TRANSFORMATIONS WITH HIGHLY NONHOMOGENEOUS SPECTRUM OF FINITE MULTIPLICITY[†] #### BY ## E. ARTHUR ROBINSON, JR. Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, USA #### ABSTRACT This paper studies a spectral invariant \mathcal{M}_T for ergodic measure preserving transformations T called the essential spectral multiplicities. It is defined as the essential range of the multiplicity function for the induced unitary operator U_T . Examples are constructed where \mathcal{M}_T is subject only to the following conditions: (i) $1 \in \mathcal{M}_T$, (ii) $lcm(n,m) \in \mathcal{M}_T$ wherever $n,m \in \mathcal{M}_T$, and (iii) $sup \mathcal{M}_T < +\infty$. This shows that D_T , defined $D_T = card \mathcal{M}_T$, may be an arbitrary positive integer. The results are obtained by an algebraic construction together with approximation arguments. ### §1. Introduction In the last few years there has been a renewed interest in spectral multiplicity problems in ergodic theory. There are now several new constructions for ergodic measure preserving transformations T with nonsimple spectrum of finite multiplicity. In particular, recent results show that there exist transformations with arbitrary finite maximal spectral multiplicity [8], transformations with Lebesgue components of finite multiplicity [6], and mixing transformations with nonsimple spectrum of finite multiplicity [10]. Other examples with different properties appear in [4] and [2]. The history of spectral multiplicity problems is outlined in [8]. Usually the term spectral multiplicity in ergodic theory refers to the maximal spectral multiplicity, denoted for a finite measure preserving transformation T (of (X, μ)) by M_T . In this paper we will be concerned with a more general notion of spectral multiplicity: the set of all essential spectral multiplicities of T. We will denote this set by \mathcal{M}_T . In terms of the spectral theorem, (cf. [1]), applied to the [†] This research was partially supported by NSF grant MCS 8102790. Received December 30, 1985 and in revised form May 8, 1986 induced unitary operator $U_T f(x) = f(T^{-1}x)$ on $L_2(X, \mu) \bigoplus \{\text{constants}\}$, \mathcal{M}_T is defined as the essential range of the multiplicity function with respect to the maximal spectral type. The maximal spectral multiplicity is obtained from \mathcal{M}_T by $M_T = \sup \mathcal{M}_T$. We also introduce a new spectral invariant D_T , defined by $D_T = \operatorname{card} \mathcal{M}_T$, called the degree of nonhomogeneity of the spectrum. This follows the usual terminology where, when $\mathcal{M}_T = \{k\}$, T is said to have homogeneous spectrum. At least implicitly, \mathcal{M}_T has been studied for a long time. It is well known that many common examples in ergodic theory (e.g., irrational rotations, Bernoulli shifts, affine transformations) have $\mathcal{M}_T = \{1\}$, $\{+\infty\}$ or $\{1, +\infty\}$. Although in general there are no known restrictions on \mathcal{M}_T (and it seems unlikely that there are any), only isolated examples of the possibilities for \mathcal{M}_T have even been found. In addition to those listed above, there are the examples with nonsimple spectrum of finite multiplicity in [8], [6], [2], which all satisfy $\mathcal{M}_T = \{1, k\}$ for some k (and any k is possible, [8]). There are some examples due to A. Katok [4], where \mathcal{M}_T satisfies certain interesting estimates, including $1 \not\in \mathcal{M}_T$ and $M_T < \infty$, but where \mathcal{M}_T is not completely determined (cf. also [10]). Also one special class of T where \mathcal{M}_T is both interesting and can be determined exactly is the class of Gaussian transformations (cf. [1]). If T is ergodic Gaussian and $\mathcal{M}_T \neq \{+\infty\}$ then it is known that \mathcal{M}_T is a multiplicative sub-semi group, with identity, of the natural numbers. The case $\mathcal{M}_T = \{1\}$ does occur. Otherwise, interesting \mathcal{M}_T always has $D_T = +\infty$ and $M_T = +\infty$. In this paper we construct a different special class of transformations T with many possibilities for \mathcal{M}_T , but this time with $D_T < +\infty$ and $M_T < +\infty$. Within our class, \mathcal{M}_T is subject only to the following mild restrictions: (i) $1 \in \mathcal{M}_T$, (ii) if $m_1, m_2 \in \mathcal{M}_T$ then $lcm(m_1, m_2) \in \mathcal{M}_T$ and (iii) $M_T < +\infty$. Thus we obtain many new examples. In particular, there exist transformations with arbitrary finite D_T . For D_T large, we say the spectrum is highly non-homogeneous. The cases $$\mathcal{M}_T = \{1, p-1, p(p-1), \ldots, p^r(p-1)\},\$$ where p is an odd prime, first appeared in the author's dissertation [9]. The construction in this paper is a generalization of that in [8], but more elaborate in several respects to facilitate computing \mathcal{M}_T rather than just M_T . In particular, the upper bounds on \mathcal{M}_T are obtained in a new way: by showing that the spectrum is simple on certain U_T invariant subspaces and then showing how these subspaces fit together. The basic technique is the theory of approximation by periodic transformations (cf. [5]). A few words on the notation. We denote the cyclic group of order m by \mathbb{Z}/m and the circle by T. Transformations T will always be assumed to be invertible measure preserving transformations of Lebesgue probability spaces. Sets and functions will always be measurable. The characteristic function of B is denoted 1_B . The notation U_T will be used both for the induced unitary operator on $L_2(X, \mu)$ and its restriction to $L_2(X, \mu) \bigoplus \{\text{constants}\}$. The results in this paper constitute a generalization of a part of the author's 1983 University of Maryland dissertation [9], written under the direction of Prof. A. Katok. The author wishes to thank Prof. Katok for all of his useful advice. # §2. Algebraic framework Given a finite abelian group A, we apply the structure theorem to obtain a fixed decomposition of the form $$A = \bigoplus_{j=1}^{l} \mathbf{Z}/n_{j}.$$ Then for $a, b \in A$, we define (2.2) $$\chi_a(b) = \exp 2\pi i \sum_{j=1}^{l} a_j b_j / n_j$$ where $a_i \in \mathbf{Z}/n_i$ in (2.1) and \mathbf{Z}/n_i is identified with $\{0, \ldots, n_i - 1\}$. Let \hat{A} denote the dual group of A identified with $\{\chi_a : a \in A\}$. The mapping $a \to \chi_a$ is an isomorphism between A and \hat{A} . By an automorphism α of A we mean an abelian group automorphism. Given an automorphism α , there is a unique automorphism $\bar{\alpha}$ of A (called the adjoint of α), satisfying $\chi_{\bar{\alpha}a}(b) = \chi_a(\alpha b)$ for all $a, b \in A$. In the cases of primary interest in this paper A will actually have a ring structure and α will be implemented by multiplication by a unit. However, our construction is a little more general than this. The α -orbit \mathcal{O} of an element $a \in A$ is defined as $\mathcal{O} = \{\alpha^l a : l \in \mathbf{Z}\}$. We say the a has α -order l if $l = \operatorname{card} \mathcal{O}$. Let us define $\mathcal{M}_{\alpha} = \{l : l \text{ is the } \alpha\text{-order of some } a \in A\}$. Note that $\mathcal{M}_{\alpha} = \mathcal{M}_{\bar{\alpha}}$. We say α is separating if for any $a, a' \in A$ which belong to different $\bar{\alpha}$ orbits, there exists an α -orbit \mathcal{O} with $$\chi_a(\mathcal{O}) \cap \chi_{a'}(\mathcal{O}) = \emptyset$$ where $\chi_a(\mathcal{O})$ denotes the image of \mathcal{O} under χ_a . We call α proper if it fixes only $0 \in A$. Any cyclic group (except $\mathbb{Z}/2$) has separating proper automorphisms, and the automorphism $\binom{1}{1}$ acting on $\mathbb{Z}/3 \oplus \mathbb{Z}/3$ by matrix multiplication is separating and proper. This shows that there are non-cyclic examples. A complete classification will not concern us here. The next lemma shows that there are enough cyclic examples for our purposes. LEMMA 2.1. Suppose \mathcal{M} is a finite set of natural numbers such that (i) $1 \in \mathcal{M}$ and (ii) whenever $m_1, m_2 \in \mathcal{M}$, $lcm(m_1, m_2) \in \mathcal{M}$. Then there exists a cyclic group \mathbb{Z}/n and an element $b \in \mathbb{Z}/n$ such that the automorphism $\alpha(z) = bz$ is separating, proper, and satisfies $\mathcal{M}_{\alpha} = \mathcal{M}$. The order of α is $lcm \mathcal{M}$. PROOF. For p prime, the multiplicative group of units $(\mathbf{Z}/p)^{\times}$ of \mathbf{Z}/p is isomorphic to $\mathbf{Z}/p-1$. Let $m \mid p-1$ and let $b \in \mathbf{Z}/p$ be a generator of the subgroup H of $(\mathbf{Z}/p)^{\times}$ isomorphic to \mathbf{Z}/m . For $\alpha(z) = bz$, the α -orbits correspond to $0 \in \mathbf{Z}/m$ and the cosets of H. Let $m_1, \ldots, m_l \in \mathcal{M}$, $m_j \neq 1$, be a minimal set of generators for \mathcal{M} with respect to the operation lcm. For each m_j , $j = 1, \ldots, l$, let p_j be the smallest prime so that $m_j \mid p_j - 1$ and p_j is not equal to p_k for any k < j. This is possible by the Dirichlet Theorem on primes in an arithmetic progression. Let $A = \bigoplus_{j=1}^{l} \mathbb{Z}/p_j$ and note that $$A=\mathbf{Z}/n, \qquad n=\prod_{j=1}^l p_j.$$ We define α on \mathbb{Z}/n as $\alpha = \bigoplus_{j=1}^{l} \alpha_j$, where α_j is chosen for p_j and m_j as above. It follows that α is proper and $\mathcal{M}_{\alpha} = \mathcal{M}$. Furthermore, α may be realized by $\alpha(z) = bz$ where b is a unit in \mathbb{Z}/n . Also, α is separating, since any $a, a' \in \mathbb{Z}/n$ with $a' \neq b^k a$ satisfies (2.3), where \mathcal{O} is the orbit of $1 \in \mathbb{Z}/n$. The final statement is trivial. Our main theorem is that for each algebraic example there is a corresponding ergodic theoretic example. THEOREM 2.2. For any separating automorphism α of a finite abelian group A there exists an ergodic transformation T with $\mathcal{M}_T = \mathcal{M}_{\alpha}$. If in addition α is proper then T can be made weak mixing. COROLLARY 2.3. For each finite set \mathcal{M} of positive integers satisfying (i) $1 \in \mathcal{M}$ and (ii) whenever $m_1, m_2 \in \mathcal{M}$, $lcm(m_1, m_2) \in \mathcal{M}$, there exists a weak mixing transformation T with $\mathcal{M}_T = \mathcal{M}$. COROLLARY 2.4. For each positive integer d there exists a weak mixing transformation T with $D_T = d$. For the remainder of this section we set up the basic construction and prove some preliminary lemmas. Most of the proof is postponed until the next section. Let α be an automorphism of A, $\bar{\alpha}$ the adjoint automorphism, and m = the order of $\alpha =$ the order of $\bar{\alpha}$. We write $A_1 = \mathbb{Z}/m$ and $A_2 = A$, with δ_1 and δ_2 denoting normalized Haar measure on A_1 and A_2 . Let T_0 be a transformation of (X_0, μ_0) . For i = 1, 2 let $\gamma_i : X_0 \to A_i$ and define $$(X_i, \mu_i) = (X_{i-1} \times A_i, \mu_{i-1} \times \delta_i).$$ Let us define transformations T_1 and T_2 on (X_1, μ_1) and (X_2, μ_2) : (2.4) $$T_{1}(x, y) = (T_{0}x, \gamma_{1}(x) + y)$$ and (2.5) $$T_2(x, y, z) = (T_0 x, \gamma_1(x) + y, \alpha^y \gamma_2(x) + z).$$ T_1 and T_2 satisfy the following general lemma (true in general for finite abelian group extensions, cf. [8]). LEMMA 2.5. For i = 1, 2 there exists a U_{T_i} -invariant orthogonal decomposition $$L_2(X_i,\mu_i) = \bigoplus_{k \in A_i} H_k^i$$ where $$H_k^i = \{ f \in L_2(X_i, \mu_i) : f(x, w) \chi_k(w) \tilde{f}(x) \text{ some } \tilde{f} \in L_2(X_{i-1}, \mu_{i-1}) \}.$$ Furthermore, $U_{T_i}|H_0^i$ is unitarily equivalent to $U_{T_{i-1}}$. In addition to the above, the transformation T_2 has the following special property which generalizes a method of Oseledec [7] for obtaining transformations with nonsimple spectrum (i.e. $M_T > 1$): LEMMA 2.6. If $a, a' \in A$ lie in the same $\bar{\alpha}$ -orbit then $U_{T_2}|_{H^2_{\alpha}}$ and $U_{T_2}|_{H^2_{\alpha}}$ are unitarily equivalent. PROOF. This is essentially the same as Lemma 2.1 in [8]. We define $S: H_a^2 \to H_{\alpha\alpha}^2$ by $(S\chi_a f)(x, y, z) = \chi_{\alpha\alpha}(z) f(x, y + 1)$. Then the Lemma follows from the equation $U_{T_2}\Big|_{H_{\alpha\alpha}^2} \circ S = S \circ U_{T_2}\Big|_{H_{\alpha}^2}$, which follows from (2.5) and $$\chi_a\left(\alpha^{y+1}\gamma_2\right) = \chi_a\left(\alpha\alpha^y\gamma_2\right) = \chi_{\bar{\alpha}a}\left(\alpha^y\gamma_2\right).$$ In the next section we will show that under certain conditions: (i) for each $a \in A$, $U_{T_2}|_{H^2_a}$ has a continuous spectrum with spectral multiplicity 1, and (ii) if $a, a' \in A$ lie in different $\bar{\alpha}$ -orbits then $U_{T_2}|_{H^2_a}$ and $U_{T_2}|_{H^2_a}$ have mutually singular maximal spectral types. Theorem 2.2 will follow. We conclude this section with a characterization of T_2 . Let G denote the semi-direct product group $\mathbb{Z}/m \times_{\alpha} A$, i.e., the group of pairs $(y, z) \in \mathbb{Z}/m \times A$ with multiplication $(y', z')(y, z) = (y' + y, \alpha'z' + z)$. Then T_2 is just the finite nonabelian G extension of T_0 with cocycle (γ_1, γ_2) : $X_0 \to G$ (cf. [10]). In the case $A = \mathbb{Z}/n$ (our main concern), G is the semi-direct product of cyclic groups. Such groups are called metacyclic groups. # §3. Approximation theory The proof of Theorem 2.2 is based on Katok and Stepin's theory of approximation by periodic transformations [5] (cf. also [4]). We begin with some preliminaries. For i=1,2 let \mathcal{A}_i denote the set of all $\gamma_i\colon X_0\to A_i$, with the topology given by the " L_1 -norm": $\|\gamma_i\|_1=\mu_i\{x\colon \gamma_i(x)\neq 0\}$. The product space $\mathcal{A}=\mathcal{A}_1\times\mathcal{A}_2$ is given the product topology. A partition ξ of (X,μ) is a finite disjoint collection of measurable sets with $\mu(\bigcup_{c\in\xi}c)=1$. A set E is called ξ -measurable if, up to sets of measure 0, it is a union of elements of ξ . Similarly, a function $\gamma_i\in\mathcal{A}_i,\ i=1,2,$ is called ξ -measurable if all of its level sets are ξ -measurable. A sequence of partitions ξ_n of (X,μ) is called generating if for any set E there exist ξ_n -measurable sets E_n so that $\mu(E \triangle E_n) \to 0$ as $n \to \infty$ (where Δ denotes the symmetric difference). We denote this by $\xi_n \to \varepsilon$. DEFINITION 3.1. A transformation T admits a good periodic approximation (T_n, ξ_n) if - (1) ξ_n is a partition on (X, μ) with q_n elements of equal measure, such that $\xi_n \to \varepsilon$, - (2) T_n is a sequence of transformations with $T_nB \in \xi_n$ for every $B \in \xi_n$ (we say T_n permutes ξ_n), and - (3) $\Sigma_{B \in \xi_n} \mu (TB \triangle T_n B) = o(1/q_n)$ as $n \to \infty$. NOTE. To say for a sequence ω_n that $\omega_n = o(1/q_n)$ means $\lim_{n\to\infty} q_n \omega_n = 0$. Let us now regard T_n as a permutation of ξ_n and consider its cyclic structure. If T_n has a single cycle and satisfies Definition 3.1 then we say that (T_n, ξ_n) is a good cyclic approximation for T. If, instead, (T_n, ξ_n) has m cycles of equal length we say it is a good m-cyclic approximation. The set \mathcal{U} of all transformations of (X_0, μ_0) may be given the weak topology (cf. [3]). A property of T_0 is called *generic* in \mathcal{U} if there exists a dense G_δ subset \mathcal{U}' of \mathcal{U} such that every $T \in \mathcal{U}'$ has the given property. Halmos shows in [3] that weak mixing (and hence ergodicity) is a generic property. Katok and Stepin [5] show that the property that T_0 admits a good cyclic approximation is generic. We will always assume T_0 satisfies both of these properties, another generic condition, and let $(T_{0,n}, \xi_{0,n})$ be a fixed good cyclic approximation for T_0 . Given a $\xi_{0,n}$ -measurable pair $(\gamma_1^n, \gamma_2^n) \in \mathcal{A}$, if we replace T_0 with $T_{0,n}$ and (γ_1, γ_2) with (γ_1^n, γ_2^n) in (2.4) and (2.5), we obtain the transformations which we call $T_{1,n}$ and $T_{2,n}$. We can also "lift" $\xi_{0,n}$ in the obvious way to partitions $\xi_{1,n}$ and $\xi_{2,n}$ on (X_1, μ_1) and (X_2, μ_2) . It is clear that $T_{1,n}$ and $T_{2,n}$ permute $\xi_{1,n}$ and $\xi_{2,n}$. A pair $(\gamma_1, \gamma_2) \in \mathcal{A}$ is called *admissible* (corresponding to (γ_1^n, γ_2^n)) if there exists a $\xi_{0,n}$ -measurable sequence $(\gamma_1^n, \gamma_2^n) \in \mathcal{A}$ such that for i = 1, 2 (3.1) $$\| \gamma_i^n - \gamma_i \|_1 = o(1/q_n^2).$$ This is more than enough to insure that $T_{1,n}$ and $T_{2,n}$ satisfy the conditions of Definition 3.1. For an "approximation step" $(T_{0,n}, \xi_{0,n})$ let us now consider the various different cyclic structures for $T_{1,n}$ which correspond to different choices of γ_1^n . We say that a given property of $T_{1,n}$ is attainable if for any $\xi_{0,n}$ -measurable γ_1^n there exists a $\xi_{0,n}$ -measurable γ_1^n , which differs from γ_1^n on at most 2 elements of $\xi_{0,n}$, and such that transformation $T_{1,n}$ constructed from γ_1^n instead of γ_1^n has the given property. For example we have the following: LEMMA 3.2. The property that $T_{1,n}$ is m-cyclic is attainable. PROOF. Choose any $B \in \xi_{0,n}$ and let $B' \in \xi_{1,n}$ be defined $B' = B \times \{0\}$. Define (3.2) $$\Gamma_1^n(l,x) = \begin{cases} 0 & \text{if } l = 0, \\ \sum_{j=0}^{l-1} \gamma_1^n(T_{0,n}^j x) & \text{if } l > 0. \end{cases}$$ Then one has $T_{1,n}^{q_n}B'=B\times\{k\}$ where $k=\Gamma_1^n(q_n,x)$ (k is independent of k since $T_{0,n}$ is cyclic). $T_{1,n}$ is k-cyclic if and only if k=0. If $k\neq 0$, we define $\gamma_1'=\gamma_1^n-k\chi_B$, which has $\Gamma_1^n(q_n,x)=0$ and differs from γ_1^n only on k. For $l \in \mathbb{Z}/m$ the transformation $T_{1,n}$ is called *l-satisfactory* if the transformation $R_l \circ T_{1,n}$ is cyclic, where $R_l(x, y) = (x, y + l)$. LEMMA 3.3. For any $l \in \mathbb{Z}/m$ the property that $T_{1,n}$ is l-satisfactory is attainable. PROOF. This is similar to Lemma 3.3. Let $S = R_t \circ T_{1,n}$. $S^{q_n}B \times \{0\} = B \times \{k\}$ for some $k \in \mathbb{Z}/m$. S is cyclic if and only if k generates \mathbb{Z}/m . If it does not, we modify γ_1^n on B so that it does. Properties of $T_{2,n}$ are treated in much the same way. A property is called *attainable* for $T_{2,n}$ if it can be attained by modifying any $\xi_{0,n}$ -measurable $(\gamma_1^n, \gamma_2^n) \in \mathcal{A}$ on at most 2 elements of $\xi_{0,n}$. The property which we will need requires a preliminary discussion. For $(x, y, z) \in X_2$ it follows from (2.5) that the third coordinate Π_3 of $T_{2,n}^{q_n}(x, y, z)$ is given by (3.3) $$\Pi_{3}(T_{2,n}^{q_{n}}(x, y, z)) = z + \alpha^{y} \sum_{k=0}^{q_{n}-1} \alpha^{\Gamma_{1}^{n}(k,x)} \gamma_{2}^{n}(T_{0,n}^{k}x)$$ $$\stackrel{\text{def}}{=} z + \alpha^{y}(\Gamma_{2}^{n}(x)).$$ By (3.2), (3.4) $$\Gamma_{i}^{n}(k+1,x) = \Gamma_{i}^{n}(k,T_{0,N}x) + \Gamma_{i}^{n}(1,x)$$ $$= \Gamma_{i}^{n}(k,T_{0,n}x) + \gamma_{i}^{n}(x)$$ and so by (3.3), (3.5) $$\Gamma_2^n(T_{0,n}x) = \alpha^{-\gamma_1^n(x)} \sum_{k=0}^{q_n-1} \alpha^{\Gamma_1^n(k+1,x)} \gamma_2^n(T_{0,n}^{k+1}x).$$ Assuming $T_{1,n}$ is m-cyclic, so that $\Gamma_1^n(q_n, x) = 0$, and since $T_{0,n}^{q_n} = I$, (3.5) becomes $\Gamma_2^n(T_{0,n}x) = \alpha^{-\gamma_1^n(x)}\Gamma_2^n(x)$. This shows that $\Gamma_2^n(T_{0,n}x)$ and $\Gamma_2^n(x)$ belong to the same α -orbit \mathcal{O} . Since $T_{0,n}$ is cyclic, $\Gamma_2^n(x) \in \mathcal{O}$ for all x, and furthermore, by (3.3), $$(3.6) \Pi_3(T^{q_n}_{2,n}(x,y,z)) - z \in \mathcal{O}$$ for all $(x, y, z) \in X_2$. For a given α -orbit \mathcal{O} , we say that $T_{2,n}$ is \mathcal{O} -satisfactory if $T_{1,n}$ is m-cyclic and (3.6) holds for \mathcal{O} . LEMMA 3.4. For any approximation step and any α -orbit \mathcal{O} , the property that $T_{2,n}$ is \mathcal{O} -satisfactory is attainable. PROOF. First we apply Lemma 3.2 to make $T_{1,n}$ m-cyclic, then we define $$\widetilde{\Gamma}_{2}^{n}(x) = \sum_{k=1}^{q_{n}-1} \alpha^{\Gamma_{1}^{n}(k,x)} \gamma_{2}^{n}(T_{0,n}^{k}x),$$ so that $\Gamma_2^n(x) = \gamma_2^n(x) + \tilde{\Gamma}_2^n(x)$. We fix an $x \in X_0$ and modify γ_2^n on the element $B \in \xi_{0,n}$ containing x so that $\Gamma_2^n(x) \in \mathcal{O}$. The next lemma shows how various approximation properties imply corresponding ergodic properties. It is the key to proving Theorem 2.2. LEMMA 3.5. Let T_0 be weak mixing with a good cyclic approximation $(T_{0,n}, \xi_{0,n})$ and let $(\gamma_1, \gamma_2) \in \mathcal{A}$ be admissible, corresponding to the sequence (γ_1^n, γ_2^n) . - (i) If $T_{1,n}$ is 0-satisfactory for infinitely many n, then $U_{T_2}|_{H^2_a}$ has spectral multiplicity 1 for each $a \in A$. - (ii) If in addition to (i), α is separating, and for each α -orbit \mathcal{O} there exist infinitely many n with $T_{2,n}$ \mathcal{O} -satisfactory, then $U_{T_2}|_{H^2_\alpha}$ and $U_{T_2}|_{H^2_\alpha}$ have mutually singular spectral types for any $a, a' \in A$ belonging to different $\bar{\alpha}$ orbits. - (iii) If in addition to (i) and (ii), α is proper, and for each $l \in \mathbb{Z}/m$, $T_{1,n}$ is l-satisfactory, then T_2 is weak mixing. PROOF. (i) (cf. [5], Theorem 3.1) By passing to the subsequence where $T_{1,n}$ is 0-satisfactory we have a good cyclic approximation $(T_{1,n}, \xi_{1,n})$ for T_1 . Let $B_n \in \xi_{1,n}$ and $$C_n = \bigcap_{k=0}^{mq_n-1} T_1^{-k} (T_{1,n}^k B_n \cap T_1^k B_n)$$ so that for $0 \le k < mq_n$, $T_1^k C_n \subseteq T_{1,n}^k B_n$. If $$S(q_n) \stackrel{\text{def}}{=} \frac{1}{2} \sum_{k=0}^{mq_n-1} \mu(T_1 T_{1,n}^k B_n \triangle T_{1,n}^{k+1} B_n),$$ then (cf. [5]) Let $\bar{B}_n^k = T_{1,n}^k B_n \cap (\gamma_1^n - \gamma_1)^{-1}(0) \cap (\gamma_2^n - \gamma_2)^{-1}(0)$, so that for $j = 1, 2, 0 \le k < mq_n$, (3.8) $$\mu(T_{1,n}^k B_n \setminus B_n^k) \leq \sum_{i=1}^2 \|\gamma_i^n - \gamma_1\|_{L^2}$$ ý Letting $D_n = \bigcap_{k=0}^{mq_n-1} T_1^{-k} (T_1^k C_n \cap \tilde{B}_n^k)$, we have $D_n \subseteq C_n$ and by (3.1), (3.7) and (3.8), $\mu(B_n \setminus D_n) \leq \sum_{i=1}^2 mq_i \| \gamma_i^n - \gamma_i \|_1 + S(q_n) = o(1/q_n)$. Thus $$(3.9) \qquad \frac{\mu(B_n \setminus D_n)}{\mu(B_n)} = q_n \mu(B_n \setminus D_n) \leq q_n o(1/q_n) \xrightarrow{n \to \infty} 0.$$ Letting $\xi'_{1,n} = \{T^k_i D_n : 0 \le k < mq_n - 1\}$, we have by (3.9) and $\xi_{1,n} \to \varepsilon$ that $\xi'_{1,n} \to \varepsilon$. Let $H_{a,n}^2 = \{f(x,y)\chi_a(z): f \text{ is } \xi'_{1,n}\text{-measurable}\}$. Then $H_{a,n}^2 \subseteq H_a^2$ and since $\xi'_{n,1} \to \varepsilon$ it follows that for any $\delta > 0$, $H_{a,n}^2$ is δ -dense in the unit ball of H_a^2 for n sufficiently large. We define $h_n = 1_{D_n}\chi_a$, and let $H(h_n)$ denote the cyclic subspace generated by h_n . Since $H_{a,n}^2 \subseteq H(h_n) \subseteq H_a^2$, $H(h_n)$ is also δ -dense in the unit ball of H_a^2 for *n* sufficiently large. It follows from a standard argument (cf. [5] Lemma 3.1) that $U_{T_2}|_{H_a^2}$ has simple spectrum. (ii) Since α is separating, for any a, a' in different $\bar{\alpha}$ -orbits there exists an α orbit \mathcal{O} so that (2.3) holds. Let *n* be such that $T_{2,n}$ is \mathcal{O} -satisfactory. Then $T_{1,n}$ is *m*-cyclic, the length of each cycle being q_n . Thus for $B \in \xi_{1,n}$, $T_{1,n}^{q_n}B = B$. Let $h = 1_B \chi_a$. Then by (3.6), $$U_{T_{2,n}}^{q_n}h(x, y, z) = \chi_a(\alpha^y \Gamma_2^n(x) + z)1_B(x, y)$$ $$= \chi_a(\alpha^y \Gamma_2^n(x))\chi_a(z)1_B(x, y)$$ $$= \lambda h(x, y, z),$$ where $\lambda \in \chi_a(\mathcal{O})$. Now since any $g_n \in H^2_{a,n}$ is a finite linear combination of functions of the type h corresponding to different $B \in \xi_{1,n}$, it follows that $\chi_a(\mathcal{O})$ is the set of eigenvalues for $U^{q_n}_{T_{2,n}}|_{H^2_{a,n}}$. Let g be a vector of maximal spectral type for $U_{T_2}|_{H_a^2}$. Assume $\|g\|_2 = 1$, and let ρ_g denote the corresponding spectral (probability) measure. Since $\xi_{n,1} \to \varepsilon$, we can find $g_n \in H_{a,n}^2$, $\|g_n\|_2 = 1$, with $\|g - g_n\|_2 \to 0$ as $n \to \infty$. The function g_n has a unique eigenfunction expansion, i.e.: $$g_n = \sum_{\lambda \in Y_n(\mathcal{O})} g_{n,\lambda}$$ with $U_{T_{2,n}}^{q_n}g_{n,\lambda} = \lambda g_{n,\lambda}$. furthermore, there exist $g'_{n,\lambda} \in H^2_a$ with $g = \sum_{\lambda \in \chi_a(\mathcal{O})} g'_{n,\lambda}$, $\|g'_{n,\lambda}\|_2 = \|g_{n,\lambda}\|_2$, and (3.10) $$\lim_{n\to\infty} \|g'_{n,\lambda} - g_{n,\lambda}\|_2 = 0.$$ Let us denote by $\rho_{n,\lambda}$ the spectral measure associated with $g'_{n,\lambda} \in H^2_a$. Then $\rho_g = \sum_{\lambda \in \chi_a(\mathcal{O})} \rho_{n,\lambda}$ and $\rho_{n,\lambda}(\mathbf{T}) = \|g_{n,\lambda}\|_2^2$. For each $\lambda \in \chi_a(\mathcal{O})$ we have $$\varepsilon_{n} \stackrel{\text{def}}{=} \left| \int_{-\pi}^{\pi} e^{iq_{n}t} d\rho_{n,\lambda}(t) - \|g_{n,\lambda}\|_{2}^{2} \lambda \right| \\ = \left| (U_{T_{2}}^{q_{n}} g_{n,\lambda}', g_{n,\lambda}') - (U_{T_{2,n}}^{q_{n}} g_{n,\lambda}, g_{n,\lambda}) \right| \\ \leq \|U_{T_{2}}^{q_{n}} g_{n,\lambda}' - U_{T_{2,n}}^{q_{n}} g_{n,\lambda} \|_{2} + \|g_{n,\lambda}' - g_{n,\lambda}\|_{2} \\ \leq \|U_{T_{2}}^{q_{n}} g_{n,\lambda} - U_{T_{2,n}}^{q_{n}} g_{n,\lambda} \|_{2} + 2\|g_{n,\lambda}' - g_{n,\lambda}\|_{2}.$$ It follows from the proof of (i) above that $\|U_{T_2}^{q_n}g_{n,\lambda}-U_{T_{2,n}}^{q_n}g_{n,\lambda}\|_2\to 0$ as $n\to\infty$ so that $\varepsilon_n\to 0$ as $n\to\infty$. Starting with the intervals $(t - \delta, t + \delta) \subseteq T$, let us define (3.12) $$E_{n,\delta}^{\lambda} = \bigcup_{s^{|a_n|} = \lambda} (t - \delta, t + \delta).$$ Letting θ be the smallest positive number with $\lambda = e^{iq_n\theta}$ and letting $\rho'_{n,\lambda} = \|g_{n,\lambda}\|_2^{-2}\rho_{n,\lambda}$, we have (3.13) $$\varepsilon_{n} = \left| \int_{-\pi}^{\pi} e^{iq_{n}t} d\rho_{n,\lambda}(t) - \|g_{n,\lambda}\|_{2}^{2} \lambda \right|$$ $$= \|g_{n,\lambda}\|_{2}^{2} \left| \int_{-\pi}^{\pi} e^{iq_{n}(t-\theta)} d\rho'_{n,\lambda}(t) - 1 \right|.$$ Then for small δ , with $\delta_n = q_n \delta$, (3.13) implies $$1 - \varepsilon_n \|g_{n,\lambda}\|_2^{-2} \leq \int_{-\pi}^{\pi} \cos q_n (t - \theta) d\rho'_{n,\lambda} (t)$$ $$\leq \rho'_{n,\lambda} (E_{n,\delta}^{\lambda}) + (1 - \rho'_{n,\lambda} (E_{n,\delta}^{\lambda})) \cos \delta_n$$ $$\leq \delta_n^2 \rho'_{n,\lambda} (E_{n,\delta}^{\lambda})/2 + 1 - \delta_n^2/2 + \delta_n^4/24.$$ so that $$\rho_{n,\lambda}'(E_{n,s}^{\lambda}) \ge 1 - \delta_n^2/12 - 2\varepsilon_n/(\delta_n^2 \|g_{n,\lambda}\|_2^2).$$ **Taking** (3.14) $$\delta = \varepsilon_n^{1/4} q_n^{-1} \| g_{n\lambda} \|_2^{-1/2},$$ we have (3.15) $$\rho_{n,\lambda} (E_{n,\delta}^{\lambda}) = \|g_{n,\lambda}\|_{2}^{2} \rho_{n,\lambda}' (E_{n,\delta}^{\lambda})$$ $$\geq \|g_{n,\lambda}\|_{2}^{2} - (25/12) \|g_{n,\lambda}\|_{2} \varepsilon_{n}^{1/2}.$$ For δ as above, let us define $$(3.16) F_n^a = \bigcup_{\lambda \in x_n(\mathcal{O})} E_{n,\delta}^{\lambda}.$$ Then by (3.15) and the definition of $g_{n,\lambda}$, (3.17) $$\rho_{g}(F_{n}^{a}) \geq \sum_{\lambda \in \chi_{\alpha}(\sigma)} \rho_{n,\lambda}(E_{n,\delta}^{\lambda})$$ $$\geq \sum_{\lambda \in \chi_{\alpha}(\sigma)} \|g_{n,\lambda}\|_{2}^{2} - K\varepsilon_{n}^{1/2}$$ $$= 1 - K\varepsilon_{n}^{1/2}$$ (and K depends only on the cardinality of $\chi_a(\mathcal{O})$). Now let us repeat the construction for $U_{\tau_2}|_{H_0^2}$, letting g' be a unit vector of maximal spectral type with corresponding spectral measure $\alpha_{g'}$. We have by (3.16), $$(3.18) \rho_{\mathbf{x}'}(F_n^{a'}) \ge 1 - K' \varepsilon_n^{1/2},$$ where $\varepsilon_n \to 0$ as $n \to \infty$. It follows from (3.11), (3.12), (3.14) and (3.16) that $$(3.19) F_n^a \cap F_n^{a'} = \emptyset$$ for sufficiently large n. Then (3.17), (3.18) and (3.19) imply that ρ_g and $\rho_{g'}$ are mutually singular. (iii) For each $l \in \mathbb{Z}/m$ there are infinitely many n such that $R_l \circ T_{1,n}$ is cyclic. Thus $R_l \circ T_{1,n}$ constitutes a good cyclic approximation for $R_l \circ T_1$. By [5] Corollary 2.1, $R_l \circ T_1$ is ergodic for each l. By a straightforward generalization of [10] Lemma 3, since T_0 is weak mixing and each $R_l \circ T_1$ is ergodic, T_1 is weak mixing. Now let us suppose $U_{T_2}f = \lambda f$ for some $f \in H^2_a$. By Lemma 2.5 there exists $f' \in H^2_{a'}$, $a' = \bar{\alpha}a$, with $U_{T_2}f' = \lambda f'$. The function $g = f'/f \in H^2_{a'}$, for some a'', is invariant, and by the assumption that α is proper, g is not constant. By (ii) above, a'' = 0, but by the second part of Lemma 2.4 this contradicts the fact that T_1 is weak mixing. The next lemma shows that $(\gamma_1, \gamma_2) \in \mathcal{A}$ satisfying the hypotheses of Lemma 3.5 exist. In fact, they are actually generic. LEMMA 3.6. Let T_0 admit a good cyclic approximation $(T_{0,n}, \xi_{0,n})$. Then there is a subsequence (T_{0,n_k}, ξ_{0,n_k}) and a dense G_δ subset A' of A such that each pair $(\gamma'_1, \gamma'_2) \in A'$ is admissible, with the following additional property: For any $l \in \mathbb{Z}/m$, infinitely many $T_{1,n}$ are l-satisfactory, and for any α -orbit \mathcal{O} , infinitely many $T_{2,n}$ are \mathcal{O} -satisfactory. PROOF. We follow the method of [4] closely. Let \mathcal{T} be the disjoint union of all $l \in \mathbb{Z}/m$ and all α -oribits \mathcal{O} . It follows from Lemmas 3.3 and 3.4 that for any $t \in \mathcal{T}$ and any $\xi_{0,n}$ -measurable $(\gamma_1, \gamma_2) \in \mathcal{A}$ there exists a $\xi_{0,n}$ -measurable $(\bar{\gamma}_1, \bar{\gamma}_2) \in \mathcal{A}$ with $\|\gamma_i - \bar{\gamma}_i\| < 3/q_n$ such that $T_{i,n}$, i = 1 or i = 2, is t-satisfactory. Since $\xi_{0,n} \to \varepsilon$, $q_n \to \infty$, so we have for any j > 0 there exists n = n(j) sufficiently large for the following: For any $(\gamma_1, \gamma_2) \in \mathcal{A}$, $t \in \mathcal{T}$ there exists a $\xi_{0,n}$ -measurable $(\bar{\gamma}_1, \bar{\gamma}_2) \in \mathcal{A}$ with $\|\gamma_i - \bar{\gamma}_i\|_1 < 1/j$, i = 1, 2, such that $T_{1,n}$ or $T_{2,n}$ is t-satisfactory. Let us fix such a $\bar{\gamma}_i$ in each case. This choice defines a function F_i with $\bar{\gamma}_i = F_i(\gamma_1, \gamma_2, t, j)$. Let $S'(q) = 1/q^3$, so that $S'(q) = o(1/q^2)$ as $q \to \infty$. We define (3.20) $$G(\gamma_1, \gamma_2, t, j) = \{(\gamma'_1, \gamma'_2) \in \mathcal{A} : \text{ for } n = n(j), \|\gamma'_i - \bar{\gamma}_i\|_1 < S'(q_n), i = 1, 2\},$$ which is clearly a nonempty open subset of \mathcal{A} . Let $$\mathscr{G}_{i,J} = \bigcup_{j=J}^{\infty} \bigcup_{(\gamma_1,\gamma_2) \in \mathscr{A}} G(\gamma_1,\gamma_2,t,j)$$ which is open and dense, so that $$\mathscr{A}' = \bigcap_{i \in \mathscr{T}} \bigcap_{J=0}^{\infty} \mathscr{G}_{i,J}$$ is dense G_{δ} . Now (γ_1', γ_2') belongs to \mathcal{A}' if, for each $t \in \mathcal{T}$, it belongs to an infinite sequence of neighborhoods $G(\gamma_1^k, \gamma_2^k, t, j_k)$ with $j_k \to \infty$. We define the sequence (T_{0,n_k}, ξ_{0,n_k}) to be the subsequence $(T_{0,n_k}, \xi_{0,n_k}, \xi_{0,n_k})$. Clearly, the sequence $\bar{\gamma}_i^k \stackrel{\text{def}}{=} F_i(\gamma_1^k, \gamma_2^k, t, j_k)$ is ξ_{0,n_k} -measurable and has subsequences which are satisfactory in every way. Furthermore, by (3.20) and the definition of S', $\|\bar{\gamma}_i^k - \gamma_i'\|_1 = o(1/q_{n(j_k)}^2)$ as $k \to \infty$, so that (γ_1', γ_2') is admissible, corresponding to $(\bar{\gamma}_1^k, \bar{\gamma}_2^k)$. PROOF OF THEOREM 2.2. First assume only that α is separating. Choose $(\gamma_1, \gamma_2) \in \mathcal{A}'$. By Lemmas 3.6 and 3.5(i), each $U_{T_2}|_{H_a^2}$ has spectral multiplicity 1. For each $\bar{\alpha}$ orbit \mathcal{O} , let $H_o^2 = \bigoplus_{a \in \mathcal{O}} H_a^2$. Then by Lemma 2.5, $U_{T_2}|_{H_o^2}$ has spectral multiplicity uniformly equal to card \mathcal{O} . By Lemma 3.5(ii) $U_{T_2}|_{H_o^2}$ and $U_{T_2}|_{H_o^2}$ have mutually singular spectral types for all pairs of orbits $\mathcal{O} \neq \mathcal{O}'$. It follows that $\mathcal{M}_T = \mathcal{M}_\alpha$. The ergodicity of T_2 follows from (ii) and from the ergodicity of T_1 , which follows from the fact that T_1 admits a good cyclic approximation ([5] Corollary 2.1). Now assume that α is proper. Then by Lemma 3.4(iii) $U_{T_2}|_{H_a^2}$, $a \neq 0$, has continuous spectrum, and $U_{T_2}|_{H_0^2}$ has only the eigenvalue 1 corresponding to the constants. This implies T_2 is weak mixing. Theorem 2.1 can immediately be strengthened as follows: COROLLARY 3.7 (Genericity). For all T_0 in a dense G_δ subset \mathcal{U}' of \mathcal{U} there is a dense G_δ subset \mathcal{A}'_{T_0} of \mathcal{A} such that the corresponding transformations T_2 satisfy Theorem 2.2. With a similar but more elaborate argument along the lines of [8, Proposition 6.1], one can obtain the following alternative genericity statement. COROLLARY 3.8. There is a dense G_{δ} subset W of $U \times A$ (in the product topology) such that the corresponding transformations T_2 satisfy Theorem 2.1. Using the methods of [8, §7] it is possible to prove that transformations satisfying Theorem 2.2 can be realized within the class of interval exchange transformations. Using the arguments of [10, §3], transformations satisfying Theorem 2.2 can also be constructed by cutting and stacking. Finally, we note that a close look at the proof of Theorem 2.2 reveals that the transformations T_0 , T_1 and T_2 are all non-mixing, rigid, and have singular spectrum (cf. [4], [5]). ### REFERENCES - 1. I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer-Verlag, New York, 1982. - 2. G. R. Goodson, On the spectral multiplicity of a class of finite rank transformations, Proc. Am. Math. Soc. 93 (1985), 303-306. - 3. P. R. Halmos, Lectures in Ergodic Theory, Math. Society of Japan, Chelsea Publishing Co., New York, 1956. - 4. A. Katok, Constructions in ergodic theory, in Progress in Mathematics, Birkhauser, Boston, Mass., to appear. - 5. A. Katok and A. M. Stepin, Approximations in ergodic theory, Usp. Mat. Nauk 22 (1967); Russian Math. Survey 15 (1967) 1-22. - 6. J. Mathew and M. G. Nadkarni, A measure preserving transformation whose spectrum has Lebesgue component of multiplicity two, Bull. London Math. Soc. 16 (1984), 402-406. - 7. V. I. Oseledec, The spectrum of ergodic automorphisms, Dokl. Akad. Nauk SSSR 168 (1966), 776-779. - 8. E. A. Robinson, Jr., Ergodic measure preserving transformations with arbitrary finite spectral multiplicities, Invent. Math. 72 (1983), 299-314. - 9. E. A. Robinson, Jr., Ergodic Measure Preserving Transformations with Finite Spectral Multiplicities, Dissertation, University of Maryland, Aug. 1983. - 10. E. A. Robinson, Jr., Mixing and spectral multiplicity, Ergodic Theory and Dynamical Systems 5 (1983), 617-624.