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Let M = 2 be an integer and p a prime such that m
divides p - 1. There is an isomorphism ¢ of the finite
group Z/mZ to a subgroup of the multiplicative group GF(p)*
of the finite field of order p. TFo an ergodic measure-
preserving transformation TO: X » X and a measurable
function f . % > Z/mZ we consider the extension T : X x Z/mZ x
GF(p) + X X Z/mZ * GF(p) defined by T(x,y,z) = Tox,y(x) +
y,d(y) +2z). We show that in general the maximal spectral
multiplicity of .T is greater than or equal to m and that
for a generic set of pairs (TG,Y) the value m 1is achieved.

The es+imate from below is obtained by a decomposition
of E? (X xE&/mZ xGF(p)) into m+1l invariant subspaces and

constructicon of an operator S cycliely permuting m of

hese subspaces such that UT commutes with S. The estimate
fram above follows from the method of approximation., We

show that if . admist a cyclic approximation by periodic

tyansforraticne szeed o(i/n), then for a generic set of Y,
T  admi*s an m-cvolic approximation by periodic transforma-

tion spesd c(l/nl. Using a generalization of this construction,

+n an arbitrary finite number of values

1=

we obtalir examples W



in the essential range of the multiplicity function. The
construction may be made so that the spectrum is continuous.
In each case T may be realized as an interval exchange
transformation.

A mixing transformation is constructed with nonsimple
spectrum of finite multiplicity. This example is based on
the Ornstéin rank 1 mixing transformation and is constructed

by cutting and stacking.
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Introduction
e ZHuction

For an invertible measurempreserving transfo; LT
T: (X,ﬁ) > (X,u) of 3 Lebesgue SPace  (X,u) we cer. e
the inducegq unitary Operatorp UT :LQ(X,U) > LQCX,H) £
by (UTf)(x) = F(Tx). The simplesgt Concept of Spectra]l
Plicity (cf. [ 31) ;g the maximal Spectral multiplicity
Which we noy define. [Let UtH»> H pe @ unitapy Operator

Cn a Hilbert Space H., The maximal Spectral muitiplicity

m(u) = inffn1€2+lj{m} :Bfl...f € H: linear combinations of

Ulfj, 1€z, j o= Loviiym  ape dense in H}.

When the mqlﬁiplicity is 1 we Say that the Spectrum ig
Simple.‘ If for UT, the eigenvalye 1 is simple and ls
the only eigenvalue we Say T Thas continuouys Spectrum,

Questions of Spectral Multipiicity ip ergodic theory

Von Neumann's 'esults on flows were €xtended tqo the case
of transfcrmations with discrete Spectrum by Halmos ang Von
Neumanni:z[ ¢ ] where it was shown +tha+ such transformations
are equivalent +o rotations on Compact abeliasn groups.  Asg
in the case of flows, these €Xamples have simple Spectrum.

ancther natural

2]

o

in COntrast to the discrete Spectrum rag

D



class of algebraic examples, the ergodic automorphisms of
compact abelian groups. These were shown by Halmos [10] +o
have continuous spectrum with infinite multiplicity, namely
the type of spectrum commonly called countable Lebesgue
spectrum. Countable Lebesgue spectrum also occurs in a

class of transformations which arise naturally in probability
theory, tﬂe Bernoulli and Markov shifts. (Cf. e.g. [27]
where there is also.an interesting general discussion of the
spectral multiplicity problem.) Rohlin [26] described the
connection between the spectrum and entropy. Any transforma-
+ion with positive entropy has a countable Lebesgue component
in the spectrum.

For many vears, no example was found having continuous
spectrum of finite multiplicity. The first such example was
due to Girsanov, [8 ] who constructed a transformation with
simple continuous spectrum using the theory of Gaussian
processes. Soon afterward Versik proved in [ 333 and [ 3u]
+that for any ergodic transformation generated by a Gaussian
process, the spectral multiplicity is either 1 or +«,

Examoles with simple continuous spectrum of a geometric
rather than probabilistic origin were first ccnstructed by
Oseledec [23], and Katok and Stepin [17]}. These examples
were found among interval exchange transformations and
smooth flows on the two-dimensional torus. They are based
on the idez of approximation by periodic tranzformations

(cf. [18]). Using these ideas Yuzvinskii ({3%] cf. also



[181) ﬁroved that simple continuous spectrum is typical in
the weak topology on the space of all transformations.

In {23], Oseledec also proved that for an interval
exchange transformation the maximal spectral multiplicity is
bounded zbove by p - 1 where p is the number of intervals
exchanged. Moreover he constructed the first example of a
transformétion with continucus spectrum and finite multi-
plicity greater than 1. Since the example is an exchange
of 30 dintervals, the maximal spectral multiplicity m
satisfies 2 = m < 30.

Variationg on the method of approximation by periodic
transformations were subsequently introduced and applied to
gpectral problems by Chacon [ 4] [ 51, Schwartzbauer [311,
Stepin [32] and Riley [281. A generalization is also given
in £16]. The existence of a simple approximation with
multiplicity M is given in [ 51 as a sufficient condition
for an upper bound M on the spectral multiplicity, although
no example is given where this bound is achieved for M > 1.
Baxter [ 11 noted that the transformations where M = 1 are
exactly those which may be constructed by cutting and stacking
intervals in a single s+ack, the rank 1 ‘transformations
(cf. F141]). Thus rank - implies simple spectrum. Del Junco
[1u] showed that the converse is false. Recently, Thouvenot
(unpublished) zconstructed a transfor -~tion with simple
spectrum which is not lsosely Bernculli and consequently is
not of finite rank. A sufficiently fast m-2ycle approximation

by periodic transformations (cf. §3) implies a simple



approximation with multiplicity m and thus a rank of at
most m.

Recently Katok (unpublished) showed that in the Oseledec
example m = 2 is attainable and is typical within the
context of the construction. The upper bound is obtained
by using the theory of approximation by pericdic transforma-
tions. Tﬁe construction described in Chapter I is a
generalization of the Oseledec construction and Katok's
upper bound. We show that for every m > 1 there exists
a measure-preserving transformation T with maximal spectral
multipiicity m. We show this to be typical for our
construction. Furthermore we ghow that it is possible to
realize such a transformation as an interval exchange.

We can give an equivalent definition of spectral
multiplicity in terms of the spectral theorem for unitary
operators. The operator U is described up to unitary

T

equivalence by a sequence of spectral types L33
<
Py < P, Py <

where each Qj is an equivalence c¢lass of measures on the
circle T, and < denotes absolut: continuity applied to

these classes. The maximal spectral type Porax is the

maximal element of the spectral sequence. The multiplicity

function m is defined to be the =ssential number of pj

dominated by SN It is Pras mzasurable. Let MT dencte

the essential range of the multipiicity function on the



subspace of L2 orthogonal to the constants. M

N

T N U{+oo}’

where W denotes the set of natural numbers. MT = sup MT‘
The examples in Chapter I all have MT = {1,m} for some
natural number m. In Chapter III, traﬂsformations T are

constructed such that
My = {1,p-1,p(p—l),---,pr"l(P"1>}

where p 1is an odd prime and r > 1. Transformation T such

that O <card(MT}-<+m will be said to have highly nonsimple
spectrum of finite multiplicity. Katok [16] has recently

studied MT(m), where T(m)

is the m'th cartesian power
of a generic transformation T (in the weak topology). He

has shown that

MT(m) ¢ {m} U m(m-1)IN U{+te},
e
MT(m) < m(m—l)LETﬁfTTJ,
and that
mT(m) = m
where m, = min MT. We note that for all of the examples T

constructed here, 1 € MT s0 My = 1. Katok has conjectured

that generically

MT(m) = {m,m(m+1),...,m!}

so that in the case m = 7,



Transformations T such that MT = ‘m} are said to have

homogeneous spectrum of multiplicity m. There are no known
examples of such transformations for m # 1, +o on
Lebesgue probability spaces, although Riley [2t] has found
an example on an infinite measure space where MT = {2},

In Chapter II we construct a transformation T, which
has the mixing property, such that 2 = MT < 6. In order %o
do this we begin with the Ornstein [22] rank 1 mixing

transformation T and repeat a construction similar to

0°
the construction in Chapter I. Since the method of approxi-
mation by periodic transformations excludes mixing, however,
it is replaced by the cutting and stacking method. In this
case we obtain 1 € MT; if k€ MT and k # 1 then 2]|k;
and MT < 6. Thus there are five possibilities for M

In the text we will assume all measure-preserving

T

transformations are invertible. We will often neglect to
Wwrite the measures if no cenfusion will arise. We will
denote by Z/mZL, the integers mod m, and GF(p) the
finite field of order p. Where appropriate we will assume
arithmetic is carried out mod m or mod p without so
stating. The letter X will be used both for group

characters and characteristic functions.



CHAPTER 1. ARBITRARY FINITE SPECTRAL MULTIPLICITY

In this chapter, examples are constructed showing that
every positive integer m can be the maximal spectral multi-
plicity of an ergodic measure-preserving transformation. In
addition, we show that this transformation can always be
realized as an interval exchange transformation. The results

of this chapter appear in [25]1, which we essentially reproduce.

§1. Basic Construction

For a fixed prime p let us consider the finite field
X
GF(p) and recall that the nonzero elements GF(p)x form a
group under multiplication which is isomorphic to Z/{(p-1).

. . . o
We denote this isomorphism by ¢0 r Z/(p-1) + GF{(p) ¢ GF(p).

Lemma 1l.1. For any m > 0 there exists a finite field
GF(p) such that Z/m 1is isomorphic to a subgroup of
GF(p)x. We denote this isomorphism by ¢, and the least

p satisfying this lemma by pi{m).

Proof. By the Dirichlet theorem on primes in an arithmetic
progression, the seguence mk + 1 "contains a prime p. This
implies that m|p - 1. Consider the subgroup of Z/(p-1)
generated by m' = (p-1)/m. This subgroup is isomorphic to
Z/m via Y :%/m > Z/(p-1), where §{y) = m'y. It follows that
¢ = ¢4 ° { is a one to one homomorphism from Z/m into
Gl‘”(p)x. o
Let (X,uo) be a Lebesgue space, T, X - X an invertible

erzodic measure-preserving transformation and vy : X = Z/m a



measurable function. We say that

Tl: ¥ x Z/m +» X x Z/m
(l.l)

Tl(x,y) z (Tox,y(x)+y)

is the Z/m extension of TO corresponding to Y. The
natural product measure ul on X x Z/m, which is defined

as the normalized product of and the uniform (Haar)

Mo
measure on #/m, 1is clearly preserved by Tl.

All of our examples will be of the following type.
Given Tl as in (1.1) and a prime p which satisfies Lemma
1.1 for m, we construct the GF(p) extension of Tl
corresponding to the homomorphism ¢.

T:X X %Z/m x GF(p) » X x Z/m x GF(p)
(1.2)

T(x,y,2) = (TGX,Y(X)+y,¢(y)+Z).
Note that the T in (1.2) is specified by a choice of TD
and Y. The natural topology for the set of parts (TO,Y)
is the product of the weak topology for measure-preserving
transformations and the Ll—topology for functions. (Cf. &6
for details).

in terms of this topology we can state the first main

result of this chapter which is proved in §§2-€:

Theorem 1.1. For a generic set of (TD,Y), T idis ergodic

and has continuous spectrum with maximal spectral multi-

plicity MT = m., Moreover, MT = {1l,m}.



The second main result in this chapter, which deals
with the realigzation of a given spectral multiplicity by

an interval exchange, is Theorem 7.1 which is formulated

and proved in §7.
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§2. The Estimate of the Multiplicity from Below

Agsociated with a finite abelian group extension is a
natural orthogonal decomposition of L2 into U invariant
subspaces corresponding to the characters of the group. The
additive characters of GF{(p) are given by Xw(z) =
exp 2mizw/p where w € GF(p), so that if T dis given by

(1.2), we obtain the invariant decomposition

LQ(X) xZ/m x GF(p)) = ® H,
wEeGEF(p)
where
H,o = {Xw(z)f(x,y) : T 6L2(X X T /m7%) }.

The decompositicn is obtained by a discrete Fourier transform
with respect to the third variable. Let us define the per-
mutation o : GF(p) = GF(p) by o(w) = ¢(w and for w # 0,

the operator

Sy Hw v HG(w)
by
Sw(xw(z)f(x,y)) = XOKW)(z)f(x,y+l).
Lemma 2.1.
UTIH °© S = 8 o U ;
o(w) W
Proof
UTlH o Sw(Xw(z)f(x,y))
ol(w)
= Xg(w)(z)XU(w)(¢(y})f(Tox,Y(x}+y+1)
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Sw ° UT . (Xw(z)f(x,y))
W

XG(W)(z)XW(¢(y+l))f(Tox,Y(x)+y+l).

Equality follows from the observation that Xg(w)(¢(y)) =

exp 2ﬁi¢(})w¢(y)/p = Xw(¢(y+1)). o

The following lemma characterizes the action of the

permutation 0.

Lemma 2.2. O has a fixed point 0 and m' = (p-1)/m
cycles of length m. Furthermore, each cycle is represented

by exactly one element of the set ¢O({O,1,...,m'-l}).

Proof. Clearly g(0) = 0. If z # 0 then 2z = ¢0(y) for
some vy € %Z/(p-1)Z and oflz) = e(1)z = @(l)¢0(y) =
¢0(w(1))¢0(y) = ¢O(¢(1)+y) = ¢G(m'+y). It follows that o
on G’r“(p)x is conjugate via ¢, to the permutation

y »m' +y on Z/(p-1). This permutation has m' cycles

of length m represented by {0,1,...,m"=1}. o

The previous lemma shows how the operators SW permute

the subspaces Hw. For each % = 0,...,m=1 we define
(2.1) Y = H . ®...5 H .
03<¢O(o)> 03(¢0(m'~1))
and also
H* = H
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Note that by Lemma 2,2 for each w # 0 Ho ¢ H for some j.

We define the linear operator
(2.2) s gl > pdtt

. ] _
H Sw' Since S H HW =
W W

o (w) c H?+l, the operator 37 is well defined.

1]

so that if Hw G HY)  then gJ

H

Lemma 2.3.
(i) ST ou | .=U sJ.
(ii) The maximal spectral multiplicity for T in (1.1)

is at least m.

Proof. (i) is trivial by Lemmas 2.1 and 2.2. TFor (ii) we

note that UT is isomorphic on each #?. Thus each HI

must have the same spectrum J = 0,...,m~ 1. !

o KO DI L i s 1 it - . J . . [
psirRl
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§3. Approximation by Periodic Transformationsg

Let (X,u) Dbe a Lebesgue space and let {gn} be a

sequence of partitions of X into sets Cn 50 3= 1,.;.,qn.
?

We say that ¢ - ¢ if for any measurable A & ¥ there

* L -
exists £ € € and An = . g . Cn such that u(AnAA) + 0

n*tn

as n + . Let f(n) >0 as n > = We say that the
measure-preserving +pansformation T :X = X admits an
m-cyclic approximation by periodic transformations with
speed f£(n), (a.p.t. speed £(n)), if there exists & > ¢

and for every n a measure-preserving permutation o of

n
the collection {C_ .} 3 = 1,...,4 such that:
Tty n
9n
i (Tc .0 o C_ L) < £(p )
(l) jzl H NeJ N Na3 pn

(ii) o has m c¢ycles

where P, is the length of the longest cycle in O In
the case where f(n) = o(l/n) as n =+« Wwe simply say the
speed is o(l/n).

Katok and Stepin [18] proved that if T admits a cyclic
(1-cyclic) a.p.t. speed of{1l/n) .then T is ergodic and
has simple spectrum. The following result is also due to

Katok and Stepin, (unpublished).

Theorem 3.1. If T admits an m-cyclic a.p.t. with speed

o(1/n) then the multiplicity of the spectrum of UT is at

most n.

The proof follews directly from a theorem proved in [51.
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§4. Combinatorics of Extensions

The next few lemmas discuss the behavior of the exten-

sion of an approximation. Let T, tZ/q »%Z/q be a cyclic

permutation. Any function Y :%Z/q » Z/m may be written as

11

Y = ) yXA where A Y_l(y). Letting a._ = card(A )
yEZ/m y Y y Y

we will define

1

v ova,-

t(y)
vE€Z/m Y

It ig easy to see that t(Yl+Y2) = t(Yl) + t(Yz). We will
often write t for t(Y).

Consider the extension

(4.1) T, 1 Z/q x Z/m » E/q x Z/m
given by
Tl(x,y) = (TOX,Y(X)+y).
Lemma b.l. Tl has m cycles of length q if and only if
t = 0(mod m). Tl has one cycle of length mq if and only
if (t,m) = 1.
K X k-1 .
Proof. Tl(x,y) = (Tox,y + '21 Y(T%x)) so that in particular
:'}:

q— .
T%(X,y) = {x,y *+ _Zl y(T%x)), where q is the least Xk 8O

3:
that Tkx = %, Thus it suffices to show that t(y) =

0

g-1 . .
¥ Y(Tgx). This is clear since Y(T%x) =y if and only if
j=1

Tgx € Ay. Because TO ig a cycle this happens ay times.
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If 'I‘1 does not have the behavior described in the
last lemma, we can modify Yy to obtain it. For the next

lemma let

Ay(x) = and ¥l(x,y) = (Tox, (YY) () +y) .

Lemma %.2. Tor arbitrary Y and X there are values of

k so that %l has one cycle and so that it has m cycles.

1 e~

Proof. If we let a_ = card((y+AY)-l(y)) and T = va
then t - t = (Y+Ay)(x0) - Y(XO) = k. o

Let us now consider the double extension
(4.2) T:%/q *x Z/m x GF(p) » Z/q x Z/m x GF(p)

where

T(x,y,2) = (TOX,Y(X)+y,¢(y)+z).

Proposition 4.1. Suppose T, :%/a +Z/q 1s a cyclic permu-

tation and Y is such that the extension T, given by
(:.1) has m c¢ycles »f length ¢q. Let p and ¢ Dbe chosen
according to Lemma 1.1. Then either the extension T given

by (4.2) nas m cycles of length pg, or for any Ay of

the form

(4.3) Ly = Xy

the extension
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T(x,y,2) = (T x, (yray) GO+y, 6(y)+z)
has m cycles of length pq.

Proof. We adopt the following notation for the cycles of Tl

a-1 .
c. = U Ti(@,ﬁ).
3=0

Since the extension of Tl to T respects the decomposition

into cycles we may consider the m extensions of T, to
C
'8

Tlchgy(p) Sﬁparately. To show that T consists of m

cycles of length pg it suffices to show that for each

2, Tt consists of one cycle of length pg. To

ngGf(p)
formulate an equivalent statement we define al(z) =
-1 p=1
card(C,n¢ "(2)) and t, = ] za,(z). It follows from Lemma
z=0

4.1 that it suffices toc show that (tg,p) = 1 for alil 4.
We first show that if this condition is satisfied for
one & then it is satisfied for all £ simultaneously.

Observe that {(x,y) € C if and only if (x,y+k) € CR+k

A
and thus

(b.4) ag(z) (¢(kdz).

G4k

Making the substitutions z = ¢$(y) and bg(y) = a£(¢(y)),

we have bv (h.%)
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bl+k(y) = a£+k(¢(y))
= a£+k(¢(k)¢(y~k))
= ag(¢(yak))
= bg(y-k).
Since
t, = ) za {(z) = Y e(yib, ()
2 2€GF(p)  * yer/m b
and
t = Tooelydb, . (y) = o e(y+kIb, (v)
Atk y€Z/m ¥k yE€Z/m %
it follows that
t - t, = ) (p(y+1)=0{y) )b, (y)
Ak g ve€Z/m ¢

i

(¢(x)-1) 1} P(yIb, (y)

vEL/m
= (¢(k)—l)t£.
We see that ¢ = e({¥k)t, = okt where © 13 the permu-
gtk Ty p
tation in Lemma 2.2. Since all the < are in the same

%

orbit of 0 either they are all zero or all nonzero.

We now assume that T£ = 0(mod p) and consider the

perturbation T described in the statement, in particular
we take Ay as in (%.3) and assume without loss of generality

that x4 # q-1. Let Tl(x,y) = (TOX,(y+Ay)(x)+y). It is

easy to see that

- ) . .
R ana T1 are conjugate via the

P

isomorphism



18

R(x,y) = (x,y+x{xs}(x))

so that these two maps have the same cyclic structure.

- q_l e o -
Let Ci = T%(D,i) and aﬁfz) = card(T 0 ¢ 1(2)).
3=0 .
X ]
Suppose X, = TO(G) and (xﬁ,yg) = Tg(o,i). By the above
" Jo- 1 .
we also have (x_,y.) = T (0,%) and so y. = & #+ Z y(Tdo) .
0°n 1 0 559 0
Then
1 if gz = ¢(y0+(Y+AY)(xG))
ag(z) - ag(z) = -1 if =z = ¢(yO+Y(xD))
0 otherwise.
It follows that
t, - t, = Y oozla (z)-a,(2)

Z/p

]

¢(y0+(Y+Ay)(xO))— (yD+Y(xG))

it

¢(yO+Y(xO))(é(Ay(XO)}—1).

But ¢(y) # 0 and @(ﬁy{xo)) = ¢(i) # 1 since ¢ is one
to one. It follows that té £ 0. o
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§5, The Estimate of the Multiplicity from Above

Let L be the set of measurable functions vy : X - Z/m.
To describe the topology on L we identify Z/m with the

set {0/m,1/m,...,(m-1)/m} ¢ [0,1). Let us define

HYl"Yzﬂ = IX]YI(X)myz(x)fdx.

For a finite partition & let us define L(&) = {yeL: vy

is constant a.e. on each C € £}. Let &' = £ x €7 /m

1"t - t .
and §&§" = &' x EGF(p) be the natural extensions of the
partition & to X x Z/m and X x Z/m x GF(p) respectively.

If TO: ¥ » X permutes the elements of § and vy € L(E)

then the extension Tl in (1.1 permutes the elements

£', and the double extension T in (1.2) permutes the

elements of £V,

Lemma 5.1l. Suppose : X » ¥ is a measure preserving

0
transformation which admits an a.p.t. TO n with speed
3

f(n) such that in + ¢ 1is the seguence of partitions

permuted by T, Suppose ¥ € L, v ¢ L(&n) and

0
”Yq-YH < g(n). Then the extension Tl in (1.1) correspond-
ing te Yy has an a.p.t. T, with speed f(n) + g(n),
wheare Tl,n is given by
{ 1 = + .
(5.1 Tl,n(x’y) (TO,HX°YH(X) v)

In addition, the double extenzion T in (1.2) has an

: i o T + +
a.o.t. T2,n with speed f(n) z(n}), where Tz,n is

given by
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(5.2 ngn(x,y,z) = (TD,nx,Yn(x)+y,¢(y)+z),

Proof. Let us define

' -
Ti’n(x,y) = (TO,nX’Y(X)+y)

and let u' Dbe the normalized product measure on X x Z/m,

Then
1
cég‘ u (TICATl,nC)
It
s ], oui(Ticary C) v ) w'(T; CAT, O
CeE ’ cég! i > T

n n

< cle “(TOCATO,nC) + Hyn~yﬂ
I3

= f(n) + gln).

The second statement follows from the first.

Let TD be a measure-preserving transformation which

admits a cyclic a.p.t. TO n with speed o(1l/n).
3

Definition 5.1. We will say that Yo ig of type 1 if the

extension Tl,n of TO,n correspondlng to ¥y, 1s cyclic.
Sh] 7 at is of g 1: ho

We will say th Y, is of type 2 1f both fl,n and

T?,n have wm c¢ycles.

Definition 5.2. Let us define F(TU) to be the set of ail

y € L such that there exists Yo 7Y where Yy ig of

type 1 when n 1is even, Y. is o: type 2 when n 1is odd

and EYH"YE = o(l/n).
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Definition 5.3. We define W to be the set of all pairs

(TO,Y) such that:

(1) T, has continuous spectrum and admits a cyclic
a.p.t. To,n with speed o(1l/n) suech that (qn,m) = 1,

where q_ = card(gn) and
(i1} v € (T,
The following is a general lemma on the continuity of

the spectrum of a finite cyclic group extension:

Lemma 5.2. Suppose TO and vy are chosen so that

(TG,Y) ¢ W. Then the extension T. of T, corresponding

to Yy, given by (1.1), has continuous spectrum.

The proof depends on the following lemma.

Lemma 5.3. Suppose {To,y) € W. TFor k ¢ Z/m"* let

? = ky-1 and let %1 be the Z/m extension of TO

~

corresponding to Y. Then Tl ig ergodic.

Proof. Since vy ¢ P(TO) there exists a sequence of type 2

Y, such that HYn—YH = o(l/n). If we define ?n = oy -1,

then by Lemma 4.1.

t(yn) = kt(yn) - t(1l) = -q,,-
. » '?_ s . ~ r z & " Fad ' T
We will write Tl,n for the %/m extension of 0.0
corresponding *to ?n' Since (qn,m) =1, ?n is type 1
and so %7 n is a ¢cyeliz a.p.t. speed o(1/n) for %1.
_ 1,1
Tt fellows from Thecrem 3.1 that T i ergodic. o

1
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Proof of Lemma 5.2. We consider the UT invariant

orthogonal decomposition

L (X xZ/mZ) = ® H
2 keZ/m <
where
Hk = {xk(y)f(x): ¢ LZ(X)}'

fTach eigenvalue ¢ corresponds to an eigenfunction of the

form Xk(y)f(x) € H for some k. Since

k
QXk(y)f(x) = UTlxk(y)f(x) = xk(y(x)+y)f(TOx)
and since XE = 1,
fm(TDx) = cmfm(x).

The continulty of the spectrum of TO implies gm = 1,

We next establish the ergodicity of Tl' Since

Y € ?(TG) there exists a sequence of type 1 Y such that

ﬁyn-yH = o(i/n). By Lemma 5.1 Tl admits a cyclic a.p.t.
speed o(1l/n) and it follows from Theorem 3.1 that T, is
srgodic.
Ergodicity implies that the eigenvalues Cj of UT
1
Zsrm a subgroup of the m'th vrcots of unity and thus
Qj = exp 2ﬁijﬁl/m, o= D,...,ml-—l
where mlim and 2, = m/m,. Sirce each eigenvalue L is

{H

imple, the associated eigenfunzzion Fj € Hk for some
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k ¢ Z/m. The relation between j and Xk is that 3J = y(k)
for some function ¢ : Z/m1 + Z/m . We may assume without

loss of generality [11] that Fij, = F from which

34§
it follows that ¢(i+j") = p(3) + ¢(3'). In fact, ¢ 1is
one to one since otherwise there are two eigenvalues ¢ and

r' corresponding to different eigenfunctions f and {'

in HO, contradicting the continuity of the spectrum of

Ty Thus () = Kk j for some k € Z/m*. It follows that
Xw(j)(Y{X)}f(TGX) = le(x)

and so

(5.3) : Xq j(ky(x)—l)f(qu) = f(x).

1

Ye note however that (5.3) implies that the function

XR 1.(3,’)‘5(:){) is an invariant function for the transformation
1..1

(i)
=
pe

1

cf

constructed in Lemma 5.2. This contradicts the ergodicity

~
m
i

1 o

Proposition 5.1. Let (To,y) ¢ W, Then the double extension
T in (1.2) has continuous spectrum with maximal spectral
multiplicity m. Moreover the spectrun in B H is

WwEGF(p)* 7
homogeneous with multiplicity m.

rreof. Since y € T(to} there zxics*s v_ =+ v such that

vy, is of type 2, and by Lemma .1 ar m-oyclic a.p.tT.

.
-

spead ol(l/n), T2 n of T. By Thecrem .1 the maximal
3

[
ol

ectral multiplicity of T is =

nJ
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2.3 it is at least m.

By Lemma 2.3 the spectra in each Hj of the decompo-
sition (2.1) are identical. It follows that the spectra
in each Hj are simple, since if not the multiplicity
would be at least 2m contradicting the upper bound.

Now . suppose that f is an eigenfunction for

U _++ Then at least one projection f. into Hj
T, . en™ ]

is nonzero. Let f f be the images under the

0’ " "m~1

operators Sk in (2.2) of f5 in the spaces HO,...,Hm“l.

Then fD”"’fm-l are a set of m with the same eigenvalue.
]

If we let fj = fj/fG then the functions fé are a set of

invariant .functions, which for 3j > 0 are not constant.
We now show that for j > 0, fé L H* where H* 1ig

given by (2.1). It is clear that UT is equivalent to
H®
UT . By Lemma 5.2 T, is ergodic and thus has no invariant
1 1
functions besides constants.

For some 7 > 0 let f5°"'=f;,1 be the images of
f; under the operatcrs Sk with f; € Hk. The functions
-
':C”

,...,f; , are a set of m non-constant invariant functions.

Together with the constants this implies that the multiplicity

o

cf 1 in the spsctrum is m+ 1l contradicting the established
upper bound. It follows that the spectra in each Hj are
continuous. This fact combined with the continuity of the
spectrum of Tl impiies T has continuous spectrum. It is
clear that the soectrum in H%* is disjoint from the spectra

i the H-. Otherwise the multiplicity at some point would

e m+ 1 contraiicting the upper bound. o

-
e
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§6. Genericity

To complete the proof of Theorem 1.1 we must show that
(TO,Y) € W generically. In §5 we defined a topology on
the set of Y € L. We now recall the definition of the weak
topology on the set U of invertible measure-preserving
transformations of X. For T € Ul a subbase for the

neighborhoods of T 1is given by sets of the form

N(T,&,g}

{s: ) u(TCASC) <€}
C €

where £ is an arbitrary finite partition and € > 0. We

give the set of pairs (TO,Y) € U x L the product topology.

Proposition 6.1. The set ¥ has a subset which is an every-

where dense Gé subset of U x L in the product topology.

Proof. Let gn +~ & be a fixed sequence of partitions and

f(n) = o{l/n) a fixed speed. Define Zn the set of cyclic

measure-preserving permutations of the elements of En. For

o € Zn we define

Uc(in) = N(o,gn,f(n})

and

Y U U (£
=N gez ¢ D

1 n A

Let U be the set of those elements of U1 which have

2 1
continuous spectrum. In [5] it is proved that U1 contains
a subset which is everywhere dense and GS in U, It

follows from the fact that the TO with continuous spectra
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are an everywhere dense G, set [111, that U, has an every-

where dense 65 subset in U.

We now make some definitions: Let
B(y,f(n)) = {y" €L : {ly-y"{l<f(n)}
and for .j = 1,2

Lj(a,gn) = |y GL(gn) :y 1is type Jj for ol

We also define

v (gn) = U Bly,f(n))
g o€L. (G, )

] n

where
1 if 24n

j =

2 if 2in.

Let

W = n U U (U (2. ) =V (£}
1 n=1l n=N OEZn o n c n

and W be the set of those (TD,Y) € wl such that T

2 0
has continuous spectrum. If (TO’Y) € w2 then T, ¢ u2
and y ¢ F(TO). Thus w2 c wl ¢ W. Since w2 is GS it
remains to show that w2 is everywhere dense.
By Lemma 4.2 and Proposition #.1, for any vy ¢ L(gn)
. +1 .
there exists ' ¢ Lj(o,gn) such that fHy-y'll s 2q . Since
n

. . 1
for y, € L there is a v ¢ L(g ) such that UYU"Y'H:Sﬁa;,
: it b . e m+ 2
we can find ' € L.{o,f ) such that [ly,-v'l = , for
3 n 0 mq
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Let TD n be a cyclic a.p.t. speed f(n) of TO on
L
a subsequence £ _ . Refine this subsequence further so that
x
(6.1) m+2 < f(q_ ).
mq Ny
D1
Let us define
vty = a0 U v (&)
0 N=l ksN To,n, "k
- and
Wy = {(TD,Y) t Ty € Uysy € V(TO)}.

Clearly wé < wz.

To complete the proof we will show that U(TO) is dense

in L. Given vy €L and ¢ > 0 we choose n large

1
enough so that D, # @ where

1
Dl = LK(TO,nl’gnl) n B(Yo,e).
Given Yy € Dy let us define Dyt inductively by
D. = L (T 3 ) N By, ,sf(q_ 2).
k+l k¥l 70,0, 37 Dy Kk .

I+ follows from (6.1) that £ @&. Furthermore

Dk+l
Yy 7Y € U(TD), and HYO“Y” < e, o
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§7. Interval Exchange Transformation

In this section we show that our construction may be
realized as an interval exchange transformation. Recall
that an invertible transformation T : [0,1) - [0,1) is
called an interval exchange if it is piecewise continuous,
Lebesgue measure preserving and orientation preserving. The
simplest nontrivial case is when three intervals are
exchanged according to the permutation (1,2,3) - (3,2,1).
Katok and Stepin [ 1 have shown that for aimost every pair
(a,B) with o < B the transitive three interval exchange
with discontinuities o and 8 has simple continuous
spectrum.

The pfoof relies on the following fact. plesB8) 4o

equivalent to the mapping induced on the interval [0,B)

by the rotation T(A): fo,1y ~ [0,1) where TAX =

(x+A) = (mod 1). The relation between o, 8, A and B is
given by

C l_ _ B_a
(7.1 A = TTh-a 1-B = Ty373

Note that a finite cyclic group extension of an interval
exchange is an interval exchange provided Yy 1s piecewise
constant. The following theorem is the second main result

of this paper.

Theopem 7.1. For any m > 1 there .. ists an interval

exchange transformation T which is ergodic and has

continuous spectrum of multiplicity m. In fact T has
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the form (1.2) where TD an exchange of three intervals

and vy 1s piecewise constant with three points of discontin-

uity.

Proof. We choose (a,8) such that T, = T(Q’B) has simple

0

continuous spectrum and such that the following conditions

holid

{(7.2) There exists & sequence qQ, * @ such that for some

P and L
A-P_/a_| = o(1/a’) and |B-r /q | = o(1l/q).

(7.3) (q_,m) =1
(7.4 a > 1/2.

These conditions clearly hold for a set of (a,8) of positive
measure. Condition (7.4) is equivalent to the condition
1-A > B/2.

It suffices to show that there is a plecewise constant

Y € T(TU). We write Tg = T(A) and consider first an
extension of Tg by a piecewise constant. vy € T(Tg} such

that supp v ¢ [0,B), where a, B, A and B are related

as in (7.1). Let 5; = {[k/gn,k+1/qn): kK = O,...,qn-l} and

14}
t

TE,RX - (X+pn/qn)(mod 1). L £, be the restriction of
g% to the interval [0,r_ /q ) and To,n the mapping

* on [0,r /c ). It is clear from (7.2) and
G,n n °n
TH and T determine cyclic a.p.t.'s

C,n g,n

induced by T

(7.3) that
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speed of(l/n) of T% and Ty respectively.

We will define Y, > Y inductively such that at each

step

o XQ:}.,nUQz,n
where

Ql,n - [gn’hn)
and

QZ,n ) [hn4-pn’rn)'

Also define yé corresponding to gé and hé. Choose a

subsequence of q_ - « such that g

2
. > q.- Assume that

ntl

Qq is large enough that for some arbitrary 0 < gy < hl

the inequality

(7.5) 0 < g, < hn < hn + P, < 9y P, < Ty <4,

holds for n = 1. This determines Yy

We now show how to construct Y;+1 given y_ . Let us

define
" - ’ .
g = min|g /q_ - i/q
n+l jEEJ n *n n+1;
' . = min} h_ /g _=-3/q ,
n+i jEEJ n ‘n n+1J

The construction breaks into two cases depending on whether

Y, 1is of type 1 or type 2. If we let s, =T, " Py~ 9,

then t(yn) = sn(mod m). By Lemma 4.1, if Yo is of type 1
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then (sn,m) = 1 and if Yo is of type 2 then

- . " - - - "
s = O0(mod m). Let us define S 41 - Tnel T Puel T panc

Case 1. Yn is of type 2.

We wish to construct Y;+ of type 1. If (s", .,m) =1

1 n+l?
then let g;+l = g;+1 and hé+l = h' .. It follows that
y£+1 is-of type 1. If (s;+l,m) # 1 then there exists
k < m such that (s;+l+k,m) = 1. Let q;+l = q;+l + k
and hg+l = ;+l' Y£+l is of type 1.

Case 2. Y, is of type 1.

'

Tnel
but only that t(Y$+l) = (0. To do this we repeat the

Tn this case we do not require that be of type 2

procedure of Case 1, making g;+l gg+l + k for some

k < m if necessary to insure that t(y%+1) = p

ntl ~ Ppsl

! =
qQr4q = 0(mod m).

We note the following fact. If T (x,y)

1,n+l

(T Y;+l(x)+y) then the cyclic structure of T

0,n+lx’

depends only on the type of y_. The corresponding fact
n

i,n

L,

for T% is the consequence of .r2 construction of !

O,n+1 n+l’
The statement for TD N+l focllows from the remark that
3
TO n+l is equivalent to the transformation induced on the
b

interval [O,rn+l/qn+l) by Tg,n+l’ and that

supp(Y£+1) < {D’Pn+l/qn+l)' Consequently we need only

consider extensions of the three interval exchange Tg,.
The final step is to show that we can construct v,

1 m
from Yre1l such that Y, ot where vy € ?(so). In the
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case where Y. is type 2, Y.

n4l 1S type 1 and so we

1

define yp,1  Ypp1 MRKIPE Epen ” A

- t
In the case where Yo is a type 1 we must insure that

Yo+1 is of type 2. We consider the double extension

Tz,n+1(X’Y’Z) - (Tg,n+1’Y;+l(X>+y,¢(y)+z).

. . o
If Tz,n+1 has m cycles then we agaln define Y_,q 7 Ypup-

1f not then we apply Proposition 4.1 with

AYI’H’l = XR:L - XR?L
n+l “n+l
where
gt . = [n',./a (h! .+ 1)/a_, )
n+l n+l’ Fn+l’ T ntl n+l
-1 - ot !
Rn+l B [(nn+l+pn+1)/qn+l’(hn+1+pn+l+ l)/qn+1)'
Tt follows from condition (7.4) that Ay .4 is of the
- . . - 1 .
form (4.3)., Thus we define Y .4 7 Yp47 DAY 410 making
- gt = Bt
En+l T En+l and hn+1 hn+l vl
Inequality (7.5) follows from the inequality qn+l:>qi.

1n addition we have the following

18ne1/9ne1 T g,/ q,1 < m/dne

!hn+l/qn%l - hn/qn! < 2/Ap,
! . - 2
1Ppe1/9ne1 ~ pn/qn% = o1l/ay)
i _ Ja 1=

5rn+l/qn+l v /q o(l/qn)

andé so
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m+ 2

qn+l

H

<

+ o(l/qi) + o(l/qn) O(l/qn).

1Y ey =Y

It follows that

ly,=vl = oi/ay).

Letting G = lim g and H = 1im h_ we have
oo n N--oe n

Y F X H)UTH+A,B)

Thus vy € F(TO) and vy 1is piecewise constant.

We note that the minimum number of intervals exchanged
in this example for My = m is  6m p(m), where p(m) 1is
the prime satisfying Lemma 1l.l. Thus, in these examples
MT is always much less than the theoretical upper bound

in terms of the number of intervals exchanged, given in the

introduction.
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CHAPTER I1. A MIXING TRANSFORMATION WITH NONSIMPLE SPECTRUM
OF FINITE MULTIPLICITY

At the beginning of Chapter I a general construction
was presented, such that starting with an arbitrary measure

preserving transformation T and any given natural number

¢
m=> 2, a new transformation T could be obtained satisfying
MT > m. The bulk of the chapter considered specific choices

of T and the other parameters of the construction so that

0
T would satisfy Mp = m. In order to do this we required that

poth T and T admit good approximations by periodic

a
transformation, a property implying the absence of mixing.
(ef. [18]).

There'is a somewhat weaker approximation property which
does not necessarily exciude mixing, namely that T admits
a cutting and stacking construction of some type. There
are also conditions on cutting and stacking constructions
which imply upper bounds on the spectral multiplicity in a
manner analogous to the estimates used in Chapter I for
transformations admitting good approximations. An example
of a transformation satisfying all of these conditions is
Ornstéin's rark 1 mixing trancformation, which has simple
spectrum {(cf. §2). In this chapter, starting with this
transformation as T and applyinz the general construction

0

from Chapter I, we obtain a mixing transformation T such

that 2 £ ¥_ < &. Using generalizations of the methods in

this chapter, it is possible tc produce, for any m = 2, a
mixing transfcrmation T satisfying m = MT = mP(m), where

P(m) satisfiez Lemma 1.l of Chapter I.



§1. Group Extensions

We begin by recalling the general construction from
Chapter If Let T, (nguo) > (XO,UO) be a measure pre-
serving transformation of a Lebesgue probability space and
let vy: Xg ™ %/m be a measurable function. A new Lebesgue

space (Xl,ul) = (XGX %/m,uox Gz/m) is constructed, where

szm is the normalized Haar measure on Z/m. We define
the %Z/m extension T, of T, corresponding to ¢ by

T, : (Xy>1y) = (Xl,ul),
Tz(x,y) = (TOX,Y§X)+y)-
The function Yy 1s called the cocycle of the extension.

Let us consider the extension (1.1) in the case m = 2.

Let ¢:Z/2 > w/3 be the function

1 if y =0
(1.2) ¢y} =
2 if oy = 1
znd let (¥X,u) = {Xl,x Z/35u-% 3,,,0. We will consider
tr= 7/3 extension T of 7. corresponding to the cocycle ¢:
T (X,u) » (¥,u2
T(x,y,2) = (Tsx,y(x)*y,$(y)+z)

wrioh we will call the seccond exzensiosn. It follows from
crapter I, Lemma 2.3 that M. z <. ~ris estimate depends

i- a fundamental way on the c<hoice (1.2) of the cocycle & -
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The algebraic interpretation of ¢ given in Chapter I will
be studied in greater detail in Chapter III, §1.

We will now state the main result of this chapter.

Theorem 1.1. There exist TQ and vy such that the trang-

formation T of (1.3) is mixing and satisfies 2 = MT < 6.

We ﬁote that we do not explicitly determine MT or
even MT for this example. In fact we know of no way to
construct any mixing transformation T, with 1 < Mp < ey
where a better estimate of MT is possible. The remainder
of this chapter will be primarily devoted to the proof of
Theorem 1.2. This section will be concluded with a compil-
ation of some basic facts about group extensions which will

be needed for this proof.

Lemma 1.1. §uppose T1 and § are measure-

preserving transformations of (Xl,ul) such that:

(i) T and S commute.

(ii) 5 is periodic and has least period m for almost
every x ¢ X. Then there exists a measure-preserving

transformation TD of a Lebesgue space (XU:UO) and

measurable Yy : X. = %Z/m such that T is isomorphic to

0 "1
the Z/m extension (1.1) of Ty
oroof, There exists a partition
v = {A,:3 = 0. ,m-1d
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of Xy such that u(Aj) = 1/m for all Jj, and
SAj = Aj+l’j < m-1

(1.3 -
SAmml AO

(I 1 p. 70). In other words A ig a fundamental domain

0

for the action of 8. We define XO = AO and My

and we identify Aj with Xy % {3y, J € %/m. The

= (1/m)ul,

transformation

TD :(Xe,po) > (Xo,uo)
is given by
(1.4) , T sTHTR) ()

where & :Xl +Z/m is defined by (x) = 3] 1if x € Aj'

The cocycle Y 1s the function
yix)y = (Tx)

for x € XD. a

Civen a measure-preserving transformation T on

0
(Xﬁ’u0>’ two cocycles  y,y' :XO + Z/m are called cohomolo-
gous (ef. [18]1) if there exists a measurable ¢ : X = Z/m

guch that
(1.5) vix) = Y'(x) + ¥(Tx) - ¥(x).

A cocycle y is called a coboundary if it is a trivial

ccovele, i.e. if
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(1.6) y(x) = P(Tx) - px).

The function ¢ in (1.5) and (1.6) has been called the

transfer function by Kocergin [18]. If T, 1is ergodic,

0
then if ¢ exists it is unique up to a constant. The

next fundamental lemma is well known.

Lemma 1.2, Let T be a measure-preserving transformation

0
of  (Xyr¥g) and let Yy and Y' Dbe cchomologous cocycles.
Then the extensions (l.1) corresponding to y and vy' are

isomorphic.

proof. The argument is almost trivial. Let ¥ be the

tpransfer function (1.5) and define the transformation Sw
(1.7) sVix,y) = Cx,p(x)+y).
penoting by T, and Ti the extensions corresponding
respectively to y and Y’ it follows from (1.7) and
(1.5) that
ToesVGay) s (TG GOy
= (Tox,y'(x)+w(Tx)+y)
!
= Soni(X,y). 0
An immediate corollary of Lemma 1.7 is
coyollary 1.1. If T is ergodic then T, is ergodic

1

and vy 1is not a cobocundary.
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Proof., If y is a coboundary then T is isomorphic to

1

TO x id on XO x Z/m 0 there are m invariant sets of

positive measure. If T, is not ergodic then there is a

nonconstant invariant function f{ for TG' Extending
f trivially to X1, we obtain a nonconstant invariant
function for T, -

1

For the sake of completeness, we state a converse to
the last lemma. Let R(y) denote the essential range of
y in %/m, and for Z ¢ Z/m, let <Z> denote the sub-
group of Z%/m generated by Z. To each cocycle Yy we
assign a subgroup GY of %/m defined by

GY = $<R(Y+W°TU“¢)>-

is ergodic. Then T isg

Proposition 1.l. Suppose T 1

0
ergodic if and only if GY = Zlm.

proof. If GY £ 7/m then there exists a cocycle !
cohomologous to vy such that <R(y")> = Gy. Let T be the

GY extension of TG corresponding to y'. T is then

1
isomorphic to (%/m)/@Y extension of T corresponding to a
coboundary y". It follows from Corollary 1.1 that T, is
not ergodic.

Conversely, suppose Tl is not ergodic. Let E Dbe
an invariant set such that © < p(E) < 1. By the Fubini

Theorem, for almost every x € J, there exists E ¢ Z/m

such that
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E = U {x} xE , E =Z/m,
X e

xEXG

Let S, :Z/m - Z/m be defined Sgy = y+1l. By the

invariance of E,
d(x)

for Mg almost every x. The ergodicity of T, implies

that these sets Ex are all translates of one another in

Z/m, so that there exists %O ¢ Z/m, 0 ¢ EO’ and measurable

2 Q¥(x) .
v such that By = SD Ex' Since 0 < ul(E) < 1,

v = '
5z/m(Eo) = k/m for some 0 < k < m. Let y'(x)

-y (%) + w(Téx) - Y{x) and let Ti be the Z/m extension of
Tg corresponding to y'. By Lemma 1.2, T, and Ti are
isomorphic and the invariant set E for T, corresponds to

N . ~ ~ T
the invariant set E = XO * EO for Tl'

~

loss of generality that E 1s an ergodic component for T

Assuming without

H
l)
it is straightforward that ﬁo iz a nontrivial proper sub-

group of Z/m. o

Definition 1.1. Let T, be a measure-preserving transforma-

tion of (XO,UO) and let vy, be a Z/m cocycle. Define a

new family of cocycles k, k € Z/m, and corres-

ponding extensions The m different extensions T

T .
"1,k

will be called complementary extensions to the extension

1,k

Tl = il,C‘ (1.1).
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Lemma 1.3. Let TO

mixing if and only if a1l the complementary extensions

be weak mixing. The extension Ty is

T k € Z/m are ergodic.

1,k°
The proof of this lemma is similar to the proof of

Chapter I, Lemma 5.2,

In the next theorem, (i)is due to Thouvenot (unpublished)

(ii) dis due to D. Rudolph (unpublished).

Theorem 1.2. (i) If T, is mixing and T, is weak mixing

0

then T, is mixing.

(ii) If T is mixing or order k and T is weak

0
mixing then T, is mixing of order k.

This theorem is also true for the K-property and [29] the
Bernoulli property, and is true for extensions much more

general than the sort considered here.
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§2. Cutting and Stacking

We begin by reviewing the well known cutting and stacking
method for constructing a Lebesgue measure-preserving trans-
formation of the unit interval I = [0,1) (cf. Friedman [ 61]).
A tower T of height h = 1 is an ordered collection of h
disjoint intervals of equal length, called levels, together
with a transformation T which carries the first h-1

T

levels linearly into their successors. TT is undefined on

level h. The first level is called the tower's base; the

last its top. The width of a tower is the length of its base.
Two operations are defined on towers:

(i) A tower T of width w may be cut intoc p towers

w., as follows: the

1t T

T., 1 = 4§ = p of widths w., W =
1

base of T is partitioned into p subintervals having

3

lengths w., 1 = J = p; Tj is define¢ as the h consecutive

T, images ©f the Jjth base interval; and TT = Tp
3 T
The cutting operation will be denoted by J
o= T Tl T

~~
e
!J.
St

U

disjoint towers Tj, 1= 3 = p, having equal

widths may be stacked to form a new tower T, denoted

T = T T © T
1° 2 o
in the foilzwing way: the levels of T are the levels of
the T., 2 =i =p. Tr ig definsd t2 L& some TT wherever
- ]

they are deiinei, arnd extended to carry the Top of each T.



1 =3 =p linearly into the base of T§+l'

A Lebesgue measure-preserving transformation may be con-

structed inductively by cutting and stacking as follows:

Step 1. The unit interval [0,1) is cut into m sub~-

1

intervals T sevend , called l-towers., Since each
1,1 l,ml
l-tower has height 1, no transformation is yet defined.

Assuming that Step n has been completed, suppose that

s T have been defined.

n-towers T ‘e
Ty n,l’ nym_

Step n+l, The cutting and stacking operations (i) and (ii)
are each applied to the n-towers a {inite number of times,

The resulting towers: T o T are the (n+l)-

n+l,1”7 " ‘n+l,m

n+ 1
towers.

Let wn denote the sum of the widths of a1l the towers
at the end of Step n. To insure that the construction con-

verges, we will assume that wn -+ 0 as n - «. We can then

define
(z2.1) TR = TT X
n, i
whenever
(2.2) ®x € Domain (TT Y.
n,i

It is clear that T is defined for almost every x, since
for almost every x there is an n large enough that (2.2)
hoids for scme 1. Thus (2.1) defines & lehespue measure-

[9,1), called the limit

+h

preserving transformation T ©

transformation of the cutting and stachin: construction.



ny

Let »r. denote the number ©of n-towers of height
h > 1. It is customary to refer to towers of height 1 as

spaces.

Definition 1.1. A cutting and stacking construction is said

to be rank r if r, =T for all n. The rank r of a
transformation T is defined as the least positive integer
r such that there is a rank » cutting and stacking
constructicn for a transformation metrically isomorphic to
T, If there is no such construction, then T 1is said to
have infinite rank.

We note that if a transformation is constructed by a
rank r construction, its rank may actually be less than r.
The definition of the rank of a transformation which we have
given here is equivalent to various other well known
definitions, although the term '"rank" has not always been
used {cf. [22],08],02:7,0[1u1).

We will now state two theorems whichare important to the

constructions which will be given in the next section.

Theorem 2.1.. (i) (Baxter [ 171) A rank 1 transformation

T has simple spectrum.

(ii) (chacon [ 53) A rank r transformation has

maximal spectral multiplicity MT < 7r.

Thesrem 2.2. (i) (Ornstein [72]) There exists a rank 1

mixing transformation.

(ii) (D. Rudolph [30]) There existse a rank 1 tirans-
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formation which is mixing of all orders.

kKalikow [15] nas shown that if T is rank 1
mixing then it is mixing of order 2.

We will now prove a criterion for the ergodicity of a
cutting and stacking construction which is fairly general.

As before, let T T be the n-towers of a

n,1 "’ n,my
cutting and stacking construction (including the spaces).

We will assume that these towers are ordered so that there

heights hn,j’ 1 =3 s m s satisfy

1A
g

<., <h_
n,?2 LIS

Let w_ 5 "be the widths of these towers and

We will define the nth height function

Hn: {O,wn,m Yy » [G,>)

n
bv
h if w o< W_ !
n,l n,.L
H (%) =
n
h 1f W . < ¥ < W , L < 1= m .
n,J n,i-1 Tiy n

We will also define step functions

ey
~

P
Gn =

1
i
-
3
-
~—

n,m_ N,
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where p =0, 0 =g =W o A pair (pn,qn) will be

Iy
n
called admissible if P = h X and qQ, - wn,k-l for some
P, 4
1 <ksm and 6 % =H_.
n n I

Definition 2.2, We will say that the construction satisfies

the uniform growth condition if there exists an admissible

sequence of pairs (pn,qn) such that lim 1 1. The

I~
n-itowers Tq 3 for j = k, will be called substantial and
aly
E = h o will be called the minimum substantial height.
b
Let Tn 5 1 <3 = in, be the substantial n-towers
2
(renumbered), let Bn 3 be the bases of these towers, and
% ’
let B = U B_ .. 1y will denote Lebesgue measure,

Tl j':l n,j
normalized so that un(Bn) = 1, and Zh will denote the

partition of B, into the sets B We will say that

Ts,j
A € ACz ) if A is the union of elements of G and A
n

will denote the complement of A in B -
gince T gpreserves Lebesgue measure, almost every point

® € Bn is recurrent and it is possible to define the induced

map
: (B - (B 4u )
TBn ( n’“n} n*'n
as folleows: Tor x € Bn’ let
£ (x) = {min tz1:7 x€&3_}
- L i
t_(x)
Thenn T. X & 7T e X
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Proposition 2.1, Let T be the limit transformation of a

cutting and stacking construction satisfying the uniform

growth condition. Then T 1is ergodic if

un(TB ANA)
I

lim sup min " > 0.
Ti->c0 AGA(QH) Un(A)]Jn(A)
U<un(A)<1

Proof., Let a > 0 be the upper limit in (2.3). Suppose

P is an invariant set, 0 < W(E) < 1. Choose

o
0 < § « &5 w{E) u{E)
where I is the complement of E in [0,1). Let ¢

n
denote the partition of [0,1) intc levels of the n-towers.

G G

~
there exist E' and E', both unions of elements of En’

Clearly gn + g, so that for some large n, and all n = n

such that E' USE' = [0,1), E'NE' = ¢, and

H(EAE") < & min(u(),u(E)),

W(EAE")Y < & min(p(E),u(E)).

13}

Now let us consider a level ( ¢ £, € (CNE)Y U (cnB),

and the invariance of E and E imply that

1

u(TkCﬂE) u(CnNE)
(2.4) and

(o 1)

U(ch n
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whenever ch is another level in the same tower as (.
Thus, we can assume that E' and T' consist of entire
towers with the error distributed equally among the levels
of each tower.

By making n, larger if necessary, we can insure that

for all n = ng,

(2.5) 1-pg, <38 min¢u(E), u(E)).

Finally, by (2.3), there exists n = n, so that

un(TBnAFlA) 3
{(2.6) min > ok

A€A(T ) un(A)unC&)
O<pn(A)<l

Beginning with the substantial n-towers T ,...,
¥

we vemove the top few levels to obtain new towers

each having height h_. E" and E" are

A n

,150O' n,g’
defined to be the unions of all levels of those truncated
towers corresponding, respectively, to the n-towers belong-

ing to E' and E'.

Let A and A be unions of the bases of those towers

contained, respectively, in E" and . Clearly
A, A € A(Cn). By (2.4%), and because tne towers T; : all
k]

have height Hn’

L (Faay = BGERED O Loul
n )

E
u(E"y £ pnqn
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and since by (2.5), P.a, > 1~-48, it follows that

un(%’nA) < I—i—é— w(ENEM

’...._1

L wEnEM

1

2
-0

O

p(E) < Udu(r),

!

l._:

for sufficiently small &8, Similarly,

p(E) < (") + (l»pnqn) + wWE AE')

< w(E") + &u(E),

s0 that
(E) < —2 WE") < 2p(n™)
H =728 * o
and
uﬂﬁéhA) < 8&u(E")
(2.7 = 8sp a ()
= Béun(A).

Reasoning in the same way, we obtain
(2.8) un(ErlA) < SSuH(A).
It fellows from the choice of 6 that

5 < = W(EdR(E)

(2]

< fL un{A)un(A)

(027

ap (A) L (A)

Fod b
lS(un(A)+un(A)) -
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soc that

(2.9) £ u (A (K) - 88u (A) > Bsu (A,

‘Then, by (2.6), (2.7) and (2.8)

v

un(EFWA) > un(TB (ENAYNA)

n

v

un(TBnAF}A) - un(E(3A)

o ~r
E un(A)un(A) - BGuH(A)

> 86un(A)
contradicting (2.8). It follows that T 1is ergodic. o

A parficulavly convenient corollary to Proposition 2.1
appears if we impose two additional conditions on the cutting

and¢ stacking construction.

F - - - : : j
pefinition 2.2. Let W H(BH) and w 12§2£ “(En,j)'
=J=Ay

A cutting and stacking construction will be said to have a

grcwth coefficient o > 0 if

(2.10) W

1 X
ne1 S 5 W for all n.

We note that it is always possible to make o as

largce as we want by combining several construction steps.

Definition 2.3, Let B be the union of the bases of the

substantial n-towers. A cutting and stacking construction

sech that B ., ¢ B will be said to satisfy the descending

base condition.
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Wwe now define some useful sets. The set Rn = T"lB

n
will be called the set of roofs of the n-towers. To assign

roofs to individual n-towers, let

sn(x) = ‘min{s=1 . T x eRn}
for = e,Bn. wWe define the roof of the jth n-tower as
~Sn(X)
Rn,j = {x eRn : T ® EBn,j}‘

of particular interest here, is that part of the rocf con-~
structed during Step n+ 1. Let T, denote the partial
transformation defined on the substantial n-towers at the

end of Step n, and let Dy be the domain of T - We define

Dn ) Dn+l\Dn
Rn = Rn i Dn
R = R D
Rnﬁj n?j Q It
and also
_ s (%) _
Bn = {x éBn : T ® ERn}
B = TR
n n
It is easy to see that B = B u B and u(Bn) = u(B ).
For any A ¢ Az ) we will denocte A' = A DN En and
A" = AN B_.

24

corollary Z.1. Suppose that the cutting and stacking

construction for T satisfies the uniform growth condition,



(T A'n An)
n

n
(2.11)  3ip sup min ~ >
N> AeA(Cn) ;Jn{A‘)un(A")
G<un(A)<l

roof. £ is the yppep Limit in (72,4,
Proof, 1 x 3 upp m { 7 then there are

Infinitely MANY n  such that for any 4 « A(z;n),o Su Ay <1,
e ' ~
(2.12) un(TBnAr1A) = pn(TBnA N any

a , .
> = un(A )pn(n )

= g(un(A)-un(Bn\B_n))(pn(;":)~un(8n\§n))
o, s o3 B o2
?Z—(un(A)un(A)—un(Bn\Bn)(pn(A)+g_jn(A) )‘Fun(Bn\Bn) )

a ~ = = .2
§(un(A)un(A) - (gn(Bn\Bn) S up(B B ),

- 2
(2 13) un(Bn\B )y - u (B \B )
) 2
- wn+l wn+?
wn wn
72 b
i (wn T"n)
vl =
0 ) ,
Wn hr
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Combining (2.12) and (2.13) with the fact that op > 1,

~ 1
S1 .=
un(TBnAﬂA) > 2(1 p) > 0.

It follows from Proposition 2.1 that T is ergodie.
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§3. Constructions

In this section we first describe simultaneously, three
cutting and stacking constructions which we will call
construction 1, Construction 2, and Cconstruction 3. Respect-
ively, the ranks of these constructions will be 1, 2 and
6, and the iimit transformations will be called TO’ Tl
and T.,. T will be an arbitrary rank 1 transformation.

2 0

T, will be the Z/2 extension (1.1) of Tg for a cocycle

vy which will depend on two parameters v, w ¢ {O,l}ﬁl. The

tpansformation T will be the %Z/3 extension (1.3) of Tl‘

Following the constructicons, we will show that T satisfies

Theorem 1.1,

All three constructions will share the following parameters:

i) a sequence of positive integers p = 2, n = 2,

ii) for each n = 2, a finite seguence tn 5 of non-
b

negative integers, 1 = j = Py
The choice of i) and ii) will be subject to the following

constraint: If

k .

(3.1) Sn, Kk = .Z tn,j’ n=2 and 1= k= p.s

1-1
and

n

4 = TT p.» n o= 2,

n k=2 k
then
(3.2 ¢ Z Sn,o /pn oo
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We will index the towers of Construction i, 1 = 1,2,3,

by 6 € ©,, where 0, = {0}, 9,

As well as depending on the parameters above, each construction

= 7/7? and 93 = w/72 x %/3.

will also depend on two sequences of permutations of 0,
a(i,n,j,k3+) and B(i,n,Js°J,

< In the case

where n = 2, 1 = 3 =D and 1 = k = t_ ..
n n,jJ

i = 1, these permutations are obviocusly trivial. For

;=2 and i = 3, these permutations will be defined below.

We are now ready to describe the constructions.

Step 1. The unit interval [0,1) dis cut into card (@i)

subintervals Ie, 8 ¢ @i, of equal measure. These, in turn,

are each cut into a l-tower Ti of measure U(Ie)/(u+1)
and l-spacer Si of measure u(If)u/(u+l).

We suppose now that Step n has Dbeen completed so that

for each 8 € Bi’ there is an n-tower Ti and n-spacer

s?.
Step n+l. TFor each & ¢ Gi we cut
S AT LR LA e
into P .4 subtowers of equal width. We also cut
SR C RS
e
Sn+1’pn+l copies
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into s

n+l ,p subspacers of the same width as Tu 5

n+l ?
leaving an interval Si+1 which will be the (n+l)-spacer,
The inequality (3.12) guarantees that this will always be

possible.

Stacking proceeds in three stages. First, we inductively

stack the spacers:

30 (1) = ga(i,n+l,j,1;e)

"

n,J n
and
=0 =8 ~o (i ntl, 3, ks 8)
Lk = A1 o ’ SN IR
§0 400 = 5% G- . os)

(3.1) guarantees that there will be enough spacers. These
piles of spacers are then stacked:

™, = 10,30 e

3 n,3 ° Sn,3 tns1,3?

Fineily, the subtowers ?i 50 i =3 =
3
0

n+l’

Pre1 are stacked by

induction to obtain T

=0 _ p
Tn+l(1) = Tn,l’
-5 ) = . ~8(1,n,33;8) 2
The1(3) = T G-1) = T80 » b 3= Py
and
s _ =0
Thel ° Tn+l(pn+l)'

This completes Step (n+l) of the construction.
Tt is obvious that Constructicn 1 is an arbitrary rank

i construction deperding only on the parameter 1) and ii).

LT U
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We will often drop the superscript © when referring to
this construction. We will also identify the interval
f0,1) with the Lebesgue space (XO’US)’ where Mg will
correspond to Lebesgue measure. By doing this, we can
consider the limit transformation T, a measure-preserving

transformation of (XO,uG).

Lemma 3.1. Let

Ky ~ card{] : tn,j £ 0, 3 = l,...,pn}.
Iif
Kp
(3.3) lim sup — = @
N-roo Pn
then T is not mixing.

0

Proof. Let hn be the height of the n-tower. It 1s easy

to see that for a measurable set E, 0 < pG(E) < L, (3.3)
implies

h
I
UD(TD EAE) - UO(E)

as n = w, Thus T is rigid (cf., [71), and therefore

0
cannot be mixing.

We now consider Construction 2, first describing
the permutations a and 8 needed for the construction.

x will depend on a parameter v ¢ {O,I}EI. We will denote

Vo= (v(Z},v(j}, A

anda
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s
WV Yy e o, MRy,

o ir W o= g
vj’k
0(2;n>j9k58) =
o+l if o™ = 1,
JaeK

The permutation R will depend on a second parameter

w = (w(z),w(3>,...) € 4[{},]_}]N
where
P
w(n) = (mgn},w;n),...,w(n) y € {0,11 nml.
pn-l

The definition of B8 1is similar to the definition of

namely
SR T T LD
3
8(2,n,730) =
o+l if wgn) - 1.
The parameter v(n) determines which spacers to use when

buiiding the (n-1) subtowers T L.
n‘“l:_}

9 and

determines whether or not we exchange the €

(r-1)-subtowers in stacking the n-towers.

Lemma 3.2. If

The parameter

w

()
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then Tl is ergodic.

proof. Let p = lim sup P Clearly the construction has
o

growth coefficient p for any p < p/4. By coﬁbining

several steps if necessary, we can make p > 4 and take

o > 1. Since there are only two towers, any A € A(gn)

with 0 < ul,n(A) < ] 1is the base of one ¢of the towers. Let
Pt

Nn = jzl mgn)- Tt follows from the construction that for

n sufficiently large

T A
((TI)B AT N A™)

U ur —
(3.4) i LI z _Eﬂifﬁ_;i
1
}Jl,n(A )Ul,n(A") (pn""B)
p_~1
. Y fi (3
-y W
Pn 1=1

The statement follows from Corocllary 2.1 by taking the

upper itimit of (3.4). o
We recall that TO: (XG,UD) > (XO,uO) where XO is
the unit interval [0,1). Let (Xz’“l) = (xox /2,

), where § is Haar measure on %/2, so that

Hg X /0 /2

Xl will consist of two intervals XD x {0} and X

each having measure 1/2. These two intervals will Dbe

. . . . .. 0 1 - .
identified with the intervals I and I of Construction

0 x {1},

2, so that the limit *ransformation Tl can be consgidered

a measure-preserving transformation of the Lebesgue space

(Xl,u}.) .
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Lemma 3.3. T, is the %/2 extension of (1l.1) of TO}

proof. Let S : (X ,ﬁ } ~ (X ,Q ) be the map which inter-
1’71 1°71

changes the intervals IG and Il. By the symmetry of

construction 2, this map interchanges the n-towers: Tg
and Ti, and the n-spacers: Sg and Si’ for all n.
Therefore S commutes with Tl' It follows from Lemma 1.1

that T, is a /2 extension. Taking I0 as a fundamental

domain for §, and identifying it with X it can be seen

that Ty modulo § is equal to TS' 0

Let us now analyze the cocycle «y in Construction 2.

gince vy : X, > %Z/2, we can express vy = X thereby

0 E’
identifying vy with its support E. We will also consider

the complementary cocycle Yy' = Y - 1 and its support
E = XO\E-
As in 82, let R, denote the roof of the n-tower

(for Construction 1). During Step n+l of the construction,

the n-tower is cut into Prs1 subtowers, inducing a cutting
. - ] - .
of Rn 1nt§ Prsl subroofs Rn, 3 l""’pn+l' It is
easy to see that
R - an+l
n+i n
and
. pn+lm i
R = U Rn'
n j:l

We define a partition n of Rl by
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n o= {Ri:nzhlﬁjsp 11,

n+l”

_Tor a semi-partition &, |E| will denote the union of
the elements in £. Beginning with the semi-partition £

of X into levels of the single n-tower Tn, we construct

0
a semi-partition g; by removing the top level and ancther

semi-partition £n by removing the elements of gﬂ

contained in elements of gé_l. Clearly
]g;| nojeptl = ¢ i® n # k.
Let us define
be T nES i;:

and note that u0(|g*|) =1 since g+ e, S0 that &,
is a partition of Xge

o~

Lemma 3.4%, i) E and E are measurable with respect to £,

ii) There is a surjective mapping B taking the
collection of sets T measurable with respect to £, onto
the collection of subsets of Ry "measurable with respect

7/2 wvalued

i

to n in such a way that there exists

measurable function wF guch that

(3.5) X (x) = XF(X) + wF(TOX) - wF(x).

e

ii) There 1ls a one tTo one correspondence between sets

G ¢ Ry which are measurable with respect to and choilces
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of the parameters w, v £ {D,l}]N for construction 2 such

that vgni = ¢ for all n, 3}, k. More specifically,
?
R) ¢ @ if and only if wgn) = 1.

proof. 1)} We consider the tower levels Ll of the n-

tower Ti of Construction 2 such that Ll C 1% and
0¥ .
TLl c I l. For the corresponding level L2 of Ti,
B+ 2
L2 ¢ I > and TL ¢ %. By Lemma 1.1, the union of all

such levels, modulo §, is the support E of Y. E is
clearly &, measurable. It follows that E is &,

measurable.

ii) We first consider the special case F € £,. Let

+ be the least non-negative integer such that TtF ¢ Ry
wWe define B(F) = TtF and note that B(F) ¢n. If t = 0,

¢F = 0 satisfies (3.5%). Otherwlse, let
t-1
B = u TtF
3=
and define ¢F = Xy Tt is straightforward that (3.5%)

is satisfied.
ror a particular element F; ¢ 1 there are only
finitelv many [ € g, such that B(F)Y = n. Yror a finite
anion f = F.oU ?2 e o U Fk of such sets, let B(%} = F'
if x is odd and B(F) = ¢ if k is even. Tnen (3.5
X

is satisiied by $§ =

i
115
}...I
jaro)

The general case 1s handled by expressing I as &

countable disjoint union of sets T, taking B(F) T0 be
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the union of the sets B(F) and letting Yy Dbe the sum of
the functions wﬁ‘ Since the sets F form a countable
disjoint collection, the sum converges to & measurable

function. B is surjective since n ¢ £,.

iii) This statement follows éasily from the proof of i)

and the construction. o

Considering now the parameters 1T, 5 n
*

v
]

1 =3 = P from Construction 1, let

e tz,j if n = 2
3.6) q . =
3 n-1
t. . F t if n=z 2
ns:} k;z k>13k
for 1 = 3j = Pro1" Let B.n) be the residue of
tnj
2
a -0 - (™ modulo 2. We will write
SR ksr 3
p_~-1
—{n — -
() (m§“),...,m;“31> ¢ 10,1} O
n
o= (W, e o,
et T; he the transformation constructed via Construction
? using the parameters « = w and v = 0. o
Lemma 3.5. 1) T; is isomorphic to the complementary
extension Ti to T,
ii) Suppose T ic weak mixing:.

"9

[
L3
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; 1 T ()
(3.7) lim sup ——7 ) W > D
. N+ Pn~ 3=1 3 ’
and
Pn—l
(3.8) lim sup J:.I y S g,
N-seo Pr™ 421
then T, is weak mixing.
. . - def
of. ince the cocycle Tz Xy o Sz ~
Pro 1) s e cocy s vy X and vy X5(3)

are cohomologous, Lemma 1.2 implies that the corresponding

extensions of T are isomorphic. The extension corres-

0
ponding to y" is, by Lemma 3.4% and (3.5), T

11

1
ii) By Lemma 3.2, the inequality (3.8) implies the

ergodicity of T, which by i) is isomorphic to Ti.

The inequality (3.7) implies the ergodicity of T It

1|

follows from Lemma 1.3 that T is weak mixing.

1

We will now define the permutations ¢ and g of

0y = w/2 x /3 for Construction 3. Let 71(n,3;6) = &',

where 8' is such that the top of ?g,j is a subset of
9!

T Denoting &' = (7,(n,338), 1,(n,338)) and

g = (91,92), we define
(3-9) 0".(37311":3"(;6) = (u(zansjskag)1%2(1”19:‘s%)‘*’k@,{%l(n,j;p&)))

where ¢ :%/2 ~ %Z/3 1is given by (1.2).

n

- ~ . - . o
To define 8, let 1 be defined in the same way a

~
-~ . e . o~ 6
T, wusing the tower T _ . instead of Tn .+ Then let

n,3; y
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(3.18) B(Sanajie) = (B(zsn:jEGl):(b(,{jl(najie) + ?Z(Ryjie)).

since the Lebesgue space (Xl,pl) has been identified
with the intervals I0 and Il of construction 2, the
Lebesgue space (X,u) ~= (Xx %/3, Hy xsﬂfs) = (XG x T/ 2 xW/3,
Hy %80 35%/3) can be %%en;ified with [0,1) by identifying
each of thé intervals 1 1772 in construction 3 with
Xg X {el} x {92}. In this way we make the limit transforma-

tion T of Cconstruction 3 a measure-preserving transformation

of  (X,u).

Lemma 3.6. T is the 7%/3 extension of Tl corresponding

to  ¢.

procf. Let R Dbe the tpansformation exchanging the intervals

(8,,6,)
1 of construction 3 according to the scheme

1’72

(84568,)
e 2

(e-i 582+1‘)
RT " .

We will show that R commutes with T along the n-towers

for any n. We prove this by induction. It is trivially true

for the 1-towers. We now SUppose it ig true for the (n-1)

8 -
N,

g € @3 and note that T coOmmules with R along these

vowers. Fixing 3, consider the subtowers T for

+towers. 1T follows from (3.9) that T commutes with R

along the spacers stacked on top oi These towers to obtain

Fg 5 rinally, we note that in stacking the towers Ti ;
H] ]

=B . . =0 . . .
on Tn+l(3wl) to obtain Tn+l(j), (3.10) implies that T,
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™~

from the tops of T_ .(j-1) to the bases of T ., commutes
n+1 ‘ I, ]
with R.
By considering (3.9) and (3.10), we obtain that T

modulo R is equivalent to T, and that the cocycle is 9. o

et us consider the group of permutations of

05 =7/2 x /3 generated by

and

b(el,92> = (614-1,82)-
It is easy to see that a3 = b2 = abab = 1, so that this
group is isomorphic to Sg» the group of symmetries of a

triangle. One can alsc see by considering (3.9) and (3.10),
that the permutations o and B used in Construction 3
beleng to this group.

There is a dual notion of a permutation as an arrangement
of objects. Let us assign the identity element L € 5 to an
initial arrangement of the six intervals 1° = [0,1), 0 € 65.
for any n, this arrangement is inherited by the bases of the
six n-towers Tg, 6 ¢ 63. Let p{n,%2;8) be the element of
corresponding to the arrangement of the g'th levels of

3

+he n-towers, in the sense that if Li . denotes the ¢'th
3

n,$% =

S(n,2+158)p(n,030) L. By (3.9) and (3.10), 6(n,038) = a or

S

level of Tg, then L Let &(n,%38) =
§8{n,%3;8) = bha.

6 &
The (n+l)-towers Tn+1 are made up of stacks of Prsl
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n-subtowers T0 l,...,?e L Let s ...st -1 be the
s P4l . P+l

5

n+1l

except the last of these subtowers, and let m(n,j;8) =

levels of the towers T corresponding to the tops of all
p(n,s3+136). The permutations m{n,j;8) enable us to keep
track of the images of the rqofs ﬁn of the towers Tg under
the mapping T. This information will be useful in establish-
ing the ergodicity of T.

The permutations of @3 in S3 can be repregented by

a group of & x 6 zero-one matrices, generated by the

matrices &(a) and G(b) corresponding to a and b.

Putting the dictionary order on @3, we have:
p0 10
001 g
cla) = 1 00
0 01
0 L 09
g 01 0 j
-
0 lId
o(p) = 3x2
Tdy gl O

Let G ©be the set of ail 6 x & matrices 6 with

entries ¢.. = 0. Clearly &G(a), G(b) ¢ G. Let ug denote

=]

13
by P the collection of all subsels Ac [1,...,8% . |A]

will denote the cardinality of A and A the complement of

A in P. TFor G € G and A € P we define
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(3.11) , ¢t = T g,
ien
i eh
and
- . A
(3.32) ey = min G,
AcP

pach set A € P can be identified with a set
A € A(gn), (cf. §2), namely, the union of the bases of the
towers indexed, in dictionary order, by the elements of

A ¢ P. Combining (3.11) and (3.12), we have

t NY'I
un(TBnA nA"™)
(3.13) min P
A€A(r ) B (A" Yp_ (A™)
n n n
3
O<yn(A)<*
L -1
n+l
1 RGN TEPS
. Spn.}.l :]:l
= min 5
Aep (p_ 417"
Fn+1 ~
; tAl-|A]
pn+l
1 ?nilml
S SR Glaln,i; ),
SHPr 3=1 '

where G(m{n,3;+)) denotes the representation of the permnu-

tation ={n,j;+) as a matrix in G.

Lemma 3.7. Let

1 - . . 2
= ~Afd 1< . = &

Mn caré{] : 1 =21<P 4q> r{n,js*) a or a
~

| L -— by 2 . —

M- = card{j:li=s3< n(n,3;+) = bal

‘n J pI‘H’l’ FI ]

ft

1A

M = ecanrd!

o SR 9S
-

. . 2
I <Py m(n,3;+) = ba }.
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Then

Pt 1 2 .3
(3.18) ) elnn,is;=) ]l = min(M ,max(M_,M )).
j:l n n N
The proof of this lemma follows straightforwardly from a

case by case analysis, after observing that the matrices in

G correspond naturally 1o directed graphs on six vertices

with positively weighted edges. o
Lemma 2.8. There exists a choice of the parameters v(n>
and w(n) such that
518y b x E-1) ana e oz Lex <1).
n 4 ' n n n ' n

Proof. We first show that it is possible to make

MY+ Mo+ M
n n

aow

= Kn—l. Let us consider the first Kn-l sub-

towers of the six n-towers where spacers are used. Suppose

that the 3Jth subiowers ?i 50 6 € @3 are such subtowers
ki

and that for thi j, w(n,i; )} = 1 or b.

Tor each @,

(3.16) m(n,330) = 5(n,aj§e)p<n,zj;e>.

By changing vgﬂ% , we obtain instead of (3.16),
>n,

(3.16a) 7(n,1;8) = é(n,ﬂjge)bp(n,ﬁja).

One can check that any pair of slements c, d € 83, such

that c, d #1 or b and od = 1 or b, have the property
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that c¢bd # 1 or b. Thus after changing v in this way
we have ™Mn,j;® # 1 or b.
(n)

In a similar way, the effect of changing w3 is that

(3.16) is replaced by

(3.16Db) mMn,Jy; 8 = bﬁ(n,ij;e)p(h,'zége).

This enables us to modify Mi, Mi and Mi enough to obtain

(3.15). o

Proof of Theorem 1.1. Let T be a rank @ mixing transforma-

0
tion. By Lemma 3.1,
B = 1im sup K /p_ > 0.
n n
I3 oo

Let o = B/1000. Choose v, w € {O,l}]N such that (3.7) and
(3.8) are satisfied,‘and sc¢ that for infinitely many n,
(3.18) islsatisfied.

Combining (3.7) and (3.8) with Lemma 3.2, we find that
T1 is weak mixing, so that by Theorem 1.2, Tl is mixing.
Furthermore, (3.13),(3.14) and (3.1%5), together with Corcllary
2.1 imply that T is ergodic. By Treorem 1.2 it suffices
to show that T 1is weak mixing.

Recall from Chapter I, Lemma 2.3, that

| = a H i
Lz(X,L} HU ® How HQ,

where (2.17) 1s a UT invariant ortnogonal decompssiticon,

and that there are no eigenfunctions in HG\{constant}

because T, is weax mixing. TFurthermore, there is an
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isomorphism V :Hl - H2 which is UT equivariant.

Suppose there is an eigenfunction f for UT. Then

f has a nontrivial projection f' in one g of the
subspaces Hl or H,. Vf' is another eigenfunction with
the same eigenvalue, and f'/Vf' 1is a nonconstant invariant

function. This contradicts the ergodicity of T.
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CHAPTER II1. HIGHLY NONSIMPLE SPECTRA OF FINITE MULTIPLICITY

In the introduction, the spectral invariant MT was
discussed. The main result of this section provides examples
of transformations T where Card(MT) > 2. The transforma-
tions T can always be realized as interval exchange
transformations. These results are contained in Theorem 2.1
and Corollary 3.1.

§1 does not pursue this goal directly, but instead
consists of an algebraic analysis of the symmetry responsible
for all the examples in Chapters I, II and III. In this
sense it represents a generalization of the original Oseledec
construction. %2 and 3, as well as providing the proofs of
Theorem Q.i and Corollary 3.1, can be considered as a step
toward extending the construction pro iding upper estimates
in Chapter I to the more general situation in §1. In
particular, Proposition 2.1 is likely to be true in greater

generality than we prove here.

§1. A~ B Extensions

Tn this section we will construct a class of double
finite group extensions which will generalize the algebraic
construction at the beginning of Chapter I. These extensions,
which we will call A-B extensions, have the property that
.. splits into an orthogonal sum of UT invariant subspaces

with Us equivariant isomorphisms between various factors.

Tris, in analogy to Chapter I, will imply lower bcunds on
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the spectral multiplicity, and in particular, estimates on

MTQ
Let A be a finite abelian groi . We will apply the
structure theorem for finite abelian groups, (cf. [ 1),
in order to obtalin a representation for A:
X
(1.1) - & &/,
=1
where {aj} is a finite sequence of positive integers,

subject to the conditions 1) - 1ii) below, which determines

A up to isomorphism. The conditions are:

n.
i) aj = pjj, pj prime, nj = 1,
1ii)  4f pj+l = pj then nj+l > nj.

A character of A 1is a function X :A - @ such that
X(a+b) = x(a2)x{») and |x§ = 1, The set A of all
characters ¢f A forms a group under the operation of
pointwise multiplication called the dual group of A. It

is well known that the groups A and A are isomorphic.

In terms of (1.1), wa can exhibit this isomorphism. Let

z,w € A with =z = (zl,. "Zk) and w = (wl,...,wk)
such that =.,2.c¢ E/uj. For w ¢ A we define X, € A by
20 ]
|4
1.7 (z) = exp 27i z.W, [0, .
(1.2) X, P jg} 595/

Now let us consider the groups AL(A) and AR(A) of
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abelian group automorphisms acting, respectively, on left
and right. We note that since A and A are.isomorphic,
so are their isomorphiem groups. We will show that these
correspond naturally to AL(A) and AR(A). For

g € AL(A), we define o¥ ¢ Ag(A) Dby

(1.3) : X _a(z) = X (02)
wo

W
for all w, Z € A.

Lemma 1.1. The mapping ¢ = ¢* from AL(A) to AR(A) is

an isomorphism.

Proof. The mapping * is well defined, and g* dis an
automorphism acting on the right since (y&)® = §%y*. The
symmetry of the conetruction implies that # 1s invertible.

Lemma 1.1 may be interpreted as showing what symmetries
are present in the table of character values for A, (i.e.
the matrix with entries xw(z) for w, z € A).

We write =z € A as a column vector [zj] of length K

J
any O € AL(A) may be represented as a Kk x Kk matrix

having 3th entry Zs ¢ Z/a.. In [21 it is shown that

[sij] with integer entries U;j, subject to certain

.

2divisibility conditions involving The numbers o, in (1.1)
which do not concern us. The action of © on 2z 1is

represented by the matrix multiplication

[(Oz)i] = [cijjizj].
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It is clear from (1.2) and (1.3) that the action of o* on

7 € A 1is represented by the transpose of [Oi§J:

oy 1T T T T
[ (zo )i} [zj] [oijj = Ezj] tgjij'

This observation is summarized in the following lemma:
Lemma 1.2. Suppose B ¢ AL(A) and

B = {o* EAR(A) : 0 €B}.

Then the left action of B and the right action of B*
have the same orbits. In fact, oa = ac® for all a € A,

g ¢ B.
The following notation will be used for the orbits of

+he actions of B and B% on A. EIlements a sa € A

1o

can be chosen sc that

Baj dgf {Uaj 1 g € B} d?f{aﬁ CH- DO

and

a.Bn dgf {

a.o% 1 o €Bl,
] J

satisfyving the following conditions:

i) a, = 0,

ii) Baj = ajB* (by Lemma 1.2),

iii) Ba; N Bai, = ¢ if 3 F 3,

o

. def
iv) S . =

: card(Baj) < card(Ba. . ).

Jjtl
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The n~tuple (51""’Sn) will Le called the multiplicity

of the action of B on A. Let {m ,...,mg) dencte the

%-tuple of distinct valuesg of Sj’ 3 % 1,...,n, written so
mj+l' The A&-tuple (ml,...,mg) will be called
the reduced multiplicity. The actions B and B* have the

that mj <

same multiplicity and reduced multiplicity. We also note that

my = 8y T 1 since any automorphism fixes 0 € A.

Definition 1.1. Let A and B be groups such that A 1is

abelian and AL(A) has a subgroup B isomorphic to B.
We will call A a B-group. In the case B = Z/m, we wili
call A an m-group.

For b ¢ B, we denote the corresponding element in B

+ -~ - o
by 0. It follows that for Db,c € B, 0., oy, o For
a € A and b € B define
(1.4) $(a,b) = o.a € A.
Then
p(a,be) = 0, .8 = (ob occ)a
= ObECaLc}
and
(1.5 xw(¢(a,bc)) = xw(0b¢(a,b)) = stg(¢(a’C))'

We are now ready to describe the construction of A-B
extensicns. Let (Xo,uo) be a Lebesgue probability space
and let T be a measure-preserving transformation of

0
(X ,u.). Let A be a B roun. Tor a mezsuratle function
0° ¢ & P
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Y : XU + B, we define a measure-preserving transformation

Tl on the space

(X:{a}ll) = (XOXBS uOXGB)ﬁ
where 5B denotes normalized counting measure on B, by
Ti(x,y) = (TOX,Y{x)y).

The transformation Tl is called the B extension of

TO corresponding to y . Since the function vy 1s unspecified,
+his construction is of a very general nature.

Let n: XD + A be a measurable function. Define

¢ Xl ~ A Dby

(1.6) $(x,¥) = s(n(x),y) = Oyn(x}.

We repeat the previous construction starting with the trans-
formation Tl, the group A, and the cocycle ¢, obtaining

+the measure-preserving T of the space

(X,u) = (¥ xBxA,uOX(S x & ),

0 B A

defined

T(x,y,2) = (TOX,Y(x)y,¢(x,y)-Fz).

We will call T the A-B extension of TO corresponding
t¢ Y and n. In contrast to T,, the transformation T
hzs special properties which we now stady.

Let us denote H = LQ(X,u) and H¥ = LQ(Xl,ul). We

recall the definition of the iInduced unitary operator UT
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corresponding to T, namely
(1.7) UTf(x,y,z) = f(Tgxgy(x)y,cb(x,sz).

As in Chapter I, we will analyze the UT invariant sgub-

spaces of H. TFor a € A, let

(1.8) , H, - {xa(z)f(x,y>:feH“}.
Lemma 1.3. The subspaces Ha’ a € A are UT invariant.
Furthermore

¥ sjml

B 2] H 9
3'::1 =0 a,

o
te

is an orthogenal decorposition, where the action of U,

on Hy is equivalent to the actionof Up on H*,
1

Proof. The first statement follows from an obvious computation.

Te prove the second statement, we note that

n
A = U Ba.
=1

and that Ba. N Bu,, = 0 if 3 = 3'. Thus

a = X i3 o= 1,0 .,0 &= 0,...,s%w1}.

Trhe secons statemsnt then follows from elementary Fourisr

analysis. The las® s*atement follows from the definitions
cf the spaceas and cperators involved. a
. i 4! .
For sacn palr  &. aj € Baj, there exists a (not
.. . . - I A
necegsarily unique) = € B such that ¢ a, = a. , anc o7y
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3, ' -
Lemma 1.2, aiog = a% . We define the operator
S, . : + H
SEFUEN
J ]
by
(1.9) . Sb,i,g(x SL(z)f(x,y)} = X *(z)f(x,by).
as al
] 3 b
Proposition 1.1. Suppose gba% = ag! and that v(x)
commutes with b for g almost every X ¢ XD. Then
.10 S . o = ] . .
a¥ a¥
] ]
We note that the condition on Y 1is automatically
satisfied if B 1is abelian. Before proving Proposition

1.1, we state the following easy corollary which is the

main result of this section.

1

Corollary 1.1. If B is abelian and if a and & are

in the same B orbit, then the spectrum of UT in Ha

is identical to the spectrun of .UT in Ha"

Proof of Propesition 1.1. we have from (1.7), and (1.9) that
g 01'\ bfj-r
(1.11) Sy 5 g Ugy g(2) G
=
3
= Sb,ﬁ,Qxa2(¢(X’y)+2)f(TQX’Y(X)y)
J
= ¥ (z)x é¢(x,by»f(TDx,Y(x)by).

Lo
a.or & »
5 b ;

-
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Similarly,
(1.12) UT o Sb,jszxa%(z)f(x,y)
]
= UTX . *(z)f(x,by)
a.o
77Db
= Xy L (2)X g L (x,y N E(Tx,DY (YD
a’ o a.,or
1b 3P

The equality of (1.11) and (1.12) follows from (1.5) and
(1.6), ané the fact that vGOb = by (=) u, almost every-

where.



81

§2. Examples

Two examples of A-B extensions will be constructed
here to demonstrate how results on spectral multiplicity can
be achieved using this construction. The first of these
examples will yield an infinite family of transformations
T such that card(MT) > 2. Like the examples in Chapters
I and II, these transformations will be double cyclic group
extensions. The second example provides an alternate proof
of part of the main result of Chapter I. It is included
to show that results using this construction need not be
confined to cases where the group A is cyclic.

Both of the examples rely on the following notion:

Definition 2.1. An A~ B extension of a measure-preserving

transformation TO of (Xo,po) will be called special if

iy A is an m-group, i.e. B = Z/m;

11} the orbit of 0 € A is the only B orbit with

cardinality 1;

iii) the function n(x) = n € A is a censtant function,

so that ¢(x,y) = ¢{yl};

iv) if R(s) denotes the range of ¢, then for any

a and a’ in different B orbits,
(2.5 : ¥ (R(0)) 0 X_,(R($)) = 7.
a a

A B-group A such that i) and il) hold, and such that

there exists an element n € A so that iv) also holds, will
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be called a special B group for n.

Proposition 2.1. Let A be a special B group for n. Then

for a generic set of pairs (TO,Y) in the sense of §5,
Chapter I, the special A-3B extension T of TO corres-
ponding to Y and n is ergodic, has continuous singular

sepctrum,” and MT is equal to the reduced multipiicity of

the action of B on A,

The proof of Proposition 2.1 is given in the next
section. A similar result may be true in general for
A - B extensions when the group B is abelian. The
genericity, in this case is defined in terms of the triples
(TO,Y,n).

We proceed to constpruct the two examples

Example 2.1. Let A = Z/n and B = 7/n~, the group of

units of A, acting on A by multipiication. It is well
known that B = {z €Z/n : (z,n) = 1}, and the function
$(n) = ca2rd(B) 1is called the Euler function [13]. It is

easy to determine the orbit structure of this action. Let

be a complete set of divisors for n and let dé = n/dj.

For each 3 there is an orbit Bd% = {bda : b e¢Bl of
cardinality ¢(dj). Bd% concists exactly of those
elements of ZX/n divisible Dby dj‘ but not divisible by
ny other divisors of n which do not divide d.,-

E

T“urthermncre, Since
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every orbit is of this type. Thus A is a B group.

Next, we consider the conditions 1)-iv), B is
cyelic [ ] if and only 1if n = 2, U, pP or 2pr, where
p is an 6dd prime and r 2z 1. The cases 2 and 4 are
excluded as uninteresting, and the cases 2pp are
excluded since they do not satisfy ii). The cases n = D
are covered by Chapter I. Thus n = pP where p 1s an odd
prime and r > 1, so that B = Z/m where m = o(p") =

-1

(p-1)p The reduced multiplicity for the action of

is (1,p—l,(p~l)p,...,(p—l)prui).
Taking n to be any generator of B, the condition

iv) is satisfied since for any a € Badi , a' € R(9),
=

aa' € Bd% and xa(a‘} = exp 2miaa’'/n.

Corollary 2.1. Let p be an odd prime and 1r > 1. There

exists an ergodic measure-preserving transformation T with

continuous spectrum such that

-]
M = {l,p—l,(p—l)p,---a(P-l)Pr B

Ewample .2. Recall that for the finite field Gr(p™) of

. . . . n.x .
order pn, the multiplicative group of units GF(p ) is
. . . - n
isomorphic to the cvelic group 7/ (o -1, [123. (Here p
" . . n
denctes an arbitrary prime). Taking A = GF (p )

B = Z/(p'-1) and B = 3F(p)", which acts on A Dby
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multiplication, it is easy to see that A iz a special B

group, for any 0 # 0. 'The reduced multiplicity in this

case is (l,pnwl).



85

§3. Skew Dynamical Systems and Approximation

T the following discussion, the measure spaces (Xg,ua)
(Xl,ui) and (X,p) will either be Lebesgue probability

spaces or finite sets with normalized counting measure.

Definition 3.1. Let T be a measure-preserving transforma-

tion of (X,p) and let 8 :X » C Dbe a measurable function
such that |8(x)] = 1 u almost everywhere. Suppose that

H ¢ LQ(X,u) is an invariant subspace for the unitary operator

VT,B defined on LZ(X,u) by
(3.1) VT,Gf(X) = B(x)E(Tx).
The operator VT 6 will be called a skew dynamical system.
k-
H

The following is the most natural example of a skew

dynamical system. Let T, be a measure-preserving trans-

formation of (Xl,ul), 1e+ A be an abelian group, and

let ¢ Xl + A be a measurabie function. Let T be the

A extension

w
iy

with cocyole ¢

T v L) *‘if-cxlxﬁa,ulxaiﬁs)

whare

(3.2) T{w,z) = (le,¢(w)+ 7).
We consider the subspace

15 = {xa(:)f(w): fe L?(Xl,wl)}.

Ity

The restriction
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(3.3) u

is the skew dynamical system Vg where T, is T
Tla@a 1 1

extended trivially to (X,u) and the function ea(z,w) =
Xa(¢(w)). We will call this sort of skew dynamical system
an extended dynamical systemn.

We now consider a notion of approximation for extended

dynamical systems.

Definition 3.2. Suppose that the transformation Tl

acmits an m cyclic approximation by periodic transformations

T, n with speed o{l/n} 1in the sense of §2 of Chapter IL.

1,

Let En denote the partition whose elements are permuted
by Tl N Let T denote the group extension (3.2) of
3
T1 for the cocycle ¢. Suppose there exist ¢ , constant
n

on the elements of §_, such that H¢n-¢u = o(l/n). Let
T, denote the grous extension (3.2) of T for the

74N i i,n
cocoycle ¢n. We will say that the extended dynamical

system U admits an m-cvelic approximation UT

T
2.0
Ha ) 5 T ha

with speed ol{l/n).
It is easy to sez that the subspace Ha is invariant

=
i

fer both UT and U, . Rezults ~ approximations ©

+ransformations go through almost verbatim to the casge of

4

extended dynamlcal SViTen
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Lemma 3.1. Suppose the extended dynamical system UT

H
a

admits a cyclic approximation with speed o(1/n). Then

UT has simple spectrum.
H
a
The proof of this lemma is identical to the proof of

Theorem 3.1 in [181l.

Lemma 3.2. Let a a. € A. Suppose each of the extended

17 72

dynamical systems UT , 1 = 1,2, admist an m-cyclic
e,
i
approximation HT with speed of(l/n), with the
2,1 H
a .
i
following additional property: Le’ mq_ = card(gn). For

each n, t*the operators

have a completely discrete spectrum with eigenvalues

= i der £ . F =
Ay {Ai,l""’ki,ki} independent 2f n I Al n A, B
then the maximal spectral types p, and p, of Ua
. Hal
and UT are mutually singular.
Hag
Proof. We first consider the operator UT which, for
Hal

simplicity, we denote by U1 +he szpeed of approximation

. . - - . . - L
implies (cf. [15], Theorem 3.7) that vor any g € Ha R
1

B

. . 1 > . X
there exist functions g € H.. ] - 1,...,k1 such that
LI "“'_}\
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1 1
= ...t
g gn,l gn,kl
and
k
q 1 1
lu g = 1 A g o= € + 0.
1 j=1 l’3gn’jj 1,n
Let gl € H be a function of maximal spectral type
1
for Ul in H such that figl] = 1. Let P be a
a, 1

measure representing the maximal spectral type of Ul in

Ha such that pl(ﬂ) = 1.

1
. k
mo it o2
£3.4) e g - e LT AL .
| 01" = L Il s
1
i
= lu.g,g) - ( Y. LB )
| (U "es2 321 1,380,738
k
Qn 1 1
< — =
= };Ul q ‘}; Al,jgn,ﬁ![ El,n -+ O
3=1
Ir a similar way,
. k
. ig t [ 7 2
- n . i _
(.52 lJ e GQQ(*C) - Z~ 13,1’3“ k?,j . Eg,n MR
- J=1

vhere is a probability measure representing the maximal

gsoectral type of U on H_. , and &g
- - ? d2 N,1

a function of maximal spectral type.

k

+...t g2 is

We first consider the case

f'ﬁ i-&—
J eTt do(t) - 1] < €,
- ;
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so that

A

T
1 ~ € < [ cos tdp(t) (1-p(-8,8))cos & + p(~8,8)
-7

< 5272 ol 8,8) + 1 - 82/2 + &' /2,

and

5(-8,8) 21 = §°/12 - 2e/8%.
Taking & F gifu, we obtain
(3.6) Sy s - B A2

Let € = maX(Elgn’EQ,n) and d = dlSt(Alyﬂz). For

sufficiently large n, si/u < d. Define
- Lo -
Q. = 5 et gt et gh
n,Jj ltq n n N n
e Dep,
i
For all 1, Ql,n n QQ,n = 9. Furthermore, by aprlving
(3.5 and either (3.4} or (3.5,
<
i 2 25 1/2
(R . > . - o B,
pl( n,l) .2 Hgn,j” (1 17 El,n)
=1 .
; 25 1/2 .
= 1 - 75 Ej,n’ i = ;,2.

Thus pl(Qn,l} + 1 as n —» « and pz(ﬂn,z) > 1 as

n>«, It follows that pl 1 0,-
We now study the combinatorics of extended dynamical

systems which arise from special A-B extensions of
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transformations T0 admitting ecyclic approximations with
speed o(l/n).
Let TO be a cyclic permutation of a q element set
XO with normalized counting measure Mo and let
(Xl’ul) = (XOZKK/HH My xﬁ%/m)' By Chapter I, lLemma 4.1
and 4.2 there are cocycles vy :XG + Z/m so that the Z/m
extensioﬁ T, of T, corresponding to vy is either type 1
or type 2, in the sense of Chapter I Definitions 5.1 and 5.2.
et A be a special B group for B = Z/m and let

T be the special A~ B extension corresponding to the

pair (Tg,Y) above.

Lemma 2.3. Let fl € LZ(Xl,ul) he the characteristic
function of x, ¢ X,. Let a €A and fix,y,z2) =
Xa(z)fl(x,y). If vy is type 1 then the vectors U%f,
3 = 0,...,mg - 1 are orthogonal.
Proof. This follows easily from the following facts:
UT is a skew dynamical system; Tl is a cyclic permu-

A3
tation:; f, is the characteristic function of a single
element of ‘l o

Lemmas 3.4. Suppose Y is type 2, and let a € A. Then

the se= of =igervalues for the linear transfcrmation

T iz v _(R(s)). Thus if a and a' 1lie on different
= 1 3 £ oo 11 a2 oy A ; a
orbits of B, <he linear transiormaticns U and JT
T
Ta Fa
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Proof. The first statement follows from the proof of
Proposition 4.1 in Chapter I and the definition of a type
2 cocyéle, Chapter I Definition 5.2. The second statement

follows from iv) of Definition 2.1. ()

Proof of Proposition 2.1, It follows from Chapter I, §6,

that for a generic set of pairs (TO,Y), Tl has a good
approximation such that the approximating cocycles vy
alternate between type 1 and type 2. This, combined with
Lemma 3.3 and Lemma 3.4 implies that,alternately in n,

the hypotheses of Lemma 3.1 and Lemma 3.7 are satisfied.

Lemma 3.1 implies that the spectrum in each subspace

Ha’ a € A, is simple. Lemma 3.2 and Lemna 3.4 imply that

if a and a' 1lie in different orbits of the action of
B, the spectrum of UT in Ha is singular with respect
to the spectrum of U in H_.

T a

Since all the spectra are disjoint from the spectrum
there are no invariant functions outside HO. By

has continucus spectrum and so

in HD,

Chapter I, Lemma 5.7, I,

the only invariant “ynctions in HO are constants., This
implies that T 1is ergodic. By iii) of Definition 3.1,
ané¢ Prcpesition 1.1, every Ha’ a # 0 has a spectrum
equivalent to the stectrum in at least one other H_.»
there can e no eigenfunctions. If there were, then the
multiplicity oI the associated eigenvalue would be at least

2, contradicting tre ergodicity of T. Thus each subspace

Ha nas simple continuous spectrum, disjoint from the spectra
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on subspaces Ha‘ where a and a' lie on different B
orbits. It follows from Corollary 1.1 that MT is the
reduced multiplicity of the B action.

Corocllary 3.1. Tor any odd prime p and v > 1 there

exists an interval exchange transformation T such that

My {1,p-1,(p=1)Dy..+»(p~1)p }.

The corocllary can be proven easily by making the
appropriate modifications of the arguments in §7 of

Chapter L.
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