er-
godic S-invariant measures. It follows from [11], Theorem 1.1, that QS is of first
category (since NN is Polish, and being a full shift, S satisfies a very strong spec-
ification property), so Gπ ⊂ QS is also of the first category. In a similar way, [2]
show Gπ is Π0

3-complete.

Final remark : Similar to the case of the Kepler tree, it follows that the number
that is obtained by concatenating the continued fraction expansions of the rationals
in the Calkin-Wilf tree top-down left-right is Minkowski normal. This tree starts
with 1/1 at the root and uses the tree rule

p/q

p/(p+ q) (p+ q)/q
.
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Notice that the left tree rule is similar to that of the Kepler tree and that the
right one is different. Furthermore, note that the Kepler tree contains all rationals
in (0, 1), whereas the Calkin-Wilf tree contains all rationals in R. Due to this
difference, we distinguish two cases when considering the tree rule of the Calkin-Wilf
tree using continued fraction expansions. Let [a0; a1, a2, · · · ] denote the continued
fraction expansion of an arbitrary rational p/q ∈ R. Then we distinguish the cases
a0 = 0 and a0 6= 0. For the first case, the left and right children are given by

[0; a1 + 1, a2, · · · , an] and [1; a1, a2, · · · , an],

respectively. Alternatively, for a0 6= 1, the left and right children are, respectively,
given by

[0; 1, a0, a1a2, · · · , an] and [a0 + 1; a1, a2, · · · , an].

Neglecting the 0s, which are inadmissible in a continued fraction expansion, we see
that in both cases either the first digit is increased by 1 or a 1 is inserted as a first
digit. Thus, from a symbolical perspective, the Kepler tree and the Calkin-Wilf tree
have a similar behaviour when forming blocks of digits. Therefore, if we concate-
nate the (non-zero) digits of the continued fraction expansions of the rationals in the
Calkin-Wilf tree top-down left-right, we obtain another Minkowski normal number.
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9. Harold Davenport and Paul Erdős, Note on normal decimals, Canadian Journal of Mathe-
matics 4 (1952), no. 4, 58–63.
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