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Abstract. One of the simplest non-Pisot substitution rules is investigated in its ge-
ometric version as a tiling with intervals of natural length as prototiles. Via a detailed
renormalisation analysis of the pair correlation functions, we show that the diffraction
measure cannot comprise any absolutely continuous component. This implies that the
diffraction, apart from a trivial Bragg peak at the origin, is purely singular continuous.
En route, we derive various geometric and algebraic properties of the underlying Delone
dynamical system, which we expect to be relevant in other such systems as well.

1. Introduction. The spectral structure of substitution dynamical sys-
tems is well studied, and many results are known; see [32] for a systematic in-
troduction. The theory is in good shape for substitutions of constant length,
both in one and in higher dimensions; see [20, 34, 22, 4, 12] as well as [3] and
references therein. This is due to the fact that, for these systems, the sym-
bolic side and the geometric realisation with tiles of natural size coincide,
which also leads to a rather direct relation between the diffraction measures
of the system (and its factors) on the one hand and the spectral measures
on the other; see [9] and references therein.

In general, the spectral theory of a substitution system and that of
its geometric counterpart can differ considerably [17], in particular when
the inflation multiplier fails to be a Pisot–Vijayaraghavan (PV) number [3,
Def. 2.13]. In fact, beyond the substitutions of constant length, it often is
simpler and ultimately more revealing to use the geometric setting with
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natural tile (or interval) sizes, as suggested by Perron–Frobenius theory. We
adopt this point of view below, and then speak of inflation rules to make
the distinction. Our entire analysis in this paper will be in one dimension,
where the tiles are just intervals.

Since rather little is known when one leaves the realm of PV inflation
multipliers, we present a detailed analysis of one of the simplest non-Pisot
(or non-PV) inflation rules on two letters, for which we finally establish that
the diffraction spectrum of the corresponding Delone sets on the real line,
apart from the trivial peak at 0, is purely singular continuous. En route, we
shall encounter a number of concepts and results that are described in some
detail, in a way that will facilitate generalisations to related inflation rules
[5] and beyond, as well as to higher dimensions, in the future. A key ingre-
dient to our analysis is the study of the pair correlation functions via their
exact renormalisation relations. The latter are analogous to those recently
derived [2] for the Fibonacci inflation, where they led to a spectral purity
result and then to pure point spectrum. This re-proved a known result in
an independent way.

In the binary non-Pisot system studied below, the situation is more com-
plex because the spectrum is mixed, whence it remains to determine the na-
ture of the continuous part. To the best of our knowledge, the answer is not
in the literature, though the absence of absolutely continuous components
is certainly expected [22, 4, 2, 14]. In anticipation of future work, we do
not present the shortest path to the result, as that would mean to restrict
more than necessary to methods that are limited to binary alphabets and to
this particular example. Instead, we use the concrete system to investigate
various concepts from [2] in this more complex case, with an eye to possible
extensions and generalisations.

The paper is organised as follows. In Section 2, we introduce the binary
system via its symbolic substitution rule and the matching geometric infla-
tion tiling of the real line by two types of intervals, following the general
notions and results from [3]. Such a tiling is simultaneously considered as
a two-component Delone set, by taking the left endpoints of the intervals
as reference points. We also recall the construction of the hull and its dy-
namical system, together with the key properties of the latter. Section 3
introduces the pair correlation functions and derives exact renormalisation
relations, which are then studied for their general solutions. This part is not
strictly needed for our later analysis, but is interesting in its own right and
helps to understand the differences to the cases treated in [2].

To continue, we need a reformulation of the pair correlation functions in
terms of translation bounded measures and their Fourier transforms, which
is provided in Section 4. This step emphasises the importance of two specific
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matrix families, whose structure will later provide some arguments needed in
the exclusion of absolutely continuous diffraction. Section 5 analyses several
properties of these matrix families by means of the (complex resp. real)
algebras generated by them. Once again, some of these results go beyond
what we need for our final goal, but highlight the algebraic structure of the
problem.

Section 6 returns to the correlation measures and their Fourier trans-
forms. After splitting the transformed pair correlation measures into their
spectral parts (Lebesgue decomposition), we rule out the existence of an
absolutely continuous component by a suitable iterated application of the
renormalisation relations in two directions. This approach employs the deter-
mination of the corresponding extremal Lyapunov exponents, some details
of which are given in Appendix A. Two underlying renormalisation argu-
ments are further explained in Appendix B, in the simpler setting of a scalar
equation. Section 7 covers an application to the diffraction in the balanced
weight case, where the pure point part is extinct. In particular, we illustrate
one specific case of a singular continuous measure in this setting, based on a
precise numerical calculation of the corresponding (continuous) distribution
function.

2. Setting and preliminaries

2.1. Substitution, inflation and hull. We consider the primitive two-
letter substitution

(2.1) % :
0 7→ 0111

1 7→ 0

on the alphabet {0, 1}. It defines a unique (symbolic) hull X, for instance
via the shift orbit closure of the bi-infinite fixed point w of %2 with legal
seed w(0) = 0|0,

0|0 %27−→ w(1) = 0111000|0111000
%27−→ · · · %27−→ w(i) i→∞−−−→ w = %2(w),

where finite words are considered as embedded into {0, 1}Z and | marks the
reference point (between position −1 and 0). In particular, (X,Z) with the
continuous Z-action generated by the shift is a minimal topological dynam-
ical system. There is precisely one shift invariant probability measure µX
on X, namely the patch (or word) frequency measure, so that (X,Z, µX)
is strictly ergodic. The invariant measure is intimately connected with the
substitution origin; see [32, 36, 3] for background.

The corresponding integer substitution matrix is

(2.2) M =

(
1 1
3 0

)
,
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with irreducible characteristic polynomial det(M − x1) = x2 − x − 3 and
Perron–Frobenius (PF) eigenvalue λ = (1 +

√
13)/2 ≈ 2.302776, which is

not a unit. Its algebraic conjugate, which is also the second eigenvalue of M ,
is λ′ = (1−

√
13)/2 = 1− λ ≈ −1.302776, which lies outside the unit circle,

wherefore λ is not a PV number. Since |det(M)| = 3 is prime, M has no
root in Mat(2,Z), hence % cannot have a substitutional root.

The statistically normalised right eigenvector vPF to the eigenvalue λ is

(2.3) vPF = (ν0, ν1)
t = (λ−1, 3λ−2)t = 1

3(λ− 1, 4− λ)t ≈ (0.434, 0.566)t,

which determines the (relative) frequencies of the two letters, ν0 and ν1.
For a consistent geometric realisation as an inflation rule on two intervals,
we use interval lengths according to the left PF eigenvector of M , which
we choose as (λ, 1); see Figure 1 for an illustration. Note that this choice
is particularly simple from an algebraic point of view, as the two lengths
are the generating elements of Z[λ]. From a dynamical perspective, it would
perhaps be more natural to make a choice with average length 1, but this
would give a more complicated algebraic structure for the coordinates.

1 0

0 0 1 1 1

Fig. 1. Inflation rule for the substitution % of (2.1). It consists of two steps, an expansion
of the intervals by λ and the ensuing subdivision into intervals of the original length in
the correct order.

Now, let Λw denote the point set of left interval end points that corre-
sponds to our above fixed point w, so

(2.4) Λw = {. . . ,−1−3λ,−3λ,−2λ,−λ, 0, λ, 1+λ, 2+λ, 3+λ, 3+2λ, . . .}
with Λw ⊂ Z[λ]. This is a Delone set of density dens(Λw) = (6 + λ)/13 ≈
0.638675, and its orbit closure under the natural translation action of R
defines the geometric hull

(2.5) Y := {t+ Λw : t ∈ R}LT,

where the closure is taken in the local topology; see [3] for details. Note that
Y is compact in the local topology, as a result of Λw being a Delone set of
finite local complexity, which means that the Minkowski difference Λw −Λw
is a locally finite set.

Now, (Y,R) is once again a minimal topological dynamical system, which
still only has one invariant probability measure, namely the one induced
by µX from above, so that (Y,R, µY) is strictly ergodic, too. This system
can be obtained as a suspension of the previous one, with a non-constant
roof function; see [19, Ch. 11] for background. It is this latter system that
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we investigate now in more detail. To this end, we also need the Minkowski
difference

∆ := Λw −Λw = {0,±1,±2,±λ,±3,±(1 +λ),±(2 +λ),±2λ,±(3 +λ), . . .},

which is the set of distances between points in Λw and satisfies ∆ ⊂ Z[λ].

Proposition 2.1. Let Y be the geometric hull from (2.5), and Λ ∈ Y.
Then, the Minkowski difference ∆Λ := Λ−Λ is a locally finite subset of R,
but it is not uniformly discrete. One has ∆Λ = ∆ for all Λ ∈ Y, so the
difference set is constant on Y.

Proof. The hull Y is the translation orbit closure of the Delone set Λw

from (2.4). Since λΛw ⊂ Λw by construction, but λ is not a PV number,
the set Λw cannot be a Meyer set; compare [3, Thm. 2.4]. Consequently,
Λw − Λw is discrete, but not uniformly discrete (1). Since the difference set
is also closed, it is locally finite.

The inflation rule derived from % is primitive, whence we know from
standard arguments (compare [3, Ch. 4] for details) that the hull Y consists
of the LI class of Λw, which means that any two elements of Y are locally
indistinguishable. This implies that ∆Λ with Λ ∈ Y cannot depend on Λ,
which establishes the second claim.

In what follows, we will freely move between the tiling picture and its
representation as a Delone set, where we tacitly make use of the equiva-
lence concept of mutual local derivability (MLD); compare [3, Sec. 5.2] and
references therein for background.

2.2. Natural autocorrelation and diffraction. Next, let us recall the
notion of the natural autocorrelation of Λ ∈ Y (compare [26] or [3, Def. 9.1]),
which is usually done by first turning Λ into the Dirac comb δΛ :=

∑
x∈Λ δx.

The latter is both a tempered distribution and a translation bounded mea-
sure on R. In particular, δΛ is not a finite measure. Its autocorrelation γ is
then defined as the volume-averaged (or Eberlein) convolution

γ = δΛ ~ δ−Λ := lim
r→∞

δΛr
∗ δ−Λr

2r

where Λr := Λ ∩ [−r, r]. The existence of the limit, for any Λ ∈ Y, is a
consequence of unique ergodicity. Once again, γ is not a finite measure, but
it is translation bounded. In fact, from a simple calculation together with
Proposition 2.1, one can see that γ =

∑
z∈∆ η(z)δz with the autocorrelation

(1) The failure of uniform discreteness comes from a property of the sequence (λm)m∈N
which ultimately results in distances between neighbouring points of Λ − Λ not being
bounded from below.
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coefficients

η(z) = lim
r→∞

card(Λr ∩ (z + Λr))

2r
= lim

r→∞

card(Λr ∩ (z + Λ))

2r
.

More generally, we also need to consider weighted Dirac combs ω with (gen-
erally complex) weights u0 and u1 for the two letters (or point types). They
are defined as

(2.6) ω = ωΛ,u =
∑
x∈Λ

u(x)δx

with u(x) ∈ {u0, u1} depending on whether x is the left endpoint of an
interval of type 0 or 1. In other words, we consider Λ = Λ(0) ∪̇ Λ(1) as the
disjoint union of two Delone sets, according to the two types of points in Λ,
and hence as a two-component Delone set. In our case at hand, the two
versions are MLD, because the prototiles (intervals) have different lengths.
Note that, for i ∈ {0, 1}, we then have the density relations

(2.7) dens(Λ(i)) = νi dens(Λ)

with the frequencies νi from (2.3).

The natural autocorrelation of such a Dirac comb ω is

(2.8) γu = ω ~ ω̃ := lim
r→∞

ωr ∗ ω̃r
2r

,

with ω = ωΛ,u and ωr denoting the restriction of ω to the interval [−r, r].
Moreover, the twisted measure µ̃ is defined by µ̃(g) = µ(g̃) for test functions
g ∈ Cc(R), with g̃(x) := g(−x); see [3, Sec. 9.1] for background. As before,
the existence of the limit is a consequence of unique ergodicity, and we have
γu =

∑
z∈∆ ηu(z)δz, this time with

(2.9) ηu(z) = lim
r→∞

1

2r

∑
y,y+z∈Λr

u(y)u(y + z).

By construction, any such autocorrelation γu is a positive definite measure,
which means that γu(g ∗ g̃) ≥ 0 holds for all g ∈ Cc(R). This is significant
because any positive definite measure is Fourier transformable as a measure,
which is a non-trivial statement since γu is not a finite measure. Its Fourier
transform is then a positive measure, as a consequence of the Bochner–
Schwartz theorem; see [13, 33] for background.

Proposition 2.2. Given arbitrary weights u0, u1 ∈ C for the two types
of points, the autocorrelation measure γu is positive definite, and it is the
same for all Λ ∈ Y, which means that γu is the autocorrelation both for an
arbitrary element of the hull and for the entire hull. The analogous statement
holds for the diffraction measure γ̂u, which is always a translation bounded,
positive measure.
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Proof. As explained above, the first claim is a consequence of (2.8),
because positive definiteness of measures is preserved under limits in the
vague topology.

The second claim on the autocorrelation follows from the uniform exis-
tence of patch frequencies together with the fact that any two elements of
the hull are locally indistinguishable.

The statement on the diffraction is then a consequence of the uniqueness
of the Fourier transform. The positivity of γ̂u is clear by Bochner–Schwartz,
while its translation boundedness follows from [13, Prop. 4.9].

The Fourier transform γ̂u is called the diffraction measure of ω, which is
thus always a positive measure. With respect to Lebesgue measure on R, it
has the unique decomposition

γ̂u = (γ̂u)pp + (γ̂u)sc + (γ̂u)ac

into its pure point, singular continuous and absolutely continuous parts; see
[3, Rem. 9.3] for more. Our aim is to determine the precise nature of γ̂ for
our system.

It is well known [36] that, in one dimension, a tiling flow based on a
primitive inflation rule has a non-trivial eigenfunction if and only if the
inflation multiplier is a PV number. Because we are dealing with a non-PV
inflation multiplier λ, we get the following result on the pure point part of
the diffraction measure.

Theorem 2.3. Let Λ = Λ(0) ∪̇ Λ(1) be a fixed element of the hull Y.
Consider the weighted Dirac comb ωΛ,u = u0δΛ(0) + u1δΛ(1), with arbitrary

complex weights u0 and u1. Then, the pure point part of the corresponding
diffraction measure γ̂Λ,u is given by

(γ̂u)pp = I0δ0 with I0 = |dens(Λw)(u · vPF)|2 =
∣∣2λ−1

13 u0 + 7−λ
13 u1

∣∣2.
In particular, the pure point part is the same for all Λ ∈ Y.

Proof. The claim is trivial for u0 = u1 = 0, so let us assume that at
least one of the weights is non-zero. Then, the dynamical system (Yu,R),
as obtained by the vague closure of the set {δt ∗ ωΛ,u : t ∈ R}, is seen
to be topologically conjugate to (Y,R) via standard MLD arguments. We
thus know from [36, Thm. 4.3 and Cor. 4.5] that we only have the trivial
eigenfunction for (Yu,R).

Now, assume γ̂u({k}) = I(k) 6= 0 for some k 6= 0. We then know from [26,
Thm. 3.4] and [29, Thm. 5] that I(k) = |aΛ,u(k)|2, with the Fourier–Bohr
coefficient

aΛ,u(k) = lim
r→∞

1

2r

∑
x∈Λr

u(x) e−2πikx
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and u(x) as in (2.6). Note that this coefficient exists for all Λ ∈ Y (and even
uniformly so) for our system due to unique ergodicity. Note also that the
coefficient depends on Λ, while I(k) does not. In fact, for fixed u, the map
given by Λ 7→ aΛ,u(k) defines an eigenfunction (in fact, a continuous one) of

(Yu,R) because at+Λ,u(k) = e−2πiktaΛ,u(k) for t ∈ R; compare [26, 29]. Since
we know that such an eigenfunction cannot exist, we must have I(k) = 0.

Finally, the formula for I0 follows from an application of [3, Prop. 9.2]
by observing that, for a weighted Dirac comb supported on Λ, the averaging
formula stated there reduces to the absolute square of the volume-averaged
weights, via (2.7).

In other words, we can only have the trivial central Bragg peak. Later,
we will be interested in the situation that I0 = 0, which we refer to as
the balanced weight case. Since no recursive formula for the coefficients η(z)
is known, and since it is desirable to have a systematic approach to γ for
arbitrary choices of the weights, we now turn to the pair correlation functions
and their properties. This will produce another path to η and γ.

3. Renormalisation approach to pair correlation functions. As
before, we use the tiling picture (with the two types of intervals as pro-
totiles) and the two-component Delone set picture in parallel. These two
versions obviously give topologically conjugate dynamical systems, where-
fore we simply identify them canonically. Which representation we use will
always be clear from the context.

3.1. Pair correlation functions. Let Λ be any element of the (geo-
metric) hull Y, and let νij(z) denote the relative frequency of distance z from
a left endpoint of an interval of type i to one of type j, with i, j ∈ {0, 1}. If
we decompose Λ = Λ(0) ∪̇ Λ(1) as before, this means

(3.1) νij(z) = lim
r→∞

card(Λ
(i)
r ∩ (Λ

(j)
r − z))

card(Λr)

=
1

dens(Λ)
lim
r→∞

card(Λ
(i)
r ∩ (Λ

(j)
r − z))

2r
.

These limits exist for any z ∈ R, and one has νij(z) ≥ 0. The use of relative
frequencies is advantageous because they are dimensionless and thus simplify
various statements below.

The four functions νij , which we call the pair correlation functions, are
well-defined, as another consequence of the unique ergodicity of our system.
Clearly, for any i, j ∈ {0, 1} and any z ∈ R, they satisfy the symmetry
relations

(3.2) νij(z) = νji(−z).
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Moreover, we have νij(z) = 0 for any z 6∈ Λ−Λ. To improve on this, for any

Λ ∈ Y, decompose Λ = Λ(0) ∪̇ Λ(1) as above and define the point sets

(3.3) Sij := Λ(j) − Λ(i).

By an obvious variant of Propositions 2.1 and 2.2, it is clear that each Sij
is again independent of the choice of Λ, hence constant on the hull. Due to
strict ergodicity, we then have the following stronger property.

Fact 3.1. The pair correlation functions νij defined in (3.1) are inde-
pendent of the choice of Λ ∈ Y. They satisfy the symmetry relations (3.2).
Moreover, one has νij(z) > 0 if and only if z ∈ Sij, where Sij is the set
from (3.3), which is the same for all Λ ∈ Y.

The autocorrelation coefficients ηu(z) from (2.9) for the weighted Dirac
comb ω of (2.6) can now be expressed in terms of the pair correlation func-
tions of Y as a quadratic form, namely as

(3.4) ηu(z) = dens(Λ)
∑

i,j∈{0,1}

ui νij(z)uj .

This shows that the ‘natural’ objects to study are indeed the pair correlation
functions, as their knowledge gives access to the autocorrelation measures
(and hence to their Fourier transforms) for any choice of the weights. Also, as
mentioned earlier, we are not aware of a functional relation that would deter-
mine the coefficients ηu(z) directly. However, such a relation can be derived
from the inflation structure for the four pair correlation functions νij(z);
see [2] for related examples.

Proposition 3.2. The pair correlation functions νij of the hull Y satisfy
the following linear renormalisation equations:

ν00(z) =
1

λ

(
ν00
(
z
λ

)
+ ν01

(
z
λ

)
+ ν10

(
z
λ

)
+ ν11

(
z
λ

))
,

ν01(z) =
1

λ

(
ν00
(
z−λ
λ

)
+ ν00

(
z−1−λ
λ

)
+ ν00

(
z−2−λ
λ

)
+ ν10

(
z−λ
λ

)
+ ν10

(
z−1−λ
λ

)
+ ν10

(
z−2−λ
λ

))
,

ν10(z) =
1

λ

(
ν00
(
z+λ
λ

)
+ ν00

(
z+1+λ
λ

)
+ ν00

(
z+2+λ
λ

)
+ ν01

(
z+λ
λ

)
+ ν01

(
z+1+λ
λ

)
+ ν01

(
z+2+λ
λ

))
,

ν11(z) =
1

λ

(
3ν00

(
z
λ

)
+ 2ν00

(
z+1
λ

)
+ 2ν00

(
z−1
λ

)
+ ν00

(
z+2
λ

)
+ ν00

(
z−2
λ

))
,

together with νij(z) = 0 for any z 6∈ Sij and the symmetry relations νji(z) =
νij(−z) for all z ∈ R and all i, j ∈ {0, 1}.

Proof. Since our inflation rule is aperiodic, we have local recognisabil-
ity [32]. This means that each tile in any (fixed) element of the hull lies
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inside a unique level-1 supertile that is identified by a local rule. Concretely,
each patch of type 0111 constitutes a supertile of type 0, while each tile of
type 0 that is followed by another 0 (to the right) stands for a supertile of
type 1. Below, we simply say supertile, as no level higher than 1 will occur
in this proof.

Due to the inflation structure, it is also clear that the relative frequency
(meaning relative to Λ) of two supertiles of type i and j with distance z
(from i to j) is given by 1

λνij
(
z
λ

)
. This follows from the simple observation

that, for any Λ ∈ Y, the point set of the left endpoints of the supertiles is a
set of the form λΛ′ for some Λ′ ∈ Y.

We can now relate the occurrences of pairs of tiles at distance z to those
of the supertiles they are in; see Figure 2 for an illustration. For instance,
a distance z between two tiles of type 0 emerges once from any pair of
supertiles (of either type) at the same distance. With the above formula for
the relative frequency of the supertiles, this gives the first equation.

0 0

0 0 1 1 1

0 1 1 1 0

0 1 1 1 0 1 1 1

Fig. 2. Illustration of the location of tiles within their level-1 supertiles for the proof of
Proposition 3.2. The solid arrows on top of the lines indicate the pairing for intervals of
types 0 (left) and 1 (right), the dashed arrows the pairings of two intervals of type 1. The
remaining two cases are analogous.

Likewise, the frequency ν01(z) is composed of supertile frequencies of
type 00, at distances z−λ, z−λ−1 and z−λ−2, and supertile frequencies of
type 10, at the same set of distances; see Figure 2 for an explicit illustration.
This gives the second equation. The remaining two identities are derived
analogously.

The additional constraints are clear from Fact 3.1.

3.2. Solution space. In view of our setting, it is clear that there is
at least one solution of the (infinite) linear system of equations in Propo-
sition 3.2, under the extra conditions stated there. Less obvious is the fol-
lowing, considerably stronger statement, where a potentially larger support
than Sij for the functions νij is admitted and no symmetry relation for them
is prescribed.
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Theorem 3.3. Assume that νij(z) = 0 for all z 6∈ ∆ = Λw − Λw and
all i, j ∈ {0, 1}, and consider the subset of equations for νij(z) that emerges
from Proposition 3.2 by restricting to all arguments z ∈ ∆ with |z| ≤ 1 +λ.
This is a finite and closed set of linear equations. The dimension of the
solution space of all equations equals that of this finite subset.

In particular, the dimension of the solution space is 1. Taking into ac-
count the requirement ν00(0) + ν11(0) = 1 for the relative prototile frequen-
cies, the solution is unique.

Proof. Observe first that, when |z| ≤ λ + 1, no argument on the right-
hand sides of the identities in Proposition 3.2 exceeds λ + 1 in modulus.
Since {z ∈ ∆ : |z| ≤ λ+ 1} is a finite set and νij(z) = 0 for any z 6∈ ∆, the
first claim is obvious. If, on the other hand, |z| > λ+1, all arguments on the
right-hand sides are strictly smaller than |z|, wherefore all coefficients νij(z)
are determined by values at smaller arguments. Since ∆ is locally finite, the
second claim follows from standard arguments.

Table 1. Relative frequencies νij(z) for all distances z ∈ ∆ with |z| ≤ 1 + λ

z −1− λ −3 −λ −2 −1 0 1 2 λ 3 1 + λ

ν00 0 0 3λ−3 0 0 λ−1 0 0 3λ−3 0 0

ν01 λ−3 λ−2 0 λ−2 λ−2 0 0 0 λ−2 0 λ−2

ν10 λ−2 0 λ−2 0 0 0 λ−2 λ−2 0 λ−2 λ−3

ν11 3λ−4 0 0 λ−2 2λ−2 3λ−2 2λ−2 λ−2 0 0 3λ−4

Thus, only the equations for |z| ∈ {0, 1, 2, λ, 3, 1 + λ} need to be con-
sidered separately, as after that all frequencies are determined recursively.
This gives 44 linear equations that can be solved by standard methods, ei-
ther by hand or by algebraic manipulation, the details of which we omit
here. It turns out that ν00(0) is not fixed by the relations, while all other
function values can be written as a function of ν00(0), with ν11(0) = 3

λν00(0)
in particular. This means that the solution space is indeed one-dimensional.
Imposing ν00(0) + ν11(0) = 1 with ν00(0) ≥ 0 results in ν00(0) = 1/λ, so
ν00(0) = ν0 and ν11(0) = ν1 with the frequencies from (2.3). All other values
are then uniquely determined as listed in Table 1. We leave the details of
this calculation to the reader.

Next, let us observe that each pair correlation function can be uniquely
decomposed as νij(z) = ν+ij (z) + ν−ij (z), with

ν±ij (z) := 1
2(νij(z)± νji(−z)),

into a symmetric and an anti-symmetric part. Since the right-hand sides of
the renormalisation equations are linear and preserve the symmetry type,
we may conclude as follows.
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Corollary 3.4. Under the assumptions of Theorem 3.3, all solutions
of the renormalisation equations from Proposition 3.2 automatically satisfy
the symmetry requirement of Proposition 3.2. In particular, the only anti-
symmetric solution is the trivial one.

Let us comment on these findings. While the renormalisation equations
are a consequence of the structure of the hull Y, it is by no means obvious
that their solutions are essentially unique. This property was previously
shown for the Fibonacci system in [2], but need not hold in general. In
fact, uniqueness fails for the Thue–Morse system as soon as the support is
enlarged, and this is then related to the existence of a spectrum of mixed
type. To further analyse the (still more complex) situation in our non-PV
point set, we need to reformulate the above findings in terms of measures
and their Fourier transforms.

4. Pair correlation measures and their Fourier transforms

4.1. From functions to measures. Given the pair correlation func-
tions νij , which have the locally finite point sets Sij as supports, we can
turn them into positive pure point measures by defining

(4.1) Υij :=
∑
z∈Sij

νij(z)δz.

Together with (3.1), for any 0 ≤ i, j ≤ 1, this implies the relation

(4.2) Υij =
δ̃
Λ(i) ~ δΛ(j)

dens(Λ)
=
δ−Λ(i) ~ δΛ(j)

dens(Λ)
,

as can be verified by an explicit calculation that is analogous to that for (2.8).
Here, as before, Λ ∈ Y is arbitrary, but the result is independent of its choice
due to Fact 3.1. Note that Υij({x}) = νij(x) in this notation, and that (4.2)
gives a first hint on an underlying tensor product structure. For this reason,
as usual in multilinear algebra, we will sometimes view Υ as a measure ma-
trix, then written as (Υij)0≤i,j≤1, or as a measure vector (Υ00, Υ01, Υ10, Υ11)

t

with lexicographic index ordering, whatever is better suited.
To expand on the last point, let us mention that the vector notation

will have some advantage in the formulation of the measure-valued renor-
malisation relations to be derived shortly. On the other hand, let us observe
that the matrix version is certainly useful for lifting (3.4) to the level of
measures. If (u0, u1) are the (complex) weights of the measure ω from (2.6),
so ω = u0δΛ(0) + u1δΛ(1) , the corresponding autocorrelation measure γu can

be written as

(4.3) γu(E) = dens(Λ)
∑

i,j∈{0,1}

ui Υij(E)uj
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where E ⊂ R is any bounded Borel (2) set. Note that ω is defined via a fixed
Λ ∈ Y, but γu does not depend on it by Proposition 2.2.

Each Υij is a positive pure point measure that is unbounded. It is trans-
lation bounded as a consequence of (4.2), because the Eberlein convolution
of translation bounded measures is translation bounded again. Moreover,
each Υii is positive definite, while the Υij for i 6= j can be written as (com-
plex) linear combinations of four positive definite measures by an application
of the complex polarisation identity; compare [2, Lemma 1]. Consequently,
each Υij is Fourier transformable as a measure [1], and we get the following
result from the Bochner–Schwartz theorem; see [33, 13, 3] for background.

Fact 4.1. Each pair correlation measure Υij from (4.2) is an unbounded,
but translation bounded pure point measure with support Sij. Moreover, it is

Fourier transformable as a measure, and the transform Υ̂ij is a translation
bounded and positive definite measure, which is also positive if i = j.

At this point, we can Fourier transform (4.3) to obtain

(4.4) γ̂u(E) = dens(Λ)
∑

i,j∈{0,1}

ui Υ̂ij(E)uj

as a general formula for the diffraction measure of the weighted Dirac comb ω
from (2.6) in terms of the Fourier transforms of the pair correlation mea-
sures, evaluated at a bounded Borel set E ⊂ R. This explains why further
relations among the correlation measures will help to determine the spectral
properties of the diffraction measure.

4.2. Renormalisation relations for measures. Now, we have to
rewrite the renormalisation equations for the pair correlation functions from
Proposition 3.2 in terms of the correlation measures Υij . To do so, we em-
ploy the convolution with suitable finite measures. This is well-defined by
standard results; see [13, Prop. 1.13]. To proceed, recall that we are working
with prototiles (intervals) of natural lengths, namely λ and 1 for tiles of
type 0 and 1, respectively. Define the set-valued location or displacement
matrix T = (Tij)0≤i,j≤1 by

Tij := {all relative positions of tiles of type i in the supertile of type j},
where the relative positions are again defined via the left endpoints of the
tiles (intervals). Clearly, card(T ) := (card(Tij))0≤i,j≤1 = M , and we have

T =

(
{0} {0}

{λ, λ+ 1, λ+ 2} ∅

)
.

(2) Here, we use the general Riesz–Markov representation theorem that allows us
to identify our measures in the sense of linear functionals on Cc(R) with regular Borel
measures on R in the sense of Radon measures.
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We now turn this into a matrix of finite measures (or Dirac combs) by setting

δT :=

(
δ0 δ0

δλ + δλ+1 + δλ+2 0

)
.

Next, define the scaling function (or dilation) f on R by f(z) = λz. Then,
given µ, the measure f.µ is defined by (f.µ)(g) := µ(g ◦ f) for g ∈ Cc(R). In
particular, this means f.δz = δf(z). Using δx ∗ δy = δx+y and the usual rules
for a change of variable in weighted sums over Dirac measures (compare [2]),
one obtains the following result from a straightforward calculation (3):

Lemma 4.2. With Υij defined as in (4.2), the renormalisation equations
from Proposition 3.2 are equivalent to the measure identity

Υ =
1

λ
(δ̃T

∗
⊗ δT ) ∗ (f.Υ ),

where Υ is considered as a vector of pure point measures, ∗ denotes convo-

lution of measures and
∗
⊗ the Kronecker convolution product.

More generally, ifM∞(R) denotes the space of translation bounded mea-
sures on R, one can define a linear mapping from (M∞(R))4 into itself by

Y 7→ (δ̃T
∗
⊗ δT ) ∗ (f.Y ), which is continuous in the vague topology. Our

measure vector Υ , as defined with the pair correlation functions νij from
Proposition 3.2 and Theorem 3.3, is then an eigenvector of this linear map,
with eigenvalue λ. It might be an interesting question to analyse linear maps
of this kind more systematically. Here, with µL denoting Lebesgue measure
on R, we only mention that

(4.5) Yij := νiνjµL

with the frequencies νi from (2.3) is another eigenvector. This can easily
be checked from δx ∗ µL = µL for any x ∈ R together with the observation
that vPF⊗ vPF is an eigenvector of M ⊗M , where ⊗ denotes the Kronecker
product (see below for more). In fact, up to an overall constant, the Yij from
(4.5) form the only solution of the measure-valued renormalisation relation
where each Yij is a multiple of Lebesgue measure. We will return to this
point later.

4.3. Renormalisation after Fourier transform. Now, we can turn
the new relation from Lemma 4.2 into one on the Fourier side. For consis-
tency with previous work [2], we define

B =
̂̃
δT = δ̂−T = δ̂T ,

(3) When dealing with tensor products of matrices, we employ the standard convention
for their representation as a Kronecker product. If the matrices are measure-valued, we
use the term Kronecker convolution product for the Kronecker product with convolution
as multiplication.
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where B is a matrix of complex analytic functions (trigonometric polynomi-
als, in fact) because all elements of δT are finite pure point measures with
compact support; B is called the Fourier matrix of the inflation rule. In
line with common practice in this context, we use k as the variable on the
Fourier side, which is real-valued for our further analysis. Elementwise, we
thus have

(4.6) Bij(k) =
∑
t∈Tij

e2πikt,

where B(0) = M . Now, with

(4.7) A(k) := B(k)⊗B(k),

where the Kronecker product stands for the standard matrix representation
of the tensor product with lexicographic ordering of the components, we
can apply the convolution theorem to the identity in Lemma 4.2. Recall-

ing further that f̂.µ = 1
λ(f−1.µ̂) for our dilation f and any transformable

measure µ, one obtains the following result.

Proposition 4.3. Under Fourier transform, the identity of Lemma 4.2
turns into the relation

Υ̂ =
1

λ2
A(·) · (f−1.Υ̂ ),

where A(·) is the matrix function of (4.7), f is the dilation defined by

f(x) = λx, and Υ̂ is the vector of Fourier transforms of the pair corre-
lation measures.

In analogy to the above, one may view Υ̂ as an eigenvector of a linear
mapping, this time with eigenvalue λ2. Spelled out elementwise, with the
double indices from the Kronecker product, the identity in Proposition 4.3
reads

Υ̂ij =
∑
m,n

Aij,mn(·)(f−1.Υ̂mn),

which also explains how the elements of the matrix A appear as densities for
the entries of the measure vector (f−1.Υ̂ ). Here, Aij,mn(k) = Bim(k)Bjn(k)
by the Kronecker product structure. This means that we can alternatively
write the identity for Υ̂ in matrix form as

(4.8) Υ̂ =
1

λ2
B(·)(f−1.Υ̂ )B†(·),

where B† denotes the Hermitian adjoint of B, and Υ̂ is considered as a
2× 2-matrix. Both versions will be handy later on.
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From this short derivation, is should be clear that the structure of the
matrix functions B(k) and A(k) is important. We thus turn to a more de-
tailed analysis of them, before we return to the renormalisation identities
and their consequences for our spectral problem.

5. Inflation displacement algebra and Kronecker product ex-
tension

5.1. The inflation displacement algebra. Let us define the total
set ST :=

⋃
i,j Tij of all relative locations of prototiles in level-1 supertiles,

which means
ST = {0, λ, λ+ 1, λ+ 2}.

Then, we can decompose the Fourier matrices B(k) from (4.6) as

(5.1) B(k) =
∑
x∈ST

e2πikxDx

with integer 0-1-matrices Dx that satisfy
∑

x∈ST
Dx = M . Explicitly, we

have

(5.2) D0 =

(
1 1
0 0

)
and Dλ = Dλ+1 = Dλ+2 =

(
0 0
1 0

)
,

where the matrix elements are given by

Dx,ij =

{
1 if the supertile of type j contains a tile of type i at x,

0 otherwise.

These geometric incidence matrices are a generalisation of what is known as
digit matrices in constant length substitutions [38, 22], wherefore we adopt
this terminology here as well; compare also [32, Sec. 8.1]. Recently, also the
term instruction matrices has been used [12].

Next, consider the C-algebra B that is generated by the one-parameter
matrix family {B(k) : k ∈ R}. We call this finite-dimensional algebra,
which is automatically closed, the inflation displacement algebra (IDA) of %.
Consider also the C-algebra BD that is generated by the digit matrices
{Dx : x ∈ ST }, hence by D0 and Dλ in our case. Recall that a family of
2 × 2-matrices is called irreducible (over the field C) if the only subspaces
of C2 that are invariant under all elements of the matrix family are the
trivial subspaces, {0} and C2.

Lemma 5.1. The IDA of % satisfies B = BD = Mat(2,C), which is also
the IDA of %n for any n ∈ N. In particular, BD is irreducible. For any ε > 0,
the complex algebra generated by the matrix family {B(k) : 0 ≤ k < ε} is
again B. In fact, any finite set {B(k) : k ∈ J} of matrices generates B
if J contains at least two elements at which the trigonometric polynomial
p(k) = e2πikλ + e2πik(λ+1) + e2πik(λ+2) = e2πik(λ+1)(1 + 2 cos(2πk)) differs.
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Proof. From (5.2), we already know that the digit matrices for % are
D0 = E00 + E01 and Dλ = E10 with Eij denoting the standard elementary
matrices, indexed with i, j ∈ {0, 1} to match the labelling of the tile types.
Observing that D0Dλ = E00 and DλD0 = E10 + E11, we get E01 and E11

via differences. We thus have all four elementary matrices Eij within BD.
This implies BD = Mat(2,C), which is irreducible.

Next, one checks that D0 and Dλ are always among the digit matrices
for %n with n ∈ N, hence we always get the full matrix algebra, Mat(2,C).

The last claim, and then also the previous one, follows from the obser-
vation that (5.1), in view of the second identity in (5.2), can be rewritten as
B(k) = D0 +p(k)Dλ. Thus, knowing B(k) for k1 and k2 with p(k1) 6= p(k2),
we have a system of two equations that can be solved for D0 and Dλ. This
also implies BD ⊆ B, while B ⊆ BD is clear from (5.1), so B = BD as
stated.

For later reference, we note that the matrix B(k) can now be written as

(5.3) B(k) =

(
1 1

p(k) 0

)
,

where p is the trigonometric polynomial from Lemma 5.1. Let us state an
elementary observation that will later give us access to a compactness argu-
ment; see [3, Ex. 8.1] and references given there for background on quasiperi-
odic functions.

Fact 5.2. The polynomial p from Lemma 5.1 is quasiperiodic, with fun-
damental frequencies 1 and λ. As such, it can be represented as

p(k) = p̃(x, y)|x=λk, y=k
with p̃(x, y) := e2πi(x+y)(1 + 2 cos(2πy)), which is 1-periodic in both argu-
ments. In this representation, one has

p(λk) = p̃((x, y)M)|x=λk, y=k = p̃(x+ 3y, x)|x=λk, y=k
with the substitution matrix M from (2.2). Likewise, B(k) defines a
quasiperiodic matrix function, with B(k) = B̃(x, y)|x=λk, y=k and the lift

B̃(x, y) =
( 1 1
p̃(x,y) 0

)
.

Proof. The first claim is clear, while the second follows from the fact that
(λ, 1) is the left PF eigenvector of M ; this relation motivated the particular
representation we chose.

The consequence for B is now obvious.

5.2. Kronecker products. Let us consider the matrix function A(k) =
B(k)⊗B(k) introduced above in (4.7), with B(k) as in (5.3). This somewhat
unusual product with complex conjugation reflects, on the Fourier side, the
symmetry relation νji(z) = νij(−z) from Proposition 3.2. So, consider the
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matrix family {A(k) : k ∈ R} or any (possibly finite, but sufficiently large)
subset of it. Even though the IDA B is irreducible, this does not transfer
to the A-matrices, as is well known from representation theory. Indeed, let
V = C2 and consider W := V ⊗CV , the (complex) tensor product. Then, W
is a vector space over C of dimension 4, but also one over R, of dimension 8.

Now, view W as an R-vector space and consider the simple involution
C : W →W defined by

x⊗ y 7→ C(x⊗ y) := y ⊗ x = ȳ ⊗ x̄
together with its unique extension to an R-linear mapping on W . Note that
there is no C-linear extension, because C(a(x⊗ y)) = āC(x⊗ y) for a ∈ C.
From the definition, one finds

A(k)C(x⊗ y) = (B(k)⊗B(k))(ȳ ⊗ x̄) = (B(k)ȳ)⊗ (B(k)x)

= C
(
(B(k)⊗B(k))(x⊗ y)

)
= C(A(k)(x⊗ y)),

so C commutes with the linear map defined by A(k), for any k ∈ R. The
eigenvalues of C are ±1, and our vector space splits as W = W+ ⊕ W−
into real vector spaces that are the eigenspaces of C, so that we have
W± = {x ∈W : C(x) = ±x}. Their dimensions are

dimR(W+) = dimR(W−) = 4

since W− = iW+ with W+ ∩W− = {0}. The corresponding splitting of an
arbitrary w ∈ W is unique and given by w = 1

2(w + C(w)) + 1
2(w − C(w))

as usual.

It is now clear that W+ and W− are invariant (real) subspaces of our
matrix family, and of the R-algebra A generated by it. Fortunately, due to
the symmetry relation for the correlation coefficients, the irreducibility of A
on the subspace W+ is what matters later on.

Let us pause to observe a connection with the digit matrices. We have

A(k) = B(k)⊗B(k) =
∑

x,y∈ST

e2πik(x−y)Dx ⊗Dy =
∑

z∈ST−ST

e2πikzFz

where

Fz =
∑

x,y∈ST
x−y=z

Dx ⊗Dy.

In particular, one has

F0 =


1 1 1 1
0 0 0 0
0 0 0 0
3 0 0 0


with spectrum {λ, λ′, 0, 0}, while all Fz with 0 6= z ∈ ST −ST are nilpotent,
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with F 2
z = 0. Now, one easily checks that (C(aFz)C)(u⊗ v) = āF−z(u⊗ v),

which implies [C,A(k)] = 0 for all k ∈ R, in line with our previous derivation.

Lemma 5.3. The R-algebra A satisfies dimR(A) = 16 and acts irre-
ducibly on each of the invariant four-dimensional subspaces W+ and W−
introduced above.

Proof. We will show that A ' Mat(4,R). If one considers Mat(4,C) as
an R-algebra of dimension 32, the subalgebra A consists of all elements that
are fixed under the R-linear mapping defined by M1 ⊗ M2 7→ M2 ⊗ M1.
Consequently, with Eij,k` := Eik ⊗ Ej`, a basis of the R-algebra A as a
16-dimensional real vector space can be constructed from the spanning set{
1
2(Eij,k`+Eji,`k) : i, j, k, ` ∈ {0, 1}

}
∪
{

i
2(Eij,k`−Eji,`k) : i, j, k, ` ∈ {0, 1}

}
,

where the first resp. second subset contains 10 resp. 6 linearly independent
elements.

Next, consider the unitary matrix

(5.4) U =
1√
2


1− i 0 0 0

0 1 −i 0
0 −i 1 0
0 0 0 1− i

 ,

which acts on Mat(4,C) via conjugation (·) 7→ U(·)U−1. When applied to
the basis matrices of A, this produces 16 real matrices which, by suitable
integer linear combinations, yield all 16 elementary matrices Eij,k`. There-
fore, within Mat(4,C), A is conjugate to Mat(4,R). This implies that the
action of A on the invariant subspaces W+ and W− is irreducible.

5.3. Consequences. Observe next that [U,A(0)] = 0 and U(W∓) =
1±i√
2
R4. Moreover,

AU (k) := UA(k)U−1 =


1 1 1 1

c(k) + s(k) s(k) c(k) 0
c(k)− s(k) c(k) −s(k) 0
c(k)2 + s(k)2 0 0 0


with

c(k) = cos(2πλk) + cos(2π(λ+ 1)k) + cos(2π(λ+ 2)k),

s(k) = sin(2πλk) + sin(2π(λ+ 1)k) + sin(2π(λ+ 2)k),

so that c(k)2 + s(k)2 = |p(k)|2 = (1 + 2 cos(2πk))2 and AU (0) = A(0) =
M ⊗ M with the substitution matrix M from (2.2). Since AU (0)2 is a
strictly positive integer matrix, and since AU (k/λ)AU (k) is continuous in k,
the latter product is strictly positive as well for sufficiently small k. As
one can easily calculate numerically, the smallest k > 0 for which one el-
ement of AU (k/λ)AU (k) vanishes (and strict positivity is thus violated) is
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k ≈ 0.03832(1), so the product is certainly a strictly positive matrix for all
k ∈ [0, ε] with ε = 0.03 say. Moreover, AU (k) cannot have zero eigenvalues
for any k with |k| < 1/3, as follows from a simple determinant argument
(see the proof of Lemma 6.4 below for details).

Proposition 5.4. Let k ∈ [0, ε] with this choice of ε, and consider the
iteration

wn :=

(
AU

(
k

λ2n−1

)
AU

(
k

λ2n−2

))
· . . . ·

(
AU

(
k

λ

)
AU (k)

)
w0

for n ≥ 1 and any non-negative starting vector w0 6= 0. Then, the vector
wn will be strictly positive for all n ∈ N and, as n → ∞, it will diverge
with asymptotic growth cλ4nwPF. Here, c is a constant that depends on w0

and k, while wPF = vPF⊗vPF is the statistically normalised PF eigenvector
of M ⊗M derived from (2.3).

Proof. For k = 0, this is standard Perron–Frobenius theory for the non-
negative and primitive matrix A(0) = M ⊗M , which has PF eigenvalue λ2

with eigenvector wPF. In particular, A(0)2 is strictly positive. Since w0 must
have a component in the direction of wPF, this component leads to the
asymptotic behaviour claimed.

For 0 < k ≤ ε, one iterates with strictly positive matrices due to the
choice of ε, so w0 6= 0 means that w1 is already strictly positive. Clearly,
AU (k/λ2n−1)AU (k/λ2n−2) is analytic in k and converges to A(0)2 as n→∞.
No cancellation can occur in the iteration and, asymptotically, each iteration
step multiplies the component in the direction of wPF by λ4. Due to the
existence of a spectral gap for A(0)2, this component dominates, and the
claim follows.

Let us formulate a simple consequence that will be useful in our later
analysis.

Corollary 5.5. Under the assumptions and in the setting of Proposi-
tion 5.4, consider the iteration

w′m =
1

λ
AU

(
k0
λm

)
w′m−1

for m ∈ N, with k0 ∈ [0, ε] and w′0 = w0. Then, w′m ∼ cλmwPF as m→∞,
where the constant c depends on w0 and k0 as before. In other words, when
viewing w′m as a function w′ evaluated at k = k0/λ

m, one has

w′(k) ∼ c

k
wPF as k → 0

along the sequence (k0/λ
m)m∈N0.

We now have the necessary tools to return to the analysis of the pair
correlation measures and their Fourier transforms.
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6. Renormalisation analysis of pair correlation measures

6.1. Lebesgue decomposition and consequences. The measure
vector Υ̂ satisfies the renormalisation equation from Proposition 4.3. Each
measure Υ̂ij has a unique Lebesgue decomposition

Υ̂ij = (Υ̂ij)pp + (Υ̂ij)cont = (Υ̂ij)pp + (Υ̂ij)sc + (Υ̂ij)ac

into a pure point and a continuous part, where the latter can further be
decomposed into a singular continuous and an absolutely continuous part
relative to Lebesgue measure. By standard (constructive) arguments, this

can be extended to the vector measure Υ̂ in such a way that the supporting
sets of the three parts coincide for all Υ̂ij , and are invariant under the dilation
defined by f .

Lemma 6.1. Each spectral component of Υ̂ satisfies the renormalisation
relation of Proposition 4.3 separately, which means that

(Υ̂ )t =
1

λ2
A(·) · (f−1.(Υ̂ )t)

holds for each spectral type t ∈ {pp, sc, ac}.
Proof. Observe that the dilated measure f−1.µ has the same spectral

type as µ, and that the matrix function A(k) is analytic, so cannot mix differ-
ent spectral types, which are mutually orthogonal in the measure-theoretic
sense; compare [3, Prop. 8.4]. Consequently, using the f -invariance of the
supporting sets, for any t ∈ {pp, sc, ac} one has(

1

λ2
A(·) · (f−1.Υ̂ )

)
t

=
1

λ2
A(·) · (f−1.(Υ̂ ))t =

1

λ2
A(·) · (f−1.(Υ̂ )t).

The claim now follows from the linearity of the renormalisation relation for
the measure vector Υ̂ .

Let us next observe that we have Υ̂ij = Υ̂ij by definition, and (Υ̂ij) is
Hermitian as a matrix, because

Υ̂ij =
̂̃
Υij = Υ̂ji.

If we combine this with (4.4) for γ̂u, which is a positive measure for any
complex weight vector u, we get the following property.

Fact 6.2. For any bounded Borel set E ⊂ R, the complex matrix given by
(Υ̂ij(E))0≤i,j≤1 is Hermitian and positive semi-definite. Since Υ̂00 and Υ̂11
are positive measures, positive semi-definiteness is equivalent to the deter-

minant condition det(Υ̂ij(E)) ≥ 0.

6.2. Renormalisation for pure point part. Let us further explore
the meaning of the relation from Lemma 6.1. Clearly, the pure point part



130 M. Baake et al.

of Υ̂ is of the form

(Υ̂ )pp =
∑
k∈K
I(k)δk,

with I(k) = Υ̂ ({k}). Here, (Iij(k))0≤i,j≤1 is Hermitian and positive semi-
definite as a consequence of Fact 6.2, and K is at most a countable subset
of R, where λK ⊂ K may be assumed. Inserting (Υ̂ )pp into the relation from
Lemma 6.1 leads, after some calculations, to the relation

(6.1) I(k) =
1

λ2
A(k)I(λk),

which has to hold for all k ∈ K. In particular, for k = 0, one has

A(0)I(0) = λ2I(0),

where λ2 is the PF eigenvalue of A(0) = M ⊗M . This, with (2.7), implies

(6.2) Υ̂ij({0}) = Iij(0) = νiνj =
dens(Λ(i)) dens(Λ(j))

(dens(Λ))2
,

where we employed the PF eigenvector of A(0) together with the normalisa-
tion condition

∑
i,j Iij(0) = 1, the latter being a consequence of our setting

with relative frequencies; compare [3, Cor. 9.1] for the underlying calcula-
tion. Note that (6.2) also means that the Hermitian 2×2-matrix (Iij(0)) has
rank 1. Moreover, Theorem 2.3 implies that I(k) = 0 for all k 6= 0, because
(4.4) would give γ̂u({k}) = dens(Λw)

∑
i,j ui Iij(k)uj > 0 otherwise for a

suitable choice of weights, in contradiction to Theorem 2.3. Consequently,
we have

(6.3) (Υ̂ )pp = I(0)δ0

and the pure point part of Υ̂ is completely determined this way.

Remark 6.3. Let us relate (6.3) back to the measure vector Y from
(4.5). With hindsight, Y is the strongly almost periodic part of the Eberlein

decomposition [23, 31] of Υ , so that Ŷ = (Υ̂ )pp. Note that any Yij is an
absolutely continuous measure with support R, and thus not a pure point
measure as in the case of the Fibonacci chain in [2]. This is related to
the set ∆ from Proposition 2.1 not being uniformly discrete, and is the
deeper reason why our discrete equations in Proposition 3.2 cannot produce
a spectral purity result. ♦

6.3. Analysis of absolutely continuous part. Next, let hij denote

the Radon–Nikodym density for (Υ̂ij)ac, and h the corresponding vector of
densities. Each component is a locally integrable function on the real line.
Another application of Lemma 6.1, together with an elementary transforma-
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tion of variable calculation, which changes the scalar prefactor, then reveals
the identity

(6.4) h

(
k

λ

)
=

1

λ
A

(
k

λ

)
h(k),

which must hold for Lebesgue-almost every (a.e.) k ∈ R. An iteration gives

(6.5) h

(
k

λn

)
=

1

λn
A

(
k

λn

)
· . . . ·A

(
k

λ

)
h(k)

for any n ∈ N and still almost every k ∈ R. We thus obtain a matrix Riesz
product type consistency equation for h, which can also be viewed as a
(complex) linear cocycle for the mapping defined by k 7→ k/λ on R+.

Let us pause to explain the idea behind our ensuing analysis. Iterating a
vector h(k) inwards via (6.5) means that, asymptotically, we multiply with
a matrix from the left that more and more looks like A(0) = M ⊗M . Since
the leading eigenvalue is then (almost) λ2, and we divide only by a single
factor of λ, a component in the direction of wPF (provided it exists) gets
approximately multiplied by λ in each iteration step. Consequently, we get
a ‘blow-up’ of h(k) along the (inward) iteration sequence, which means an
asymptotic growth as k−1 for k ↘ 0. Clearly, such a behaviour is impossible
for a locally integrable function; see also Appendix B for an illustration in
a one-dimensional analogue.

There are two mechanisms to avoid the blow-up: Either h vanishes for
a.e. k ∈ R, or h(k) is of a form that asymptotically avoids the direction
of wPF. The first option is what we are after, while the second is connected
with the Lyapunov spectrum of our iteration. As we shall see, the second
possibility still occurs, and must be ruled out by the analysis of the asymp-
totic behaviour in an inverted (outward) iteration, so that we finally get

h = 0 in the Lebesgue sense, which means (Υ̂ )ac = 0. The actual line of
arguments to make this strategy work is a bit delicate and technical, and
will require a number of steps.

The rough outline of our argument is as follows. The goal is to show
that h vanishes, and we only need to do so on a small interval (Lemma 6.4).
With the hermiticity and rank structure of the matrix (hij) from Lemma 6.5,
we gain a dimensional reduction, via Fact 6.6. This allows us to work with
the Fourier matrices rather than their Kronecker products, where we profit
from the algebraic structure derived earlier. In Proposition 6.7, we derive
an asymptotic result on the determinants for the iterated application of our
recursion that will later lead to an important relation between the Lyapunov
exponents of our iteration.

The next step consists in the analysis of the inward iteration, which
gives interesting insight (Proposition 6.8), but does not suffice to derive
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h = 0. The main step then consists in deriving the (pointwise) Lyapunov
exponents for the outward iteration (Proposition 6.17) and to show that they
are both strictly positive (Corollary 6.19), which is incompatible with the
translation boundedness of the diffraction measure. This will then lead to
the desired conclusion that h = 0 in the Lebesgue sense in Theorem 6.20, and
to the determination of Υ̂ij in Corollary 6.21. En route, we need a number
of intermediate steps that revolve around the existence of various limits,
where we need methods from Diophantine approximation, matrix cocycles,
and the theory of almost periodic functions.

Lemma 6.4. Let h be the vector of Radon–Nikodym densities of (Υ̂ )ac. If
there is an ε > 0 such that h(k) = 0 for a.e. k ∈ [ε/λ, ε], one has h(k) = 0
for a.e. k ∈ R.

Proof. A multiple application of (6.4) implies that h(k) = 0 for a.e.
k ∈ [ε/λm+1, ε/λm], for any m ∈ N0. Hence, h(k) = 0 for a.e. k ∈ [0, ε].

Since det(A(k)) = |det(B(k))|4 = |p(k)|4 = (1 + 2 cos(2πk))4 ≥ 0, the
matrix A(k) is invertible, unless k ∈ Z := Z+

{
1
3 ,

2
3

}
= 1

3Z\Z. The latter is
a countable set of isolated points, and thus of measure 0. This implies that
(6.4) has a counterpart of the form

(6.6) h(λk) = λA−1(k)h(k),

which holds for almost all k ∈ R, namely those k 6∈ 1
3Z \Z for which (6.4) is

valid.

So, with h(k) = 0 for almost all k ∈ [0, ε], we get the corresponding
property on [−ε, 0] from h(−k) = h(k), and then h = 0 a.e. by iteration of
(6.6), since the additional exception set for the multiple application of (6.6),⋃
n≥0 λ

−n(1
3Z \ Z

)
, is still a null set.

Similarly, we could consider the matrix (hij(k)) and its determinant,
det(hij(k)). If the latter vanishes for a.e. k ∈ [0, ε] for some ε > 0, the
determinant vanishes a.e. on R, because

(hij(λk)) = λB−1(k)(hij(k))(B†)−1(k)

holds for a.e. k ∈ R, which is a full matrix version of (6.6). This little
observation points the way to a standard form of h(k) that can be used to
simplify the task at hand.

Indeed, Fact 6.2 together with standard arguments implies that (hij(k))
is a positive semi-definite Hermitian matrix, for a.e. k ∈ R. For any admis-
sible k, the matrix is thus of the form H = ( a b+ic

b−ic d ) with a, b, c, d ∈ R,

a, d ≥ 0 and ad ≥ b2 + c2 ≥ 0. Whenever det(H) = 0, the rank of H is
at most 1. Otherwise, ad > b2 + c2 and a′′ := a − (b2 + c2)/d > 0. With
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a′ := a− a′′, one then has a′ ≥ 0 and H can uniquely be decomposed as

(6.7) H =

(
a′ b+ ic

b− ic d

)
+ a′′

(
1 0
0 0

)
,

where a′d− (b2 + c2) = 0 and both d and a′′ are strictly positive. This way,
H is split as a sum of two Hermitian and positive semi-definite matrices of
rank 1.

Now, the inward iteration, in the formulation with 2× 2-matrices, reads

(6.8)

(
hij

(
k

λ

))
=

1

λ
B

(
k

λ

)
(hij(k))B†

(
k

λ

)
and clearly preserves hermiticity and positive semi-definiteness, while the
rank cannot be increased. Moreover, the action is linear, so respects the
splitting of (6.7).

Lemma 6.5. For a.e. k ∈ R, the Radon–Nikodym matrix (hij(k)) is
Hermitian, positive semi-definite and of rank at most 1.

Proof. Hermiticity and positive semi-definiteness are a simple conse-
quence of Fact 6.2. In view of the arguments used in the proof of Lemma 6.4,
it suffices to establish the claim on the rank for an interval of the form
J = [ε/λ, ε], for some ε > 0. To do so, we pick ε as in Proposition 5.4. If the
rank is at most 1 for a.e. k ∈ J , we are done. If not, there is a subset J ′ ⊆ J
of positive measure where the rank of (hij(·)) is 2. Then, for any k0 ∈ J ′,
we write

h00(k0) = a′(k0) + a′′(k0)

according to the splitting defined in (6.7). In particular, a′′(k0) > 0.

Now, let y = (1, 0, 0, 0)t and observe that y ∈W+ together with

Uy =
1 + i√

2
y and U−1wPF =

1− i√
2
wPF.

Consequently, the iteration of the matrix a′′(k0)
(
1 0
0 0

)
under (6.8) corre-

sponds (via a bijective mapping that preserves the asymptotic growth prop-
erty) to the iteration of the vector a′′(k0)(1, 0, 0, 0)t under (6.4), which is
then (via our change of basis) governed by Proposition 5.4 and Corollary 5.5.
So, for a subset J ′ ⊆ J of positive measure, we get an asymptotic growth
as c(k0)

1
kwPF as k → 0. By Luzin’s theorem, there is yet another subset

J ′′ ⊂ J ′ of positive measure (as close to that of J ′ as we want, in fact) such
that a′′(k0) agrees with a continuous function on J ′′, and this property is
transported to the scaled versions of J ′′ under inward iteration.

However, this is incompatible with h00(k) being locally integrable: Since
a′(k0) ≥ 0 for all k0 under consideration, we cannot have any cancellations
between a′(k) and a′′(k), so that h00(k) must grow at least as 1/k for k → 0,
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for all k along iterations that started from some k0 ∈ J ′′. This means that
rank 2 on a set of positive measure is impossible, which establishes the
claim.

6.4. Dimensional reduction. Our previous analysis means that we
may continue under the assumption that (hij(k)), for almost every k ∈ R,
has rank at most 1. This is significant due to the following elementary fact
from linear algebra.

Fact 6.6. If H ∈ Mat(2,C) is Hermitian, positive semi-definite and of
rank at most 1, then there are two complex numbers v0 and v1 such that
Hij = vivj for i, j ∈ {0, 1}. Here, the vectors (v0, v1)

t and eiφ(v0, v1)
t with

φ ∈ [0, 2π) parametrise the same matrix H.

In Dirac notation, this means H = |v〉〈v|, which is 0 or a multiple of a
projector. Inspecting the iteration (6.8), it is then clear that we may consider
a vector v(k) = (v0(k), v1(k))t of functions from L2

loc(R) under the simpler
inward iteration

(6.9) v

(
k

λ

)
=

1√
λ
B

(
k

λ

)
v(k),

which is a considerable dimensional reduction of the iteration problem. Like-
wise, we also have the outward analogue

(6.10) v(λk) =
√
λB−1(k)v(k)

for k 6∈ Z = 1
3Z \ Z. For later use, let us state a useful property of the

asymptotic behaviour of the corresponding determinants.

Proposition 6.7. For all k ∈ R with k 6∈
⋃
m≥1 λ

mZ, one has

lim
n→∞

1

n
log

∣∣∣∣det

(
B

(
k

λn

)
· . . . ·B

(
k

λ

))∣∣∣∣ = log 3,

while for almost all k ∈ R with k 6∈
⋃
m≥0 λ

−mZ, one finds

lim
n→∞

1

n
log |det(B−1(λn−1k) · . . . ·B−1(k))| = 0.

Proof. Under the condition on k as stated, which ensures that no ma-
trix B(k/λm) in the product has determinant 0, the first claim is a simple
consequence of |det(M)| = 3 together with limn→∞B(k/λn) = B(0) = M ,
which holds for any fixed k ∈ R.

For the second claim, recall that det(B(k)) = −p(k) with the polyno-
mial p from Lemma 5.1. When B(k) is invertible, we thus get |det(B−1(k))|
= |1+2 cos(2πk)|−1, which is 1-periodic in k. The invertibility condition ex-
cludes the set

⋃
m≥0 λ

−mZ, which is a null set, from our limit considerations.
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Otherwise, we get

(6.11)
1

n
log |det(B−1(λn−1k) · . . . ·B−1(k))| = − 1

n

n−1∑
`=0

log |det(B(λ`))|.

Now, we observe that the sequence (λnk)n∈N is uniformly distributed
mod 1 for almost all k ∈ R, which follows from [16, Thm. 1.7]; see also [19,
Sec. 7.3, Thm. 1] or [28, Ch. 1, Cor. 4.3 and Exc. 4.3]. Along such sequences,
we thus sample the real-valued function ϕ defined by

x 7→ ϕ(x) := − log |1 + 2 cos(2πx)|,
which also satisfies ϕ(x) = − log |1 + z + z2| with z = e2πix. Clearly, ϕ is
locally integrable and 1-periodic, but not (properly) Riemann integrable.
Consequently, we cannot immediately apply Weyl’s uniform distribution re-
sult, but need some intermediate steps.

The discrepancy of the sequence (kn)n≥0, with kn := λnk mod 1, is de-
fined as

DN = sup
0≤a<b≤1

∣∣∣∣(b− a)−
card([a, b) ∩ {k0, . . . , kN−1})

N

∣∣∣∣
and quantifies the statistical deviation of the first N sequence elements from
(finite) uniform distribution. In our case, for any fixed ε > 0 and almost all
k ∈ R, it is given by

DN = O
(

(logN)3/2+ε√
N

)
as N →∞; see [24, Thm. 5.13] or [27].

Now, our condition on k ensures that we never hit one of the (integrable)
singularities along the corresponding sequence, so |||λnk ||| > 0 for any such
k and all n ∈ N0, where |||x ||| denotes the distance of x from the nearest
integer. What is more, again for any fixed ε > 0 and almost all k ∈ R, one
has the lower bound

min
0≤n≤N

|||λnk ||| > 1

N1+ε
,

for all sufficiently large N . This follows from a standard argument on the
basis of the Borel–Cantelli lemma; see [6, 7] for details. The same type of
bound clearly also applies to the distance of our sequences from the points
of Z = Z + {1/3, 2/3}.

Our function ϕ has singularities at 1/3 and 2/3 in the unit interval. If
we integrate the derivative ϕ′ near such a singularity, starting at distance δ
say, we will get a contribution of order O(log(1/δ)) from it, as follows from
a simple asymptotic estimate. Now, with δ = 1/N1+ε, the product

O
(

(logN)3/2+ε√
N

)
O(logN1+ε) = O

(
(logN)5/2+2ε

√
N

)
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still represents an upper bound that tends to 0 as N →∞. Consequently, by
Sobol’s theorem from uniform distribution theory (see [35, Thm. 1] or [25,
Sec. 2] as well as [7]), we may conclude that, for a.e. k ∈ R, our sampling
limit in (6.11) indeed exists and is given by

1�

0

ϕ(x) dx = −
1�

0

log |1 + e2πit + e4πit| dt = 0,

where the integral is a logarithmic Mahler measure (compare [5]), and can
be calculated via Jensen’s formula from complex analysis.

Let us now consider the inward and the outward iteration separately.

6.5. Properties of inward iteration. To study the inward iteration
more closely, it is instructive to use an expansion in terms of the eigenbasis
of B(0) = M . For fixed k, we thus write the vector v(k) according to Fact 6.6
as

v(k) = α(k)

(
λ
3

)
+ β(k)

(
1− λ

3

)
,

where the first vector is proportional to vPF from (2.3), while the second
vector belongs to the eigenvalue 1−λ. An explicit calculation of this change
of basis now shows that iteration (6.9) is equivalent to

(6.12)

(
α(k/λ)
β(k/λ)

)
=

1√
λ

(
λα(k)

(1− λ)β(k)

)
− z(k/λ)√

λ
N

(
α(k)
β(k)

)
=

1√
λ

(D − z(k/λ)N)

(
α(k)
β(k)

)
,

with z(k) = 3−p(k), where p is the trigonometric polynomial of Lemma 5.1,
the diagonal matrix D = diag(λ, 1− λ), which is the diagonalisation of M ,
and the constant matrix

N =
1

39

(
−3 + 6λ 10− 7λ
3 + 7λ 3− 6λ

)
.

Here, N is nilpotent with N2 = 0 and kernel C(6λ−3, 7λ+3)t. The result of
this property is that, if (α(k), β(k))t is in this kernel, the next iterate under
(6.12) has components of opposite sign and thus equal modulus. Note that
z(k) = −6πi(1 + λ)k +O(k2) as k → 0, and that N has matrix norms

‖N‖1 = ‖N‖∞ =
λ

3
≈ 0.768 and ‖N‖2 =

7(2λ− 1)

39
≈ 0.647.

At this point, with Z = 1
3Z \Z, we can state the general structure of the

inward iteration as follows, and refer to Appendix A for the details of the
underlying calculations and estimates.
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Proposition 6.8. For any k ∈ R with k 6∈
⋃
m≥1 λ

mZ, the inward
iteration of (6.9), or equivalently that of (6.12), is Lyapunov regular, with
the two Lyapunov exponents

χ
(1)
− = log

λ− 1√
λ

< 0 < χ
(2)
− = log

√
λ,

which are independent of k. At each such k, we have a matching vector
space filtration

{0} = E
(0)
− (k) ( E

(1)
− (k) ( E

(2)
− (k) = C2

with the equivariance condition E
(1)
− (k/λ) = B(k/λ)E

(1)
− (k) for all admissi-

ble k ∈ R.

Proof. The equivalence of the two iterations, which emerge from one an-
other by a simple change of basis, for Lyapunov theory follows from standard
arguments; compare [10, Sec. 1.2].

For any fixed 0 < k ≤ ε, with sufficiently small ε as detailed in Ap-
pendix A, the existence of the second exponent follows from a compact-
ness argument as explained before (8.5). This also implies the filtration as
stated; see [11] for a formulation of Lyapunov theory with complex matrices
as needed here.

For k > ε, we end up in our smaller interval after finitely many iterations.
Provided no matrix in the iteration has vanishing determinant, which is the
reason for the extra condition in the statement, the problem is thus reduced
to the previous case, and the filtration is transported back by a simple
matrix inversion, which also implies the claimed equivariance condition. The
situation for negative k maps to that for positive k via complex conjugation,
and is thus completely analogous.

The exponents are now as stated, which follows from (8.4) and (8.5) in
Appendix A, and sum up to log(λ− 1), which agrees with a specific limit,

lim
n→∞

1

n
log

∣∣∣∣det

(
1√
λ
B

(
k

λn

))
· . . . · det

(
1√
λ
B

(
k

λ

))∣∣∣∣ = log(3)− log(λ)

= log(λ− 1),

by an application of Proposition 6.7 for any of the admissible values of k.
This establishes the claimed regularity; compare [10, Sec. 1.3.2].

Remark 6.9. Let us note that the result of Proposition 6.8 can also be
seen as a consequence of limn→∞B(k/λn) = B(0) = M , which holds for
all k ∈ R. Indeed, the resulting Lyapunov exponents of the matrix cocycle
B(k/λn) · . . . · B(k/λ) equal those of the iteration of M alone, provided
the overall determinant never vanishes. For all admissible k, which are those
stated in Proposition 6.8, the Lyapunov spectrum is thus {log(λ), log(λ−1)},
which implies the above result for the scaled iteration with 1√

λ
B(k). ♦



138 M. Baake et al.

Unfortunately, the determination of the Lyapunov structure for the in-
ward iteration does not yet suffice to rule out an absolutely continuous com-
ponent, because one of the relevant exponents is negative. To exclude the
corresponding solution, one has to consider its behaviour in the outward di-
rection, where it will be unbounded. We thus turn to a general investigation
of the complementary iteration direction.

6.6. Properties of outward iteration. Here, we look at the asymp-
totic behaviour of the outward iteration, first without the extra factor

√
λ

that is present in (6.10). We shall indicate a reference to this version by a
tilde on the exponents, while we omit it when we speak of the exponents
for (6.10) including the extra factor. Employing [37, Ch. 3] shows that the
pointwise extremal Lyapunov exponents—provided they exist as limits—will
now be

χ̃
(1)
+ (k) = − lim

n→∞

1

n
log ‖B(k) · . . . ·B(λn−1k)‖,

χ̃
(2)
+ (k) = lim

n→∞

1

n
log ‖B−1(λn−1k) · . . . ·B−1(k)‖,

together with χ̃
(1)
+ (k) ≤ χ̃

(2)
+ (k). Since B−1 = 1

det(B)B
ad for any invertible

matrix B, with Bad denoting the adjoint matrix, the right-hand side for χ̃
(2)
+

can alternatively be written as

χ̃
(2)
+ (k) = lim

n→∞

1

n
log ‖Bad(λn−1k)·. . .·Bad(k)‖− lim

n→∞

1

n

n−1∑
`=0

log |det(B(λ`k))|

where we already know from Proposition 6.7 that the second limit, for a.e.
k ∈ R, exists and equals 0. Note that det(B(k)) has zeros, but that B(k) = 0
is impossible, wherefore ‖B(k)‖ > 0 holds for all k ∈ R.

To establish the existence of the limits, we would need some version of
Kingman’s subadditive ergodic theorem and later its consequence in the
form of an Oseledec-type multiplicative ergodic theorem. The difficulty here
is that we are dealing with an infinite measure space and with a non-
stationary sequence of matrices. As was shown in [21], this is still possible in
some cases via the structure of almost periodic functions with joint almost
periods. Unfortunately, as far as we are aware, this would still require our
eigenvalue λ to be a PV number, which it is not. We therefore change our
perspective by defining the extremal exponents as

(6.13)

χ̃
(1)
+ (k) := − lim sup

n→∞

1

n
log ‖B(k) · . . . ·B(λn−1k)‖,

χ̃
(2)
+ (k) := lim sup

n→∞

1

n
log ‖B−1(λn−1k) · . . . ·B−1(k)‖,

which always exist. As we shall see, this will still give us useful bounds that
are strong enough for our purposes.
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Clearly, it does not matter which matrix norm we use to define the expo-
nents, because all norms on Mat(2,C) are equivalent and convergence in one
norm implies convergence in any other norm, with the same limit due to the
logarithm involved. Now, in the Frobenius norm, we have ‖A‖F = ‖Aad‖F
for any 2 × 2-matrix. Since (AB)ad = BadAad, the following observation is
immediate.

Lemma 6.10. Let k ∈ R be any element of the set of numbers of full
measure for which the second limit of Proposition 6.7 holds. Then, when
using the definition from (6.13), the extremal Lyapunov exponents satisfy

the relation χ̃
(1)
+ (k) + χ̃

(2)
+ (k) = 0.

In addition, whenever 1
n log ‖B(k) · . . . ·B(λn−1k)‖ converges as n→∞,

both extremal Lyapunov exponents at this k exist as limits as well.

To continue a little in this direction, let us state a result that can replace
the usual argument with an invariant measure for the transformation on R+

defined by k 7→ λk.

Lemma 6.11. Let k ∈ R be such that det(B(λmk)) 6= 0 holds for all

m ∈ N0, which only excludes a countable set. Then, the exponent χ̃
(1)
+ (k)

exists as a limit if and only if χ̃
(1)
+ (λk) does, and the two values agree. In

this case, one has χ̃
(1)
+ (k) = χ̃

(1)
+ (λmk) for all m ∈ N, which is to say that

the exponents exist and are constant along the sequence (λmk)m∈N0
.

Proof. The statement is trivial for k = 0. Since B(−k) = B(k), it suffices
to consider k > 0. Let us use the abbreviation B(n)(k) = B(k)·. . .·B(λn−1k),
whence one has the recursion relation

(6.14) B(m+n)(k) = B(m)(k)B(n)(λmk)

for any m,n ∈ N. Observing ‖AB‖ ≤ ‖A‖ ‖B‖ as well as ‖B‖ = ‖A−1AB‖ ≤
‖A−1‖ ‖AB‖, hence ‖AB‖ ≥ ‖B‖/‖A−1‖, for any invertible A, one can
derive the estimates

log ‖B(n+`)(k)‖
n

−
log ‖B(`)

(
k)‖

n
≤ log ‖B(n)(λ`k)‖

n

≤ log ‖B(n+`)(k)‖
n

+
log ‖(B(`))−1(k)‖

n

and

log ‖B(n)(λ`k)‖
n+ `

− log ‖(B(`))−1(k)‖
n+ `

≤ log ‖B(n+`)(k)‖
n+ `

≤ log ‖B(n)(λ`k)‖
n+ `

+
log ‖B(`)(k)‖

n+ `

for any fixed ` ∈ N. The claims now follow from standard arguments.
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Let p be the trigonometric polynomial from Lemma 5.1. Now, define
trigonometric polynomials Pn by P−1 ≡ 0 and P0 ≡ 1 together with the
recursion

(6.15) Pn+1(k) = Pn(k) + p(λnk)Pn−1(k)

for n ≥ 0, which gives P1 ≡ 1, P2(k) = 1 + p(λk) and so on. These trigono-
metric polynomials are related to the matrix function B(n)(k) from the proof
of Lemma 6.11 as follows.

Fact 6.12. For all n ∈ N, one has

B(n)(k) =

(
Pn(k) Pn−1(k)

p(k)Pn−1(λk) p(k)Pn−2(λk)

)
,

with the trigonometric polynomials from (6.15), together with

‖B(n)(k)‖2F = |Pn(k)|2 + |Pn−1(k)|2 + |p(k)|2(|Pn−1(λk)|2 + |Pn−2(λk)|2)
for the squared Frobenius norm. Moreover, for all n ≥ 0 and k ∈ R, one
also has the recursion

Pn+1(k/λ) = Pn(k) + p(k)Pn−1(λk).

Proof. The first claim follows by induction, where one can employ (6.14)
in the form B(n+1)(k) = B(n)(k)B(λnk) for n ≥ 1. The second formula
is then an immediate consequence. Finally, the alternative recursion fol-
lows inductively via a different use of (6.14), this time giving B(n+1)(k) =
B(k)B(n)(λk). Comparing with the first formula, and replacing k by k/λ,
leads to the alternative recursion.

For any n ∈ N, the mapping k 7→ ‖B(n)(k)‖2F defines a non-negative
trigonometric polynomial by Fact 6.12. Moreover, due to Fact 5.2, it is a
quasiperiodic function with two fundamental frequencies, 1 and λ. This is
so because all higher powers of λ can be written as an integer linear combi-
nation of 1 and λ due to the relation λ2 = λ+ 3. In particular,

(6.16) λn = anλ+ bn with

(
an
bn

)
= Mn

(
0

1

)
where M is the substitution matrix from (2.2). Note that this holds for all
n ∈ Z, with a0 = 0 and b0 = 1. Since λ is not a unit, only the coefficients with
non-negative index are integers, while the other ones are rational numbers.
Let us note some further properties.

Fact 6.13. For all n ∈ N, the coefficients defined by (6.16) satisfy:

(1) an ≡ 1 mod 3 and bn ≡ 0 mod 3,
(2) gcd(an, an+1) = 1 and gcd(bn, bn+1) = 3.

Proof. Observe first from (6.16) that bn = 3an−1 and an+1 = an+ 3an−1
for all n ∈ N. Clearly, the claims on the bn thus follow from those on the an.
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Since a0 = 0 and a1 = b0 = 1, the congruence relation for the an is clear by
induction.

Since also a2 = 1, we have gcd(a1, a2) = 1. For n ∈ N, the recursion gives

gcd(an, an+1) = gcd(an, an + 3an−1) = gcd(an, 3an−1) = gcd(an, an−1),

where the last step follows from the congruence property previously estab-
lished. The claim is now clear by induction.

Before we continue, let us state a useful property. Recall that a function
f from Cu(R), the space of uniformly continuous and bounded functions
on R, is Bohr (or uniformly) almost periodic if the set of ε-almost periods
P∞ε := {t ∈ R : ‖f − Ttf‖∞ < ε} is relatively dense in R for every ε > 0.
Here, ‖ · ‖∞ denotes the supremum norm on Cu(R), and Ttf is defined by
(Ttf)(x) = f(x− t); see [18] for background.

Fact 6.14. Let f be a real-valued Bohr almost periodic function such
that f(x) ≥ a > 0 for all x ∈ R and some fixed a. Then log(f) is Bohr
almost periodic as well.

Proof. Since f is Bohr almost periodic, it is bounded, so f(x) ∈ [a, b] for
some b ≥ a > 0 by assumption. Now, the logarithm is uniformly continuous
on [a, b], which means that, for any ε > 0, there is a δ = δ(ε) > 0 such that
|log(x)− log(y)| < ε whenever |x− y| < δ.

Let ε > 0 be arbitrary and let δ = δ(ε). Now, let t be any of the relatively
dense δ-almost periods of f , hence |f(x)− f(x− t)| < δ for all x ∈ R. Then,
t also is an ε-almost period of log(f), which implies the claim.

Lemma 6.15. For any n ∈ N, there is a constant δn > 0 such that
‖B(n)(k)‖2F ≥ δn holds for all k ∈ R. Consequently, also k 7→ log ‖B(n)(k)‖2F
defines a Bohr almost periodic function.

Proof. The second claim follows from the first by Fact 6.14. To show the
first claim, observe that, with 0 ≤ |p(k)| ≤ 3, we have

δ1 = 2 ≤ 2 + |p(k)|2 = ‖B(k)‖2F ≤ 11.

In particular, the rank of B(1)(k) = B(k) is at least 1, and it is 2 whenever
det(B(k)) 6= 0. Similarly, one finds

δ2 = 1 ≤ 1 + 2|p(k)|2 + |1 + p(λk)|2 = ‖B(2)(k)‖2F ≤ 35,

while the lower bounds become considerably more involved after this. Still,
we can see inductively that ‖B(n)(k)‖2F > 0 for all n ∈ N and all k ∈ R as
follows.

Observe that det(B(n)(k)) = 0 if and only if k ∈
⋃n−1
`=0 λ

−`Z with Z =
Z + {1/3, 2/3} as before. Then, the zero set of det(B(k)), which is Z, and
that of det(B(n)(λk)), which is

⋃n
`=1 λ

−`Z, are disjoint. Now, the rank of

B(n+1)(k) = B(k)B(n)(λk) is 2 unless det(B(n+1)(k)) = 0. In the latter case,
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we either have k ∈ Z, where B(k) has rank 1 while B(n)(λk) is of full rank,
or k ∈

⋃n
`=1 λ

−`Z, where B(k) has full rank and B(n)(λk) has rank 1 by

induction. In both cases, B(n+1)(k) still has rank 1 then, so cannot be the
0-matrix. Altogether, this implies ‖B(n+1)(k)‖2F > 0 for all k ∈ R.

The harder part to show is that, for fixed n, ‖B(n)(k)‖2F is bounded
away from 0. As this function is quasiperiodic with fundamental frequencies
1 and λ as a consequence of Fact 5.2, it can be written as

‖B(n)(k)‖2F = Fn(x, y)|x=λk,y=k
with Fn ≥ 0 a smooth, doubly 1-periodic function on R2. Now, our claim is
equivalent to Fn(x, y) ≥ δn > 0 on the compact set [0, 1]2. In fact, since Fn
is continuous, the latter property follows if we show that Fn has no zero in
[0, 1]2, as we then get

δn := min{Fn(x, y) : 0 ≤ x, y ≤ 1} > 0.

By Fact 5.2, we have a representation B(n)(k) = B̃(n)(x, y)|x=λk,y=k with

(6.17) B̃(n+1)(x, y) = B̃(x, y)B̃(n)(x+ 3y, x)

= B̃(n)(x, y)B̃(an+1x+ bn+1y, anx+ bny)

for n ≥ 0 and the coefficients from (6.16). In particular, if p̃ is the function
from Fact 5.2 and P̃n is the corresponding ‘lift’ of Pn, (6.15) and Fact 6.12
turn into the analogous relations for p̃, P̃n and B̃(n), where our recursion
now reads

(6.18) P̃n+1(x, y) = P̃n(x, y) + p̃(an+1x+ bn+1y, anx+ bny)P̃n−1(x, y)

for n ∈ N. If we show that our previous argument generalises to give
B̃(n)(x, y) 6= 0 for all n ∈ N and all x, y ∈ [0, 1], we are done.

Since this property is clearly true for n = 1, assume that it holds for
some fixed n ≥ 1. We see from the first identity in (6.17) that B̃(n+1)(x, y)
can only vanish when both factors have rank less than 2, which means (by
our induction hypothesis and the structure of B̃) that both must have rank 1
because none can be the 0-matrix. This implies p(x, y) = 0 and hence y ∈ Z,
whence we get

B̃(n+1)(x, y)|y∈Z =

(
1 1
0 0

)
B(n)(x+ 3y, x)|y∈Z

=

(
P̃n+1(x, y)|y∈Z P̃n(x, y)|y∈Z

0 0

)
.

This can only be the 0-matrix if P̃n and P̃n+1 have a common zero subject
to the constraint y ∈ Z. We will now show that this is impossible.

Since all P̃m are 1-periodic in both arguments, the condition y ∈ Z
means that we only need to consider the values of P̃n and P̃n+1 on the line
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segments {0 ≤ x ≤ 1, y = 1/3} and {0 ≤ x ≤ 1, y = 2/3}. We clearly have
p̃(x, y) = p(−x,−y) for all x, y ∈ R, which implies

P̃m(x, y) = P̃m(−x,−y) = P̃m(1− x, 1− y)

for m ∈ {n, n+ 1}. It thus suffices to consider y = 1/3. With q = e2πix, one
finds

P̃m(x, 1/3) = 1 + q + · · ·+ qam+1−1

for m ≥ 0, which can be shown by induction from (6.18) together with

p̃(am+1x+ bm+1y, amx+ bmy)|y=1/3 = p̃(am+1x, amx)

= qam+1(1 + qam + q2am),

where we have used Fact 6.13(1). Clearly, P̃m(x, 1/3) vanishes if and only
if qam+1 = 1 with q 6= 1. By Fact 6.13(2), the integers an and an+1 are

coprime, which means that the zero sets of P̃n and of P̃n+1 along the line
{y = 1/3} are disjoint, and our argument is complete.

Let us now define Ln(k) = log ‖B(n)(k)‖, where ‖ · ‖ is any (fixed) sub-
multiplicative matrix norm. Clearly, any Ln is a quasiperiodic function. Let
us extend this by setting L0 ≡ 0. For arbitrary m,n ∈ N, we now have the
subadditivity relation

(6.19) Lm+n(k) ≤ Lm(k) + Ln(λmk),

which holds as a consequence of (6.14) and our definition of L0. Note that
the function Ln, for n ∈ N and all k ∈ R, is bounded as

(6.20) −∞ < log(δn) ≤ Ln(k) ≤ n max
0≤x,y≤1

log ‖B̃(x, y)‖ <∞

due to Lemma 6.15 in conjunction with the above subadditivity and Fact 5.2.

To continue, we need the mean of a function f , which is defined as

M(f) := lim
T→∞

1

T

T�

0

f(t) dt

and exists for all weakly almost periodic functions [18], which certainly in-
clude continuous, quasiperiodic functions. In particular, we have

M(Ln) = lim
T→∞

1

T

T�

0

Ln(t) dt =
�

[0,1]2

log ‖B̃(n)(x, y)‖ dx dy.

The crucial connection is now the following.

Lemma 6.16. For any fixed N ∈ N and a.e. k ∈ R, one has

lim sup
n→∞

1

n
Ln(k) ≤ 1

N
M(LN ).
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Proof. Fix N ∈ N and observe that any n ∈ N has a unique representa-
tion as n = mN + r with m ∈ N0 and 0 ≤ r < N . By (6.19), we get

Ln(k) = LmN+r(k) ≤ Lr(λmNk) +
m−1∑
`=0

LN (λ`Nk).

With L0 = 0, the functions Lr with 0 ≤ r < N are uniformly bounded
from above and below as a consequence of (6.20). So, we know that
limn→∞

1
nLr(λ

mNk) = 0. Next, we have

1

n

m−1∑
`=0

LN (λ`Nk) =
mN

mN + r

1

N

(
1

m

m−1∑
`=0

LN (λ`Nk)

)
m→∞−−−−→ 1

N
M(LN ),

where the last step holds for a.e. k ∈ R as a consequence of the uniform
distribution property (modulo 1) of the sequence (λ`Nk)`∈N for a.e. k ∈ R
in conjunction with the quasiperiodicity of LN ; see [21, Lemma 2.2], or
[7, Thm. 6.4.4] for a detailed derivation.

Our claim is now a simple consequence.

At this point, we can formulate our result as follows.

Proposition 6.17. For a.e. k ∈ R, the extremal Lyapunov exponents

for the outward iteration, defined as in (6.13), satisfy χ̃
(1)
+ (k) + χ̃

(2)
+ (k) = 0.

Moreover, for a.e. k ∈ R, their absolute value is bounded by

D̃ := inf
n∈N

1

n
M(log ‖B(n)(·)‖) = inf

n∈N

1

2n

�

[0,1]2

log ‖B̃(n)(x, y)‖2F dx dy.

Proof. The first claim follows from Lemma 6.10. The expression of the

bound D̃ for |χ̃(1)
+ (k)| and |χ̃(2)

+ (k)| as an infimum is an obvious conse-
quence of Lemma 6.16. This infimum can be calculated by representing the
quasiperiodic function log ‖B(n)(·)‖ as a section through a doubly 1-periodic
function in two variables (as in Fact 5.2). Due to taking the infimum over
n ∈ N, it does not matter which matrix norm is used in the representation
as an integral over the 2-torus.

Remark 6.18. Numerical experiments and various other approaches
suggest that more is true than what we state in Proposition 6.17. In par-
ticular, we think that the extremal Lyapunov exponents actually exist as
limits for a.e. k ∈ R. At each such k, one would then have a matching vector
space filtration

{0} = E
(0)
+ (k) ( E

(1)
+ (k) ( E

(2)
+ (k) = C2

with the equivariance condition E
(1)
+ (k/λ) = B(k/λ)E

(1)
+ (k), the latter as

a consequence of the recursion in conjunction with Lemma 6.11. It is not
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clear, however, what the precise relation with the existing filtration of the
inward iteration would be. ♦

As mentioned earlier, the exponents for (6.10), with the extra factor

of
√
λ in front of each matrix, are given by χ

(i)
+ (k) = χ̃

(i)
+ (k) + log

√
λ.

Both versions exist as limits under the same conditions. For the bounds
that matter to us, there is the following consequence, where we only use the
definition of the exponents according to (6.13).

Corollary 6.19. Under the assumptions of Proposition 6.17, and for

a.e. k ∈ R, the minimal Lyapunov exponent χ
(1)
+ (k) for the outward iteration

of (6.10) is bounded below by the constant D = 1
2 log(λ) − D̃, where D̃ is

the constant from Proposition 6.17. Moreover, one has D > 0, which means
that both Lyapunov exponents are strictly positive almost everywhere.

Proof. The first two claims are immediate consequences of Proposi-
tion 6.17.

For the positivity of D, observe that, for any n ∈ N, we have

|χ̃(1)
+ (k)| ≤ 1

n
M(log ‖B(n)(·)‖),

where the estimate holds for a.e. k ∈ R.
Now, we calculate the mean on the right-hand side for the first few

integers, by precise numerical integration, where we may use the Frobenius
norm and the last identity from Proposition 6.17. For n = 4, this gives an

upper bound for |χ̃(1)
+ (k)| of 0.385(1), which is smaller than log

√
λ ≈ 0.417.

Since
χ
(1)
+ (k) = log

√
λ− |χ̃(1)

+ (k)| and χ
(1)
+ (k) + χ

(2)
+ (k) = log(λ)

for a.e. k ∈ R, one has 0 < χ
(1)
+ (k) ≤ χ(2)

+ (k), and our claim follows.

6.7. Conclusions. The key point now is that our finding of positive
Lyapunov exponents for the outward iteration is not compatible with trans-
lation boundedness of the diffraction measures. Indeed, for any u ∈ C2, γ̂u is
a translation bounded, positive measure. This also implies that its absolutely
continuous part is translation bounded. Then, (γ̂(1,0)+ γ̂(0,1))ac is translation

bounded as well, and this measure is represented by the Radon–Nikodym

density g(k) = |v1(k)|2+ |v2(k)|2. If D is the lower bound of χ
(1)
+ (k) for a.e. k

from Corollary 6.19, we know that, for any δ > 0, there is a constant C > 0
such that

g(λnk) ≥ C e2(D−δ)ng(k)

holds for a.e. k; see [10, p. 20]. Since D > 0, we may choose δ = D/2. Here,
the constant C might still depend on k, but we can employ the argument
from Lemma 6.4 here. Indeed, if we fix some ε > 0, we may restrict k to the
interval [0, ε]. It suffices to show that g = 0 in the Lebesgue sense on this
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interval. Now, we may assume without loss of generality that C(k) defines
a measurable function on [0, ε], where it satisfies C(k) > 0 on a subset of
full measure. We can now invoke Lemma 9.3 from Appendix B to conclude
g = 0 in the Lebesgue sense on [0, ε], and then also on R+ by Lemma 6.4.
This gives the following result.

Theorem 6.20. The absolutely continuous parts of Υ̂ij must vanish,
which is to say that h(k) = 0 for a.e. k ∈ R. Consequently, (γ̂u)ac = 0 for
all u ∈ C2.

It is clear that Υ̂ , as a vector measure, cannot be pure point. This follows
from the simple observation that the inverse transform of (Υ̂ )pp = I(0)δ0
does not have discrete support. So, the following conclusion is obvious.

Corollary 6.21. If Υij is one of our pair correlation measures, its
Fourier transform is of the form

Υ̂ij =
dens(Λ(α)) dens(Λ(β))

(dens(Λ))2
δ0 + (Υ̂ij)sc,

with non-trivial singular continuous part.

Let us now turn to the actual diffraction and see how we can use this
insight to calculate the diffraction measure, at least numerically and with
good precision.

7. Application to diffraction and outlook

7.1. Example with balanced weights. Consider

(7.1) ω0 =
∑
x∈Λ

u(x)δx

with weights u(x) ∈ {u0, u1} such that the frequency average is given by
u0ν00(0) + u1ν11(0) = 0, and hence I0 = 0 in Theorem 2.3. One possible
choice, which we will adopt here, is given by the real weights u0 = 1−λ and
u1 = 1. We can now express the autocorrelation γ0 of ω0 by (4.3), which is
of the form γ0 =

∑
z∈∆ η0(z)δz with ∆ as in Proposition 2.1 and

η0(z) = dens(Λw)(1− λ, 1)

(
ν00(z) ν01(z)
ν10(z) ν11(z)

)(
1− λ

1

)
.

In particular, we have

(7.2) γ0({0}) = η0(0) = dens(Λw)(λ− 1) =
6λ− 3

13
≈ 0.832.

The Fourier transform, γ̂0, is of the form given in (4.4). It is a positive
and translation bounded measure. Moreover, due to the balanced weights, it
has no pure point part, so γ̂0({k}) = 0 for all k ∈ R. In fact, as a consequence
of Corollary 6.21, γ̂0 is then purely singular continuous. Figure 3 illustrates
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0

1

2

0 1 2 3

Fig. 3. Sketch of the distribution function F from (7.3) for the singular continuous
diffraction measure in the balanced weight case of (7.1). The straight line is the average
slope of F , which is η0(0) of (7.2). The enlarged detail is meant to illustrate that F is
strictly increasing (on the level visible in the resolution of this numerical approximation),
which implies that there are no proper plateaux.

the corresponding distribution function F , where

(7.3) F (x) := γ̂0([0, x]),

for x ∈ [0, 3]. This was calculated numerically via the integration of ap-
proximating trigonometric sums, the latter being the absolute squares of
exponential sums that were obtained by an exact iteration based on the
inflation. Alternatively, they can also be calculated on the basis of a matrix
Riesz product, in the spirit of [15, Sec. 2].

Remark 7.1. On average, the distribution function F (x) grows linearly
in x, with slope η0(0), as also indicated in Figure 3. Furthermore, F is a
continuous function that appears to be strictly increasing, in line with the
general expectation that the supporting set of such measures must be dense;
compare [3, Sec. 10.1]. ♦

7.2. Outlook. Our main result concerns the absence of absolutely
continuous components in the diffraction measure, for arbitrary complex
weights. Now, one would like to also infer the absence of absolutely con-
tinuous spectral measures for the dynamical system. This would follow if
one can also show that patch derived factors have no absolutely continuous
diffraction components, as an application of [9, Thm. 15 and Cor. 16].
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More generally, our analysis can be applied to other binary systems in com-
plete analogy; see [5] and references therein for some steps in this direction,
where the result will be that an irreducible IDA in conjunction with a certain
non-uniform hyperbolic structure in the matrix iterations is incompatible
with the presence of absolutely continuous diffraction components. Cases
with reducible IDAs can also be handled by explicit methods [30]. The situa-
tion for primitive inflation rules over larger alphabets, or for inflation tilings
in higher dimensions, is more complex, and will be considered separately.

8. Appendix A: Details of the inward iteration. Here, we study
the iteration according to (6.12) in more detail, where it suffices to consider
k ≥ 0. First, choose c0 > 0 such that |z(k)| ≤ 9c0k for all k ∈ [0, 1/3], which
is possible because z is analytic, with z(k) = O(k) for k → 0. Now, set
v′n = (αn, βn)t and consider, for some fixed 0 < k ≤ 1/3, the recursion

(8.1) v′n =
1√
λ

(D − znN)v′n−1

with zn = z(k/λn) for n ∈ N, with arbitrary start vector v′0 6= 0. This means
that (αn, βn)t stands for (α(k/λn), β(k/λn))t in the previous iteration of
(6.12). Observe next that det(D − znN) = det(B(k/λn)) 6= 0 for all n ∈ N
under our condition on k, wherefore we know that v′n 6= 0 for all n ≥ 0.
Also, we have |zn| ≤ 9c0kλ

−n ≤ 3c0λ
−n for all n ∈ N. Now, with ‖D‖∞ = λ

and ‖N‖∞ = λ/3, we can estimate

‖v′n‖∞ ≤
√
λ (1 + c0λ

−n)‖v′n−1‖∞
≤ · · · ≤ λn/2(1 + c0λ

−n) · . . . · (1 + c0λ
−1)‖v′0‖∞,

which implies ‖v′n‖∞ = O(λn/2) because the product
∏
m≥1(1 + c0λ

−m) is
absolutely convergent. Since |αn| ≤ ‖v′n‖∞, this also means

αn = O(λn/2) as n→∞,
as well as ‖v′n‖∞ ≤ c′λn/2 for some c′ > 0 and all n ∈ N0.

Now, choose ε > 0 small enough so that |zn| ≤ 3cλ−n holds for all
k ∈ [0, ε] with

(8.2) c = c(ε) < min{λ−
√
λ, 1 +

√
λ− λ} = 1 +

√
λ− λ ≈ 0.2147,

which is clearly possible because c = 3c0ε. For any 0 < k ≤ ε and n ∈ N0,
we then have

(8.3)

∥∥∥∥zn+1√
λ
Nv′n

∥∥∥∥
∞
≤ cλ−n√

λ
‖v′n‖∞ ≤

c√
λ
‖v′n‖∞ <

λ−
√
λ√

λ
‖v′n‖∞.

The first estimate, together with (8.1), implies

|βn+1| ≤
λ− 1√
λ
|βn|+

cλ−n√
λ
‖v′n‖∞ ≤

λ− 1√
λ
|βn|+

c′′λ−n/2√
λ
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with c′′ = cc′. Iterating this estimate inductively gives

|βn+1| ≤
(λ− 1)n+1

λ(n+1)/2
|β0|+

c′′

λ(n+1)/2

n∑
m=0

(λ− 1)m

≤ |β0|
(λ− 1)n+1

λ(n+1)/2
+

c′′

λ− 2

(λ− 1)n+1 − 1

λ(n+1)/2

<

(
|β0|+

c′′

λ− 2

)(
λ− 1√
λ

)n+1

= O
((

3

λ3/2

)n+1)
,

where (λ− 1)/
√
λ = 3/λ3/2 ≈ 0.8585 < 1. We thus have limn→∞ βn = 0 for

any start vector v0 and any 0 < k ≤ ε.
If |αn| > |βn| for some n, which is a situation that can already occur

for v′0, we have ‖v′n‖∞ = |αn| > 0, and the iteration (8.1) with the estimates
from (8.2) and (8.3) result in

|αn+1| ≥ |αn|
λ− c√
λ

> |αn| and |βn+1| ≤
λ− 1√
λ
|βn|+

c√
λ
|αn| < |αn|,

so that |αn+1| > |βn+1|. By induction, |αm+1| > |αm| > 0 for all m ≥ n,
while βm goes to 0 as before. Using the first inequality in (8.3), we get
|αn+1| ≥

√
λ |αn|(1− cλ−n−1) > 0 and hence, for any m ∈ N,

|αn+m| ≥ λm/2|αn|
m∏
`=1

(1− cλ−n−`).

Since the product converges absolutely as m → ∞, we may conclude that
|αm| ≥ cαλm/2 for all m ≥ n, with some constant cα > 0 that depends on k
and v′0. With our previous estimate, we thus have ‖v′n‖∞ = |αn| � λn/2,
which means that |αn| is bounded from above and from below by differ-
ent (positive) multiples of the same exponential function. For any initial
vector v′0 with this behaviour, we thus obtain the Lyapunov exponent

(8.4) χ−(v′0) := lim sup
n→∞

1

n
log ‖v′n‖∞ = lim

n→∞

1

n
log ‖v′n‖∞

= log
√
λ ≈ 0.834,

where the existence of the limit is a simple consequence of the asymptotic
behaviour.

It remains to consider the case that |αn| ≤ |βn| for all n ∈ N0, which
implies ‖v′n‖∞ = |βn|. If αn = 0 for some n, we get αn+1 6= 0 from the struc-
ture of N , and hence also βn+1 6= 0. Note that this is just the irreducibility
of B in action; compare Lemma 5.1. Choose an n ∈ N0 such that βn 6= 0
and observe that we then get

0 < |βn|
λ− 1√
λ

(
1− c

λ− 1
λ−n

)
≤ |βn+1| ≤ |βn|

λ− 1√
λ

(
1 +

c

λ− 1
λ−n

)
because 0 < c < λ − 1 with the constant c from (8.2). The upper estimate
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implies that |βn| is ultimately monotonically decreasing. Iterating the lower
estimate leads to

|βn+m| ≥
(
λ− 1√
λ

)m
|βn|

m−1∏
`=0

(
1− c

λ− 1
λ−n−`

)
for all m ≥ 1. Since the product converges absolutely as m → ∞, we may
conclude that ‖v′n‖∞ = |βn| � (3/λ3/2)n as n → ∞, and hence also that
limn→∞ v

′
n = 0.

Let us look at a consequence of this asymptotic behaviour on the con-
vergence rate of αn. Select an n with αn 6= 0, which we know to exist. With
‖v′n‖∞ = |βn|, we then find

|αn+1| ≥
√
λ |αn| −

c

λn+1/2
|βn| ≥ |αn|+ (

√
λ− 1)|αn| − c̃

(
3

λ5/2

)n
for some constant c̃ that generally depends on k and β0. When one has
(
√
λ−1)|αn| ≥ c̃(3/λ5/2)n, one gets |αn+1| ≥ |αn| > 0 and then, inductively,

|αn+m| ≥ |αn| > 0 for all m ∈ N, which contradicts limm→∞ αm = 0.
Consequently, whenever αn 6= 0 in our present case, we must have

|αn| <
c̃√
λ− 1

(
3

λ5/2

)n
,

which altogether means αn = O(3/λ5n/2), as well as |αn/βn| = O(λ−n).
The fact that also this somewhat counterintuitive behaviour does indeed

occur can be seen as follows. Under our restriction on k, we know that the
mapping v′0 7→ v′n = Qn(k)v′0 is invertible. Consequently, it is possible to
choose v′0 ∈ ∂B1(0) in such a way that v′n = cn(0, 1)t for some cn > 0, which
is the contracting direction for M in this representation. Let v′0,n be this
initial condition, and consider the sequence (v′0,n)n∈N constructed this way.
As it lies within the compact set ∂B1(0), there is a converging subsequence,
with limit v′0,∞, say. By construction, this vector spans a one-dimensional
subspace E′−(k) of vectors that behave as just derived under the inward
iteration. For any v′0 ∈ E′−(k), we thus get

(8.5) χ−(v′0) = lim
n→∞

1

n
log ‖v′n‖∞ = log

λ− 1√
λ

= log
3

λ3/2
≈ −0.153,

where the existence of the Lyapunov exponent as a limit follows as in (8.4).

9. Appendix B: Two simple scaling arguments. Let us briefly
explain the idea to use an ‘impossible’ singularity of a locally integrable
function to conclude that such a function must vanish, spelled out in a one-
dimensional setting for illustration. Here, for λ > 1 fixed, h(x/λ) = λh(x)
would be the (scalar) analogue of (6.4). This implies h(x) = O(x−1) as
x → 0, a contradiction to local integrability unless h = 0. The precise
statement is the following.
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Lemma 9.1. Let h ∈ L1([0, 1],C), and assume that, for some fixed λ > 1,
one has

h(x/λ) = λh(x)

for a.e. x ∈ [0, 1]. Then, h = 0, which means h(x) = 0 a.e. in [0, 1].

Proof. By assumption, h is certainly integrable on [1/λ, 1]. Since

h(x/λm) = λmh(x)

also holds for all m ∈ N and still for a.e. x ∈ [0, 1], one has

1/λm�

1/λm+1

|h(x)| dx =
1

λm

1�

1/λ

∣∣∣∣h( y

λm

)∣∣∣∣ dy =

1�

1/λ

|h(y)| dy,

via a simple transformation of variable (y = λmx), hence

‖h‖1 =
∑
m≥0

1/λm�

1/λm+1

|h(x)|dx =
∑
m≥0

1�

1/λ

|h(x)|dx.

Consequently, ‖h‖1 < ∞ implies |h(x)| = 0 a.e. on [1/λ, 1]. The functional
equation then gives |h(x)| = 0 a.e. on [1/λm+1, 1/λm] for any m ≥ 0, hence
h = 0 as claimed.

Let us also discuss why a positive, pointwise defined Lyapunov exponent
for the asymptotic growth of a density function g ≥ 0 is incompatible with
translation boundedness of the measure gµL defined by g, where µL denotes
Lebesgue measure on R.

Lemma 9.2. Let g ∈ L1
loc(R+) be a non-negative function and let λ > 1

be fixed. Assume further that g satisfies the relation g(λx) ≥ ϑ(x)g(x) for
a.e. x > 0, where ϑ is a bounded, measurable function with ϑ(x) > 1 and
ϑ(λx) = ϑ(x) for a.e. x > 0. Then, the absolutely continuous measure gµL
is translation bounded if and only if g = 0 in the Lebesgue sense.

Proof. If g does not vanish almost everywhere, we have q :=
	a
0 g(x) dx>0

for some a > 0, and f := q−1g is a probability density on [0, a]. By assump-
tion, we have

g(λmx) ≥ ϑ(λm−1x) · . . . · ϑ(x)g(x) = ϑ(x)mg(x)

for any (fixed) m ∈ N and a.e. x > 0, by an iterated application of the
assumed estimate. Now, via the (clearly existing) moments of ϑ relative
to f , we get

aλm�

0

g(x) dx = λm
a�

0

g(λmy) dy ≥ qλm
a�

0

ϑ(y)mf(y) dy

= qλmEf (ϑm) ≥ qλm(Ef (ϑ))m = q(Θ1λ)m,
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where the estimate in the second line is a consequence of Jensen’s inequality,
while the first moment, Θ1 = Ef (ϑ), clearly satisfies Θ1 > 1.

This shows that
	aλm
0 g(x) dx 6∈ O(λm) as m→∞. However, gµL trans-

lation bounded with g ≥ 0 implies

L�

0

g(x) dx = O(L) as L→∞,

which contradicts the previous estimate. Therefore, we must have g(x) = 0
for a.e. x > 0 as claimed.

A simple variant, which applies to cases with a.e. constant Lyapunov
exponents as in our example, can be stated as follows.

Lemma 9.3. Let g ∈ L1
loc(R+) be a non-negative function and let λ > 1

be fixed. Assume further that there is an interval [0, a] with a > 0, a constant
ϑ > 1, and a measurable function C with C(x) > 0 for a.e. x ∈ [0, a] such
that g(λmx) ≥ C(x)ϑmg(x) holds for a.e. x ∈ [0, a]. Then, the absolutely
continuous measure gµL is translation bounded if and only if g = 0 on [0, a]
in the Lebesgue sense.

Proof. Assume that gµL is translation bounded, but g(x) > 0 for a
subset of [0, a] of positive measure. Then,

cg :=

a�

0

C(x)g(x) dx > 0

because the set {x ∈ [0, a] : C(x) = 0 or g(x) = 0} is not of full measure in
[0, a]. Consequently,

aλm�

0

g(x) dx ≥ λmϑm
a�

0

C(x)g(x) dx = cgλ
mϑm

and one obtains the same type of contradiction as in the proof of Lemma 9.2.
So, we must have g = 0 on [0, a] in the Lebesgue sense as claimed.
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[5] M. Baake, U. Grimm and N. Mañibo, Spectral analysis of a family of binary inflation
rules, Lett. Math. Phys. 108 (2018), 1783–1805.

[6] M. Baake and A. Haynes, A measure-theoretic result for approximation by Delone
sets, in: Horizons of Fractal Geometry and Complex Dimensions, R. G. Niemeyer,
E. P. J. Pearse, J. A. Rock and T. Samuel (eds.), Contemp. Math., Amer. Math.
Soc., to appear; arXiv:1702.04839.

[7] M. Baake, A. Haynes and D. Lenz, Averaging almost periodic functions along exponen-
tial sequences, in: Aperiodic Order. Vol. 2: Crystallography and Almost Periodicity,
M. Baake and U. Grimm (eds.), Cambridge Univ. Press, Cambridge, 2017, 343–362.

[8] M. Baake and D. Lenz, Dynamical systems on translation bounded measures: Pure
point dynamical and diffraction spectra, Ergodic Theory Dynam. Systems 24 (2004),
1867–1893.

[9] M. Baake, D. Lenz and A. C. D. van Enter, Dynamical versus diffraction spectrum
for structures with finite local complexity, Ergodic Theory Dynam. Systems 35 (2015),
2017–2043.

[10] L. Barreira and Ya. Pesin, Nonuniform Hyperbolicity, Cambridge Univ. Press, Cam-
bridge, 2007.

[11] L. Barreira and Ya. Pesin, Introduction to Smooth Ergodic Theory, Amer. Math. Soc.,
Providence, RI, 2013.

[12] A. Bartlett, Spectral theory of Zd substitutions, Ergodic Theory Dynam. Systems 38
(2018), 1284–1341.

[13] C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups, Springer,
Berlin, 1975.

[14] A. Berlinkov and B. Solomyak, Singular substitutions of constant length, Ergodic
Theory Dynam. Systems (online, 2018).

[15] A. I. Bufetov and B. Solomyak, On the modulus of continuity for spectral measures
in substitution dynamics, Adv. Math. 260 (2014) 84–129.

[16] Y. Bugeaud, Distribution Modulo One and Diophantine Approximation, Cambridge
Univ. Press, Cambridge, 2012.

[17] A. Clark and L. Sadun, When size matters: Subshifts and their related tiling spaces,
Ergodic Theory Dynam. Systems 23 (2003) 1043–1057.

[18] C. Corduneanu, Almost Periodic Functions, 2nd English ed., Chelsea, New York,
1989.

[19] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, New York,
1982.

[20] F. M. Dekking, The spectrum of dynamical systems arising from substitutions of
constant length, Z. Wahrsch. Verw. Geb. 41 (1978), 221–239.

[21] A.-H. Fan, B. Saussol and J. Schmeling, Products of non-stationary random matrices
and multiperiodic equations of several scaling factors, Pacific J. Math. 214 (2004)
31–54.

[22] N. P. Frank, Multi-dimensional constant-length substitution sequences, Topology
Appl. 152 (2005), 44–69.

[23] J. Gil de Lamadrid and L. N. Argabright, Almost periodic measures, Mem. Amer.
Math. Soc. 85 (1990), no. 428.

http://dx.doi.org/10.1016/j.topol.2016.01.017
http://dx.doi.org/10.1017/etds.2012.191
http://dx.doi.org/10.1007/s11005-018-1045-4
http://arxiv.org/abs/1702.04839
http://dx.doi.org/10.1017/9781139033862.008
http://dx.doi.org/10.1017/S0143385704000318
http://dx.doi.org/10.1017/etds.2014.28
http://dx.doi.org/10.1017/CBO9781107326026
http://dx.doi.org/10.1090/gsm/148
http://dx.doi.org/10.1017/etds.2016.66
http://dx.doi.org/10.1007/978-3-642-66128-0
http://dx.doi.org/10.1017/etds.2017.133
http://dx.doi.org/10.1016/j.aim.2014.04.004
http://dx.doi.org/10.1017/CBO9781139017732.017
http://dx.doi.org/10.1017/S0143385702001633
http://dx.doi.org/10.1007/978-1-4615-6927-5
http://dx.doi.org/10.1007/BF00534241
http://dx.doi.org/10.2140/pjm.2004.214.31
http://dx.doi.org/10.1016/j.topol.2004.08.014
http://dx.doi.org/10.1090/memo/0428


154 M. Baake et al.

[24] G. Harman, Metric Number Theory, Oxford Univ. Press, New York, 1998.
[25] J. Hartinger, R. F. Kainhofer and R. F. Tichy, Quasi-Monte Carlo algorithms for

unbounded, weighted integration problems, J. Complexity 20 (2004), 654–668.
[26] A. Hof, On diffraction by aperiodic structures, Commun. Math. Phys. 169 (1995),

25–43.
[27] H. Kamarul Haili and R. Nair, The discrepancy of some real sequences, Math. Scand.

93 (2003), 268–274.
[28] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, reprint, Dover

Publ., New York, 2006.
[29] D. Lenz, Continuity of eigenfunctions of uniquely ergodic dynamical systems and

intensity of Bragg peaks, Commun. Math. Phys. 287 (2009), 225–258.
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