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Introduction.

In [CW] A. Connes and E.J. Woods introduced a new property

associated to group actions on Lebesgue spaces, called approximate
transitivity. This property arises naturally in the context of hyper-
finite von Neumann factors and in the study of nonsingular ergodic
transformations. They showed, using von Neumann algebra techniques,
that a transformation is orbit equivalent to an odometer of product
type if and only if its Poincaré flow is approximately tfansitive. (A
hyperfinite von Neumann factor is ITPFI iIf and only if the flow of
weights 1s AT.)

One is led naturally to study this apparently new property of
group actions in the context of ergodic theory. This was done to some
extent in [CW], where they proved that all AT actions are ergodic, and
measure-preserving AT transformations have zero entropy. Further
properties of AT actions are discussed in [HW] and [H].

Approximate transitivity is an L1 approximation property. The
authors generalize the -definition to the LP case, as was done in [H],
and concentrate on the L2 case. The property called approximate
transitivity (p) or AT(p) is introduced, and some properties of these

actions are discussed.

*Research supported in part by NSF Grants MCS-8102399 and DMS-8418431
**Research supported in part by NSF Grant MCS-8120790



- The main results of this paper are the following. First we prove
that transitive free group actions are AT(p) for all 1 s p < ®, and
that for each p, the property of being AT(p) is an isomorphism
invariant. We use these results to prove that to every odometer of
product type, say (X,8,u,G), we can associate a canonical G x R
action which is AT(p) for all p; from this we obtain a theorem
stating that every AT(1) flow 1s isomorphic to a factor action of an
AT(p) action for every 1 s p < ®, In an earlier unpublished version
of this paper the authors claimed that Poincaré flows for odometers of
product type are AT(p) for all p € [1,®), The proof contained a
gap, and this general question is still open. In some finite measure-
preserving cases discussed in [H], it is true that AT(p) for p =1
is equivalent to AT(p) for p € (1,®).

A study of properties of AT(2) action is done in 3. The main
theorem of that section states that AT(2) flows and transformations
have simple L2 spectrum. As a corollary we obtain that finite-
measure-preserving AT(2) flows and transformations have iero
entropy. A result of independent interest proved in this section
gstates that if T 1is an ergodic measure-preserving transformation,
and F is its suspension flow with constant ceiling function, then

t
T has simple spectrum if and only if F has simple spectrum.

t

We conclude the paper by studying examples of well known flows
and transformations in ergodic theory to see which of these are and
are not AT(2). Recent results of Choksi and Nadkarni [CN] prove that
AT(2) transformations are generic in the space of nonsingular transf-
formations. It remains to be determined, however, whether all
approximately transitive (1) transformations are AT(2).

The authors would like to thank J. Feldman and A. Ramsay for
helpful discussions, and the MSRI is Berkeley for support during some
of the preparation of this paper. Also C. Sutherland and G. Skandalis

are gratefully acknowledged for their comments on an earlier version
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81, Definition and notation

We beign with the definition of Connes and Woods of an approxi-
mately transitive group action.

Definition 1.1. [CW] Let G be a Borel group, (X,u) a Lebesgue

measure space and &: G — Aut(X,M) = {the group of nonsingular inver-

tible automorphisms of (X,u)}, a Borel homomorphism. We say that the

action is approximately transitive (AT) if given fl"."fn € Li(x.p)

1
and € > 0, there exist f € L+(x.u). gy '8y € G and ljk 2 0

m d#ag
such that “fj - Z Mg e agk ---m—--k—ll1 < € for each j. We also
k-1

write AT(1) for approximate transitivity. 1In [H] it was shown that
the approximating function f in the definition could be chosen to be
a step (Lm) function. We generalize this definition to the Lp case,
and call it approximate transitivity (p) or AT(p), since in the L2
case it provides a natural sufficient condition for simple spectrun.

We fix any p € [1,m),

Definition 1.2. A Borel group G acting on a Lebesgue.space

(X,u) 1is approximately transitive im the L® norm, or ATgp).'if given
I LN 2 p p e o0
fl. 'fn € L+(x.u) and & > 0, there exist f € L+(X.u).g1, X € G

and A 2 0 such that

jk
= d”agk 1/p
f. - :E: A e f o a < &
[ J Jjk g | du "p
k-1
for each J. (This definition is equivalent to the one given in

(H]).

Connes and Woods prove that a countable nonsingular ergodic
amenable equivalence relation is orbit equivalent to an odometer of
product type if and only if its associated ergodic flow is AT(1) [CW].
(We remark that these equivalence relations are generated by single

ergodic transformations [CFW].) Their proof (and theorem) deals



. completely with von Neumann factors. An ergodic theoretic proof of
one direction of the theorem is given in [H]; that proof is generali-
zed in this paper to give the following proposition which is proved in

the next section.

Proposition 1.3. The Poincaré flow of an odometer of product
type is a factor action of an AT(p) group action for each 1 < p < m,

We define an odometer here, noting that odometers serve as proto-
types for all orbit equivalence classes of countable nonsingular

amenable ergodic equivalence relations [D], [S], [Kr].

Definition 1.4. Let {dk}k21 be a sequence of integ;rs 2 1, and
let xk = (0.‘-°,dk—1}. We define the Borel space X = kﬂlxk' with 8
the a-algebra of Borel sets on X. We let Gk denote the group of
all cyclic permutations on Xk; then Gk also acts on X (by acting

only on the kth coordinate). Now by G we denote the group

. ® ®
generated by all the Gk's; that is G = U [ N Gk]' If we put any
n-1%“k-1

a-finite Borel measure M on (X,B) we respect to which G- acts
ergodically, then we say (X,B,G,4) is a measured odometer. If W

@
is a product measure of the form u =[] My with uk(xk) = 1 and
k-1

pk({i)) > 0, then we say that (X,8,G,u) 1is an odometer of product
type, or a product odometer. One can check that the full group of G,
denoted [G] is the same as the full group of the transformation T

defined as follows:

Let r(x) = min {k21: X\ < dk - 1), then
0 if k < r(x)
(Tx)k = Xy + 1 if k = r(x)
xk if k = r(x)

hence the term odometer is appropriate for this action.
There is a canonical way to associate an ergodic flow to any
measured odometer, and it has been proved by Krieger [Kr] that in the

nonsingular and non-measure-preserving case this flow (up to metric



.isomorphism) provides a complete invariant for orbit equivalence
classes of odometers. Thus flow is defined by first considering the

G action on X x R given by (x,y) + [gx,y+log%%§(x)] for each

g € 6. In general this action is not ergodic, so we consider a
measurable partition of X x R which generates the a-algebra 80 of
all G-invariant sets up to sets of measure zero. The natural projec-
tion from X x R to (X X R)/$0 x Y is a factor map; the desired flow
is obtained from the R-action (x,y) = (x,y+t) induced on the factor
space Y. We remark that this [R-action is the same as the 6 x R
action given by:

- dug
a(g’t)(x.y) = [gx.y+t+logaﬁ-(x)] for all (g,t) € G x R,

(x,y) € X x R and then induced on the factor space Y, (since every-
thing in the G direction collapses).

Definition 1.5. The factor action defined above is called the

Potncare flow associated to the odometer. (A complete account of this
flow is given in [HO]).
We conclude this section by recalling the definition of simple

spectrum for a flow

Definition 1.6. A nonsingular ergodic flow (Ft) on (Y,v) has
simple spectrum if the unitary representation Ut of R on Lz(Y.v)

defined by:
t dth

1/2
U'f =f ° Ft e [ a0 ]

has the property that there exists an element f € LZ(Y,v) such that

2 2 - ty
L°(Y,v) = closure in L of { :E: a, U f; ay € C, tk € R}, (cf. § 3
k=0 ‘

for a discussion of this and related definitions).

§2 Approximate transitivity in the LP norm.

We begin with a lemma which shows that transitive actions are

AT(p).

Lemma 2.1. Let H be a metrizable locally compact abelian group



which acts on itself by translation. The action is AT(p) for all
1 s p < w,

Proof. We show there exists an approximate identity for
Lp(H,dw). where dw denotes Haar measure for the group H; that
is, we prove the éxistence of a sequence of convolution operators
on Lp(H,dw) converging strongly to the identity. In particular,
there exists a sequence of L' functions P 2 0, |loll = 1 such
that for all f € LP(H,do)

t * p(h) = [ te)o (hg™Mrdw(e) = [ (g Vo, (g)dw(e)
G G

satisfies f*pk — £ in Lp(ﬂ.dw) as k — ®, We define pk as

follows. Let Bk = ball of radius 1/k about e € H, and let

wk = w(Bk). We now define

-1
(4] if h e B
o, (h) = { K k

0 if h« Bk

Then [jo,|l, = 1, and we show that T f = f%, is a bounded

operator.

Itll, = Il [ £me™ ey (e)do(e]],
H

- [ i [ 1 f(hz‘l)pk(z)dw(z)]p]l/p

by Minkowskl's integral inequality

_ 1/p
< j [ j f(hg 1)pk(z)pdw(h)] dw(g)
H H

s [ e @] llel doce) = e
H

We now suppose that f € Lp(H,dw) is continuous. Since f(h)-1

£(h): j P (8)dw(g), we have
H

T, £(h) - £(h) = j [f(hg'
H

Y - tm)]ey(@)doce), 8o



_ 1/p
It -2l = | [ 1] [f(zh Y - f(h)]pk(g)dw(g)|”dw(h)]
H H

1

e _ 1/p
P
s [ leme™) - tmey (o] dw(h)] do(g)
H

= 5 1/p
< J | Py () j | (h) - £(h)] dw(h)] do(g),
H

where fg(h) = f(hg-l}, and the above is equal to

[ el () - £(n)]| do(e)
H

-1
f -f|| w, dw + I -f + 0
[ leg | o) dote) e -l
Bk H\Bk
By the continuity of f.fg(h) - f(h) 1is small for all h € Bk when

k is large, so the above integral will be less than any fixed ¢ > 0

when k 1is large enough. Since the continuous functions are dense 1in
Lp(H.dw). and {Tk} is a uniformly bounded sequence of operators,
then it follows that Tk — Id strongly on Lp(H.dw).

To show that this implies approximate transitivity in the Lp

norm is easy. Suppose we are given € > 0 and fl.“-.fn € Lf(H.dw).

We first choose k 1large enough so that "fj-p ‘fj"p < €/4, and then
k
we choose pk = f € LE(H.dw). We then have
"fj I I lj(g)f(hg—l)dﬂ(g)" < €/4 for each J.
H
By approximating lj = fj by step functions, as in [CW], we can pass

to a finite sum (cf. [H, Cor. 3.4] for details):

1)||p < € for each .

s
Ity - :E: Mk © E(hey
k=1
This proves the lemma. ]

Our next lemma shows that the AT(p) property is invariant under

nonsingular isomorphisms, so any transitive free action (i.e. even one



which does not preserve Haar ieasure but leaves it quasi-invariant) is
AT(p).

Lemma 2.2. Suppose that the Borel group G has an AT(p)
action a: G — Aut(X,u), and there exists a measure v ~ U and
another action B8: G — Aut(X,v) such that the actions are
isomorphic. Then the action {Bg}geG is also AT(p), for any
1 s p < ®,

Proof. By our hypotheses, there exists ¢:(X,u) — (X,v) an
invertible (a.e.) map such that ¢(agx) = Bg(¢x) for every g € G,
p-a.e. x € X, and v ~ u. We obtain operators on the appropriate

Lp spaces from a, 8, and ¢ as follows.

We define for each g € G the operator

P P apa 1/p
Ag: LY (X,u) —m LY (X,u) by Agf(x) = f(agx) " (x)

By LP(x,v) — LP(x,v)

duB 1/p
given by Bgf(x) = f(ng) —ﬁﬁg(x) for each ge G, ¢4 .or v -

a.e. X € X. We get an intertwining operator from ¢, the map

dve|1/p
U¢:Lp(x,v) — Lp(x.u) defined by U¢f(x) = f(gx) —EE for each
geE G, pgpor v - a.e. x € X, It is easy to check that

AgUwf = U¢Bgf for all f € Lp(x,v); that is, the diagram commutes:

A

LP(x,u)y —E— LP(x,m)
B

U¢ T
L?(x,v) —E&— LP(x,v).

insert

since each element of Ue can be identified with an element of G

which does not affect any coordinates of x € X after X,
p

Then using f € L+(XXR.v).AJk. and (gk.tk) € 6 xR obtained

above, we have



Suppose that we are given f '-~,fn € Ls(x.v) and &€ > 0. Then

1 "’
P
we consider U¢f1. .U¢fn € L+(x.u) and we can find £, 3 -
A 2 0 and h € LP(x,p) with h = U f. for some f € Lp X,M) with
Jk + o1 m +
h = U¢f for some f € Lf(x.v) such that HU¢fj - :E: ljk . Agkhn.

k=1

Equivalently,

m m
U - A . U fll = - :z: A B f < €,
Io,t Z sk * A, Upflh = NIU,E, jk YpBg Tly

k=1 k k=1 k

Using the linearity of U¢ and the fact that it is norm preserving,

it is clear that the action given yb B8 on (X,v) 1is AT(p).O
We now turn to the product odometers introduced in §1. We can
write the space X = fnxﬁn by defining

n ®

z n

Xn = | | xk and X = | | xk.
k=1 k=n+1

Similarly, the product measure M4 can be written as u = pnxgn. with

n ® :
— n — .
”n = | | uk b= I | ”k' Also by Gn we denote the group
k=1 k=n+1
generated by Gl.---.Gn and by gn the group generated by Gn+1'
-— n a
Gn+2' , 80 G = Gneg . We remark that Gn acts freely and

transitively on in' leaving Fn quasi-invariant. Furthermore if we

consider the—action of Gn x R on xn x R given by a(g't)(x.y)
LT _ _
(gx,y+t+log——(x)) for each (g,t) € Gn x R, (x,y) € xn x R, we see
du
n

that this action is transitive and free. If we put the finite measure
v, = En x e-yzdy on X x R, then applying Lemma 2.2 tells us that
this action is AT(p) with respect to vn. This is used in the proof
of Proposition 1.3.

We remark that it was proved in [CW] and in [H] that the factor

11



action of an AT(1) action is AT(1); this proof does not work for
AT(p) actions if p > 1 unless the action is finite measure-
preserving (because of the presence of a Radon-Nikodym derivative
which does not cancel). However we can use the idea of the proof in

[H] in the following proposition.

Proposition 1.3. Let (X,8,4,G) denote an odometer of product

type. Then the G x R defined by a (x,y) = (gx.y+t+log%%§(x))

(g, t)
for each (g,t) € 6 x R, (x,y) € X xR 1is AT(p) for every
1 s p < ®». Consequently the Poincare flow of an odometer of product

type is the factor action of an AT(p) group action for each

p € [1,0).

Before proving the proposition, we state and prove a corollary
which gives an interesting characterization of approximately

transitive flows using the theorem of Connes and Woods.

Corollary 2.3. An ergodic nonsingular flow is AT(1), or

approximately transitive, if and only if it is a factor flow of an

action is AT(p) for each p € [1,®),

Proof: () We assume that a nonsingular ergodic flow Ft is

AT(1). Then by the theorem of [CW], Ft is the Poincare flow of an

odometer of product type. That is, Ft is a factor action of the

G x R action on x’x R defined above. By Proposition 1.3, Ft is
the factor action of an AT(p) action for every 1 < p < ®,

(e#) We now assume that the flow Ft is the factor action of an
action which is AT(p) for every 1 s p < ®, By [CW], it follows

that Ft itself is AT(1). O

We now turn to the proof of Proposition 1.3, using all notation

as defined above.

12



- Proof. Assume we are given f ,f € LB(XXR,V) and € > 0.

1’ n
P

We can approximate each fj in the norm by a step function of

X x R whose support in X 1i1s a finite number of cylinders. More

precisely, we find a positive integer £ dependent on €, and
functions f;e)(x.y) = fge)(xl,...,xc.°.y) (its value depends only on
the first £ coordinates of x € X), and such that

e, f:(je)llp < €/2 for each § = 1,...,n.

Since the action of Ez x R is AT(p) with respect to Ve, We

identify each f(e) with the_function it represents in

3
Lg(ié x R,v,), and then we can find elements g,,....g, € Ei.
P, .
tl""'tm e R, ljk 2 0 and f € L+(x£ X R,ve) satisfying:
n v (g, t ) 1/P
J Jk (Bx»tk) dv, p
k=1

for each j. Then we simply regard f as a function on X x R by
f(x,y) = f(xl,...,xe,y) and we use the fact that Y, being a product

measure, gives us this nice identify: for all (g,t) € Eé

_ 2 1/p
P, ) VP |y x o7 aviagy
T(xl""'xe'y) = — _ 2 — (xlv'--oxcvy)
due x e ¥ dy
= £ _y2 1/p
(due X H) x e ydya(g t)
: (x1'°°-vxevy)

diy x 4% x e Vay

_ [d”“(g.t)

1/p
> (x.y)] for all (x,y) € X x R,

since each element of Ue can be identified with an element of G

which does not affect any coordihates of xe€ X after Xp-

Then using f € LE(XxR,v),l and (gk,tk) € 6 x R obtained

jk’

above, we have

13



equivalence by the unitary equivalence class of Ut. The measure

class of O0 1is called the maximal spectral type. The multiplicity
function m(A) = dinm Hl is determined uniquely o-a.e.

A cyclic subspace J of ¥ corresponds to a measurable choice
of a 1-d1mension§l subspace Jl of each Hl' A € R, in some spectral
representation of Ut. Ut has simple spectrum if and only if
m(A) =1 for o-a.e. A € R.

Given a unitary operator U on ¥ we may regard its powers Un.
ne€Z as a unitary representation of 2. The definitions of cyclic
subspace and simple spectrum generalize to this case in an obvious
way, and there is also a spectral representation, similar to that for

Ut. except that R 1is replaced with the circle T.

Given & nonsingular transformation T (or a nonsingular measur-

able flow Ft) of a Lebesgue space (X,u4) we construct the induced
duT 1/2
unitary operator UTf(x) = f(Tx)[a%—] (strongly continuous unitoary
t dUF L/& 2
representation U f(x) = f(th)[Eg-k(x) ]). on L°(X,u), and say T
(resp. Ft) has simple specétrum if Ut (resp. U;) has simple

spectrum. We not that this definition is equivalent to Definition
1.6.

Lemma 3.1 was first obtained by Katok and Stepin [KS] for Z. We
givg the easy proof for R, noting that it can be generalized to type
I groups using a result of Riley [R1].

Lemma 3.1 Suppose Ut does not have simple spectrum. Then
there exist orthonormal vectors ¢1. ¢2 € ¥ such that for any cyclic
subspace J of ¥,

da%(9,.9) + a¥(p,,3) 2 1, (%)

where d denotes the distance from a vector to a subspace.

Proof. Consider the spectral representation for Ut and let

M = {AeR: m(A( > 1}. Since the spectrum of Ut is not simple

o(M) > 0, and by changing to an equivalent measure we may assume



O(M) = 1. For each A € M, measurably choose an orthonormal pair
¢1(1), ¢2(1) € Hl and define ¢1(1) = ¢2(1) = 0 for A € M. It 1is

easy to see that ¢ and ¢2 are orthonormal in ¥.

1

For a cyclic subspace J of # and hl'h

2 2
"¢1 - h1" & "¢2 - ¢2"

2 [ dle, ) - n ]2+ (le, ) - By R)aor)
M

2 [ (a2 @ 0 MR+ e, ]Fra0m).
A
M

As easy computation shows that for a Hilbert space of dimension
at least two, the inequality (*) holds for any orthonormal pair and
any l-dimensional subspace. An application of this fact to the
integrand for each A yields the result. ' u

Let T be an ergodic measure preserving transformation on a
Lebesgue probability space (X,#) and let (Y,”) = (Xx[0,1],uxds),

where ds 1is Lebesgue measure. the suspension Ft of T 1is the

measure preserving flow on (Y,»”) defined by
F.(x,8) = (Tkx.r)
where k and 4 are determined by the conditions t+s = k+r,k e 2

and r € [0,1). Let o_,m 'OT and mT denote the maximal spectral

F F
t

types and multiplicities for UF and UT respectively. Denote by

2wil
= e »

exp the mapping R -— T, exp (A) We prove the following

result of independent interest about the spectrum of t and Ft'

Lemma 3.2. The flow Ft defined above has simple spectrum if an

only if T has simple spectrunm.

Proof. Let Hn be the subspace of Lz(Y.r) of functions with
spectral representation supported on the interval In = [-n,-n+1] © R,

The subspaces Hn' ne 2, form a U; invariant orthogonal decomposi-

tion of La(Y.r). and has a spectral representation with

t
Ugl Hp

spectral type on = zIn oF and multiplicity ln = xIn nF. The



unitary operator has spectral type o© and multiplicity m_,

1
UF l Hqp n n
after identifying In with T by exp. Thus, it suffices to show

1 .
that for each n, Ug | H is equivalent to Up-
2 -2mis

For f € L°(Y,7), let Mf(x,8) = e f(x,8). M 1is unitary,

and because e-zw13 is an eigenfunction for the eigenvalue 1 of U;.
U;Mf(x.s) e_znitnu;f(x.s). (#)
In particular, M commutes with U;.
-1

We now show that MHn = Hn+1 or equivalently PHn M PHn+1M‘

where PH denotes the prejection onto Hn. Let P(A) denote
n

projection to the functions with spectral representation supported on

(-©,A]. P(A) 1is determined for OF - a.e. A€ R by the condition
that
t amit
(upt.e) = [ 2™ aprye,e)
R

hold for all f,g € L2(Y,7). We have

(U;Mf.Mg) = I 2™t 4 (p (A Me, ME)
R
and by (#)
(U;nf.ng) = e'a"it(uu;f.ug) = e-zuitMU;f.g)
- e—znit I eznitld(P(l)f,g)
R
2mitA
. f e d(PA+1)f,g) .
R
Thus

M lp(A)M = P(A+1),

and since PH = (Id - P(-n) P(-n+1),
n

-1
M P M =P .
Hnet Hp

Next we consider the subspaces Jn of Lz(Y.r) defined as follows.
Let Wt be a fixed strongly continuous unitary representation of R

1

on Lz(x.u) such that W™ = U (such a wt exists by the spectral

T;

theorem). the subspace Jn will consist of functions of the form



-2nins o8

f(x,8) = e Wg(x). An easy computation shows that -] Jn forms
_ neZ
a U; invariant orthogonal decomposition of LZ(Y.r). Thus for each
m and n the projections PJ and PH commute. Furthermore,
n n
t

UF'J, is equivalent to U, and MI_ = It

Let K = H n J and note that since P and P commute,

n,m n n Hp Jm
L2(Y.v) = @ Kn n’ We define Rn: Hn - Jn by RnIK = Mn—n. 80
n,nsZ2 ' n,m

that RnKn.m = Kan—n.n' and extend to H by linearity. It is clear

that Rn Intertwines U; on Hn and Jn' establishing the desired

equivalences. (u]

Proposition 3.3. Let F be an AT(2) flow. Then F has

t

t

simple spectrunm.

Proof. Suppose the spectrum is not simple and choose ¢1 and

¢2 according to Lemma 3.1. Write
1 2 3 4
= % + 19, - 4
Py = $y S0 SRy - Sy
J = 1,2, where ¢§ 2 0. Given € > 0 there exist f € Lf(x.p).

llk

Y 2 0 and ty € R, j=1,2,k = 1,°¢¢,4, £ = 1,2+ ,p such that

K oSk W 1/2
AR JEVILER N I <ess
-1 € du 2

for all j,k,€. Thus there exist h h, € H(f) such that

1’ 72

"¢1 - h1"2 i "¢2 - hg"z < &,

contradicting Lemma 3.1. (|
Remarks. 1. Proposition 3.3 is true for nonsingular flows,

transformations, and type I group actions which are AT(2); that is, it
holds for the same actions as those for which Lemma 3.1 is true.

2. In particular, the G x R action defined in Proposition 1.3
has simple spectrum, so the Poincaré flow of an odometer of product

type is always a factor action of an action with simple spectrum.



3. Using a proof similar to [{H, Thm. 3.2] it can be shown that a
factor action of a finite measure-preserving AT(2) action is AT(2)
(and therefore has simple spectrum), but the general question is still
open. Therefore it is not yet known whether an AT(1) flow has simple
spectrum.

§4 Examples

We conclude with a composition of some of the implications of the
fact that AT(2) transformations and flows have simple spectrum. For
any finite measure-preserving action, we see easily that AT(p) implfes
AT(q) for gq < p; similarly if an action is not AT(2), then it is not
AT(p) for any p 2 2.

Connes and Woods [CW] show that an AT measure-preserving
transformation has zero entropy. We obtain that result for AT(2), and
in addition we obtain:

Corollary 4.1. A measure-preserving AT(2) flow or transformation
has zero entropy.

Proof: Flows with positive entropy have an invariantlaubspace in

L2 with countable Lebesgue spectrum [CFS]. n]

We also obtain some zero entroy examples of non-AT(2) transforma-

tions and flows.
Corollary 4.2. The following are not AT(2):

(i) horocycle flows on surfaces of constant negative curvature;

(ii) time t maps of horocycle flows on surfaces of constant
negative curvature;

(iii) ergodic nilflows without totally discrete spectrum (cf.
(AGH]):

(iv) ergodic affine transformations on nilmanifolds without
totally discrete spectrum;

(v) measure-preserving transformations with quasi-discrete

spectrum.



. Proof: By [Pa], (i) and (ii) have coutable Lebesgue spectrum,
Cases (iii) and (iv) have countable Lebesgue spectrum in the L2
orthocomplement to the eigenfunctions by [AGH] and [P1], and case (V)

reduces to (iv) [P1]. u]

Although rank 1 and funny rank 1 transformations are AT(p) for
all 1 < p < ® [CW] and [H], there exist ergodic rank r transforma-
tions with spectral multiplicity r([R]; furthermore, there exist
interval exchange maps with non-simple spectrum, cf. [R]. Thus we
have the following:

Corollary 4.3

(1) For each r > 1 there exists an ergodic transformation of

rank r which is not AT(2);

(i1) There exist measure-preserving AT(2) transformations with

non-AT(2) two point extensions;

(iii) There exist measure-preserving AT(2) transformations which

are not loosely Bernoulli.

Proof: (i) follows from A. Katok's observation [K] that Cartesian
powers never have simple spectrunm, and (ii) follows from [HP]; (iii)
follows from [F]. []

We point out that weak mixing AT(2) transformations and flows do
exist and therefore give ergodic, but non-AT(2) Cartesian products.

Finally, contrasting the fact [CW] that the suspension of an AT
transformation is an AT flow as well as Lemma 3.2 of this paper, we
have:

Corollary 4.5.

(1) Every Kakutani equivalence class of measure-preserving
transformations (flows) contains a non-AT(2) transforma-
tion (flow).

(i1) For every measure-preserving AT(2) transformation T there

is a special flow built over T which is not AT(2).



_Proof. (i) follows from equivalence theory presented in [ORW];

every Kakutani equivalence class has an element with a horocycle flow

as a factor. (This depends on the fact that the horocycle flow is

loosely Bernuoulli_[Ra]). The countable Lebesgue spectrum in this
factor 1ifts to an invariant subspace in L2 for the action.
(ii) follows from Ambrose-Kakutani theorem [AK] and (i). o

These examples contrast with a recent result of Choksi and

Nadkarni which states that AT(2) transformations are generic (contain

a dense

65 set) in the space of nonsingular transformations of a

Lebesgue space with the coarse topology [CN].
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