ON UNIFORM CONVERGENCE IN THE WIENER-WINTNER
THEOREM

E. ARTHUR ROBINSON, Jr.

1. Introduction

Let T: X — X be a continuous mapping on a compact metric space X. We say a
Borel probability measure g on X is T-invarient if (f{T"*E) = u(E) for all Borel E < X.
If ¢ is the unique T-invariant probability measure, then T is said to be uniguely
ergodic. A complex Borel function g is called a measurable elgenfunction for T if there
exists e8! = {zeC: |z} = 1}, such that

g(Tx} = Ag(x) (1)

for p-a.e. xeX. In a convenient abuse of the language, we call 1 a ‘measurable’
eigenvalue, and denote the set of all measurable eigenvalues by M,. Since T is ergodic,
any measurable eigenfunction g satisfies ig(x)| = const. g-a.c., and g is unique g-a.e.
up to constant multiples. Let C{X) denote the set of all continuons complex-valued
functions on X, and suppose that g{Tx) = Ag(x) for some ge C(X) and for all xe X.
In this case, we call g a continuous eigenfunction and call A a ‘ continuous’ eigenvalue.
We denote the set of all continuous eigenvalues by C,. Note that C, < M,.. For
AeS', let us define an operator P, on L*X,u) as follows: if le M, then P f
is the projection of f to the eigenspace corresponding to A, and if ¢ M,
then P f=0. Since T is uniquely ergodic, it follows, for AeM,, that
P f= o, g, where g is a measurable eigenfunction corresponding to A, and

o= lel™ | fodn = el o)
X
Our main result is the following,

TueEOREM [.1. Let T be a uniguely ergodic mapping on a compact metric space X,
with unique T-invariant probability measure p. Then for all A¢ M N\C, and fe C(X), the
limit

lim % gﬂ ((TFx) A )

N

converges unifornily for xe X to P, fe C(X).

Theorem 1.1 is combination of the Wiener—Wintner Theorem [9] and the
uniformly convergent argodic theorem of Krylov and Bogolioubov [5}). In particular,
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the Wiener—Wintner Theorem says that if 7' is a measure-preserving transformation
of a measure space (X, x) with u(X) < oo, and if fe L'(X, u), then there exists X, < X
and z(X,) = p(X), such that the limit (2) exists for all 4 and all xe X}; though, in fact,
Wiener and Wintner considered only the flow case of this theorem. The uniformly
convergent ergodic theorem of Krylov and Bogolioubov is the ‘if’ part of the
following theorem.

THeoreM 1.2 [5).  If T is a uniquely ergodic mapping on a compact metric space X,
with unique T-invariant prebability measure p, then for all fe C(X) the limit

lim Ai,Nf F(T"%) (3)

N-von n=0

converges uniformly for xe X to f LS
Conversely, T is uniquely ergodic if for every fe C(X) the limit (3) converges
pointwise on X to a limit which is independent of x.

We call a mapping T homogeneous if it is uniquely ergodic and M, = C, (that is,
all eigenvalues are continuous), Homogeneous mappings are of interest since it
follows from Theorem 1.1 that for such T the limit {2) converges uniformly in x for
all fe C(X) and all Ae§*. Clearly T is homogeneous if it is {(measure theoretically)
weakly mixing, and it is well known that any ergodic rotation T on a compact abelian
group is homogeneous. A less trivial example is that any substitution dynamical
system is homogeneous (cf. Host [4]). More generally, one can show that any
invertible ergodic measure-preserving transformation 1" on a Lebesgue probability
space is (measure theoretically) isomorphic to a homogeneous homeomorphism 7 on
a compact metric space X. This fact may be proven as follows, and I am grateful to
B. Weiss for pointing out this argument to me. First, a group rofation is used to
provide a homogeneous model for the maximal discrete spectrum factor of 7. Then
a homogeneous model for the complementary extension is constructed using the
relative Jewitt—Krieger Theorem of Weiss [8]). Contrasting this, Lehrer [6] has
shown that any invertible ergodic measure-preserving transformation 77 of a
Lebesgue probability space is isomorphic to a uniquely ergodic topologically mixing
homeomorphism 7. This implies that T is topologically weakly mixing, which is
equivalent to M, = M, \C,. Thus, if T’ is not (measure theoretically) weakly mixing
then M,\C,, is nontrivial. In Section 3 we shall explicitly construct a mapping with
this latter property.

Recently the author learned that the following result, closely related to Theorem
1.1, was independently obtained by L Assani [I]. Let K denote the set of all
JeL¥X, ) such that P, /= 0 for all le M.

TreoreM 1.3 [1].  Let T be a uniquely ergodic mapping on a compaci metric space
X, with unique T-invariant probability measure yi, and let fe C(X) N K. Then the limit
(2) converges wniformly in (x, ) eX x S,

Although Theorems [.1 and 1.3 overlap, neither result implies the other. For
example, suppose that fe C(X) is such that F,f+# 0 for some ve M,. Then the
convergence in (2) cannot be uniform in (x, 4), since the limit function f{x, ) = P, f{x)
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cannot be continuous on X x S! (this is because M., is at most countable). However,
Theorem 1.1 still implies that for A4 M\ C,. the limit {2) converges uniformly in x
for fe C(X).

2. Proof of the main theorem

We begin by considering some special cases of Theorem 1.1, First, let us suppose
AeC,, and let ge C(X) be an eigenfunction corresponding to A. Given fe C(X),
define k = fge C(X). Then by Theorem 1.2 and (1), the limit

. 1 N1 . 1 N-1 .
f Jedu = lim « Y f(T*"x)g(T"x) = lim — . f(T"x) i "g(x)
X N-—roo N n=0 N—oo N n=0

converges uniformly, proving Theorem 1.1 for this case.

A similar elementary proof can be given if 7 is weakly mixing (that is, M, = {1})
and A = ¢, where §1/2n is irrational. Let R, be the rotation by an angle € on the circle
T = R/2xZ so that Ryt = ¢+ 8 mod 2z, Since 7 is weakly mixing and R, is ergodic,
T % Ryis ergodic. Moreover, since T and R, are disjoint {cf. [3]}, and both are uniquely
ergodic, it follows that T x R, is uniquely ergodic. The proof of Theorem 1.1 in this
case is completed by applying Proposition 1.2 to the continuous function
hx,0) = f(x)e™ on Xx7T. The same argument works for A= ¢ with 0= p/q
rational, by replacing T with Z/¢Z and replacing R, with rotation by p on Z/¢Z.
Even if T is not weakly mixing, the same line of argument works so long as
{A*:neZ}n M, = {1} (note that M, is a group since T is ergodic). However, to get
beyond this case we need to use spectral theory.

Suppose that Tis a continuous mapping of a compact metric space X and yis a
T-invariant probability measure — we do not necessarily assume that T is uniquely
ergodic, or even ergodic. Let us extend the definition of M, to this case by defining
it to be the set of all A such that for some ge LA X, 1), equation (1) holds for g-a.e. x.
Yor fe LHX,u) and n = 0, let

By} = | S du) @

For n < 0, define 6, , ,(n} = 6, , (—n). It is well known that the sequence 6, , (1)
is positive definite {cf. Queflelec [7]), so that by the Bochner—Herglotz Theorem there
exists a finite Borel measure a, 5 , on T such that

G, d0) = L e™da, o (0)

for all ne Z. The measure o, , , on T, is called the spectral measure for f. Let U,
denote the induced isometry on L(X,p), defined by ULf(x) =f(Tx). From the
Spectral Theorem applied to U, it follows that the atoms of the measures o, ., for
fe LA(X, 1), correspond to M, (cf. Queffelec, [7]). In particular, if 1 = ¢*e M, then

o MOD) = |15, S, (5)

Gy, T,ﬂ({e}) =0, (6)

where P, now denotes projection to the (possibly multi-dimensional) eigenspace
corresponding to A. The next lemma, which is the main ingredient of our proof of
Theorem 1.1, is also of some independent interest.

and if A = e ¢ M, then
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LemMA 2.1.  Suppose that T is a uniquely ergodic mapping on a compact metric
space X, with unique T-invariant probability measure p. Let {x;} be a sequence in X,
Then for all fe C(X}, we have that

S ATy A ‘ . ™)

7=}

o‘f, T.#({Q})lfz = lim sup %

N—ow

Progf. Choose N;— oo such that

. 1
= limsup —

N1 ‘
N-ow

H 1 1 -
lim N Y, AT Xy)A
Jroo il n=0
Let 4 = ¢ and consider the homeomorphism T = T'x R, of ¥ = X x T so that
T(x, ) = (T"x, t+nb).

For Ne N, define a Borel measure

¥ AT i ‘ ®)

| ¥
v = N Z,‘ﬂ 57”'(.1:‘\,,0)1
H=

where &, ,, denotes unit point mass at (x,f)e X = X x T. Then

1 N-1
f Jetdny,n =5 2 AT %) A7 ©)
AT n=0
Let A(y, ) =f(y)e". Let p be a weak-+ limit point of the set of the measures
{n w, JE N3}. Note that p exists by the Banach-Alaogla Theorem, By (9), and the fact
that #e C(X x T), we have (passing to a subsequence if necessary)
N1

Y AT ) A7, (10)

n=0

= lim —
Fran Y]

f(y)etdp(y, 1)

AxT

By its construction, the measure p is T-invariant on X. Define the X-marginal p|,
of p to be the Borel measure on X satisfying p| {E) = p(£ x T) for all Borel £ < X.
Since the o-algebra of sets of the form Ex T is (T'x Ry)-invariant, it follows that p|,
is a T-invariant on X. Thus, the unique ergodicity of T implies that
Ple=p (11)
Using (4) and (11), it follows that
Gy, 71, A1) = J Ty, DR Ddp(y, ) = | AT*FOYA™dp(y, 1)
X

AxY
- A"‘J AT dily) = X764 4, (1),
X
Now for n =0,

e dlo, , ,0RF)(1) = J. e g, o () = A6, 5 (1),
T

(©;.1.40 RYA(n) = f

T

so that, by the Fourier Uniqueness Theorem, it follows that o, 7,0 R;' =0, 4 .

In particular,
Ou,7,,10}) = o, 7 L{O}). (12)
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By (5
y ) 0 5 00 = | A > [P B, a3)
where P

wonst, denotes projection to the constant functions. The inequality in (13)
reflects the fact that 7" may not be ergodic for p. Now

e = | [ 1000320
X

and a combination of (8), (10) and (14), yields the equation

J(yedp(y,1) (14)

XxT

lim su l
IV%G)p ﬂ(

The proof is completed by combining (12), (13) and (15).

N-1
Z f(T"XN) A ’ = "Pconst. I?EI (15)

n=0

CoMMENT. This lemma generalizes a similar result for correlation measures in

71

Proof of Theorem 1.1. By the discussion following the statement of ihe theorem,
we may assume that A¢ M. It suffices to show that for fe C(X),
lim i

Nf A =0, (16)

=0

(2]

where ||'||,, denotes the uniform norm on C(X). Now if (16) does not hold, there
exists & > 0, and a sequence N, - co and a sequence of points y,€.X such that

1 N1
Z f(T")’j) A

n=0

= &,

N;

Thus for any sequence x, e X with Xy, = Vps it follows that

¥ ATx) i

n=0

: 1
lim sup 0

N-—ow

Using (7), this implies that o , ({0}) > 0, which by (6) implies 2 = ¢’ M.

ze.

3. Essentially discontinuous eigenfunctions and divergence

The purpose of this section is to show that, in general, the condition A¢ M, \C, is
necessary for Theorem 1.1. For a pair (X, &) consisting of a compact metric space X
together with a Borel probability measure 4 on X, we refer to a complex Borel
function g on X as essentially discontinuous if g is not equal p-a.e. to a continuous
function. Note that in order to have 1e M \C,, an cigenfunction g corresponding to
A must be essentially discontinuous.

Let ¢: T — T be continucus and let #/2x be irrational. Define the Lebesgue
measure preserving homeomorphism T of T? = T x T (called an Anzai skew product)

b
Y T(s, 1) = (R, s, $(5) +1). (17
Furstenberg [2} showed that such a transformation 7 is ergodic if and only if it is

uniquely ergodic with respect to Lebesgue measure, and that this is equivalent to the
condition that for each keZ, k # 0, there is no Borel function w: T - T such that

kep(s) = y(Rys)— y(s) (18)
for p-a.e. s {the arithmetic is understood to be mod 2x). The equation (18) is called a
cohomological equation, and the function w is called a solution to (18). Note that if



498 E. ARTHUR ROBINSON, JR.

w is continuous, then (18) holds for all 5. Recall that a homeomorphism T of a
compact metric space X is called minimal if there are no proper closed T-invariant
subsets of X. An Anzat skew product (17) is minimal if and only if the cohomological
equation (18) has no continuous solutions for any nonzerc keZ. In particular,
uniquely ergodic Anzai skew products are always minimal. A homeomeorphism which
is both minimal and uniguely ergodic is called strictly ergodic {this terminology is now
standard, but it conflicts with [2]). Furstenberg [2] constructed an example of an
Angzai skew product T which is minimal but not uniquely ergodic, and showed that
there exist points x = (s,f) for which the limit (3) fails to exist for such T. The
following proposition can be viewed as the Wiener—Wintner version of Furstenberg’s
resulf,

ProrosITION 3.1, There exists a stricily ergodic real analytic Anzai skew product
T of T? which has an essentially discontinuous eigenfunction (that is, M,\C, # ¢).
Moreover, for some e M \C,., and for some f& C(T®), there exists (s, £y T® such that

the limit N1

L AT s )

n=0

lim l
N

N oy
Jfails to exist.

The proof is based on the next two lemmas of Furstenberg [2].

LemMma 3.2 2] There exists an irrational number 8/2x and real analytic function
y: T =1 such that for k=1, the cohomological equation (18) has an essentially
discontinuous solution .

Note that since R, is ergodic, the solutions to (18) are unique a.e. up to an additive
constant.

Lemma 3.3 [2].  Suppose that T is an Anzai skew product (17) with 62 irrational.
Iffor k =1 there exists an essentially discontinuous solution y to (18), then there exists

(5, e T? such that the limit N1
lim Y /(T(s, 1)
N—oom =0

fuils to exist for the continuous function f(s, ) = @8,

Proof of Proposition 3.1.  Using Lemma 3.2, choose # and y: T — T so that the
cohomological equation (s} = w(R,s)—w(s) has an essentially discontinuous
solution . Let A =¢€" be such that A"¢ M, ={e*’:keZ} for all neZ. Define
$(s)= v+ p{s) and note that

Ps)—v = y(Ry5) —w(s), (19)
for Lebesgue a.c.s.

Let T be defined by (17). First we show that T'is uniquely ergodic. As noted above,
since T is an Anzai skew product, it suffices to show that T is ergodic. This is
accomplished by showing that T is isomorphic to R, x R,, which is ergodic by the
choice of v. In particular, if S(s, 1} = (s, f— w(s)), then by (19),

SoT(s, 1) = (Res, —y(RyS) + )+ ) = (Rys, —w(8) F v+ = (Ryx R Yo S(s, 1),

Note that the isomorphism S is essentially discontinuous.
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Next, define g(s, 1) = ¢*¥**8, and observe that g is essentially discontinuous. By
(19), it follows that

g(T(s, I)) = Pl Rs)-B()-0) . My ) _ /lg(s, I).

Thus Ae M \Cp.

To complete the proof, let us define f(s,7) = 9@ and note that 7 is real
analytic, so that in particular, it is continuous. Define a new Anzai skew product
(s, ) = (Rgs,y(s)-+1). Then

T7(s. D) = (Rys, Y(RyT9) + ...+ ¥(Ry ) +9(8) +0),
and by the definition of ¢,

T8, 0) = (Rys, (RIS 4+ A 9(RyS) +3(8) + 1 +nv).
This implies that

f(T”(S, t)) — ei(y(ﬂ,’,’ SHPRE T Ly Y an ei(yw{;.s)-rymg*‘sw...+y(s)+c) = l"f(Tf(S t))
o E]

(20)

for all n = 0. It now foilows from Lemma 3.3 there exists (s, £y T? such that the Hmit

lim Nf F(T*(s,0) A" = lim Af ATs, D)

N+ n=0 Now n=0
does not exist.

ReMarRK. We note that equation (20} still holds if p is replaced with an arbitrary
function w: T — T in the definition of /.

4, The case of 7° and R*

In this section we show how to generalize Theorem 1.1 to the cases of uniquely
ergodic actions of Z* and R?. Although the proofs in these two cases are essentially
identical to the proof of Theorem 1.1, the statements have a different appearance.
This difference is a bit more than superficial, since in the homeomorphism case (that
is, the 7% case with d = 1) we obtain a slightly different formulation (Corollary 4.2)
of Theorem 1.1.

Suppose T is a continuous uniquely ergodic action of Z° for d = 1, on a compact
metric space X, with unique T-invariant measure g. We denote the action of neZ" on
xeX by x. Let T¢ = R¥/7° We say weT? is an eigenvalue for T if there exists a
complex Borel function g on X such that

g(1"x) = ™ g(x), 1)

holds for p-a.e. xe X (note that the inner product {n,w)> in (21) depends only on
weR? mod Z%). As in the homeomorphism case, we say w is a continuous eigenvalue,
denoted we C,,, if (21) has a continuous solution g, and we say that w is a measurable
eigenvalue, denoted we M, if (21) has only essentially discontinuous solutions, If
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we M, then P, will denote the projection to the eigenspace corresponding to w, and
0therw1sc P.f=0 For Nz 1,define @, = 7" by Oy ={(#,,...,£,): |t] < N for all 3},

TuroREM 4.1. Let T be a continuous uniguely ergodic Z" action on a compact
metric space X with unique T-invariant probability measure . Then for all wg M \C,,
and all fe C(X), the limit

i
1 T= —2mi{t, W)
Nevn (2N+ l)dneZQAf( ‘C)e'

converges uniformly for xe X to P, f.

CoroLLARY 4.2, Let T be a uniguely ergodic homeomorphism of a compact meltric
space X with unique T-invariant probability measure p. Then for all ¢ M \C,., the limit

Jim (2N+1)h§/ (I 4"

converges uniformly for xe X to P, f.

Now suppose that Fis a continuous uniquely ergodic R* action on X, with unique
Fuinvariant measure . We denote the action of te R* on x € X by F'x. In this case we
write the eigenvalue equation

B(F') = ™ Wg(x),

where now weR?. We define M, C and P, in analogy to the Z¢ case. For R > 0, we
define 0, € R by @, ={(t1,....1,): |ti < R for all #}.

THeROREM 4.3. Lef F be a continuous uniguely ergodic R action on a compact
mietric space X with unigue invariant probability measure . Then for el w¢ M \C,. and
all fe C(X), the limit

(ZR)(I J f(Ft_\’,') o 2midt, W) dt
R-son

converges uniformly for xe X to P, f.

For fe L*(X,u) let o, 5 , and g, ;. , be the finite Borel measures on T* and R?
respectively, satisfying

f . g 2in, W) daf, '1',;1(“’) — J f(T“x),m d,u(x),
T X
for all ne 79, and

f " efi!ﬂ‘i(t. " daj, F,.u(w) = j f(F‘S\')T(E dﬂ(xl
R x

for ali te R*. The following lemma plays the same role in the proofs of Theorems 4.1
and 4.3 that Lemma 2.1 plays in the proof of Theorem 1.1.
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LemMa 4.4.  If T is a uniquely ergodic Z™ action on a compact metric space X with
unique T-invariant probability measure g, then for any sequence xye X, and all fe C{X),

Z f( Tan) eﬂni(n, W)

ReEQy

a, 4 (W) = limsup

N

1
QN+
Similarly, if F is a uniquely ergodic R* action on X with unique F-invariant probability
measure y, then for any function R xg: reR:r =0} - X, and all fe C(X),

: . |
Oy v, ,‘({w})uz = limsup W

R

j f(Ft-\-R) e—?d!i((, W)y dt t .
Qe
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