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Microsoft brings its products to users through many channels, including via over 240,000 reseller 
partners. Although engaging end-customers through a global partner network brings numerous 
benefits, it also exposes Microsoft to numerous risks, including the possibility of engaging with corrupt 
partner organizations. Exposure to corruption risk through partners can create billions of dollars in 
fines, government imposed monitoring, and significant reputation damage. The goal of the High-
Risk Partners (HRP) program is to protect Microsoft by identifying risky partners requireing additional 
compliance oversight through an early warning and monitoring system. Microsoft’s previous partner 
vetting process relied on expensive external reports, did not make use of internal data sources, occurred 
in a once-yearly cycle, and was largely manual. Our team therefore built the HRP platform to directly 
score the riskiness of over 240k channel partners using internal data and on an ongoing basis. The 
HRP model performs with 44% precision for identifying high-risk partners, which contrasts with 12% 
precision for the previous manual approach. The HRP platform launched into production in January 
2019 and is an essential compliance tool and key control for Microsoft. The platform provides human 
reviewers with actionable insights about partner corruption risk and creates a critical business impact 
when making partner vetting decisions.
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1. Introduction
Microsoft’s sales of software licenses and online services 
through its volume licensing programs generated over 
$71B in revenue in FY2019. Approximately 55% of volume 
licensing sales are brokered through third party channel 
partners, which include resellers, distributors, suppliers, 
and subcontractors. Although engaging end customers via 
channel partners brings numerous benefits, it also exposes 
Microsoft to risk, including potentially engaging with 
corrupt partner organizations. For example, Figure 1 depicts 
two hypothetical channel partner sales scenarios. The path on 
the right shows a transaction involving a single partner (e.g., 
reseller), who provides the product to the end customer. The 
path on the left involves multiple partners (e.g., reseller and 
distributor), as well as monetary concessions (e.g., discounts, 
end customer investment funds (ECIF)). Multi-layered 
transactions involve money changing hands more times with 
more intermediaries, thus obscuring the presence, timing, or 
locus of corrupt behavior in the process of getting Microsoft 
products to the end customer. Adding concessions increases 
opportunies for risk, where partners may not always pass on 
concessions such as discounts to the end customer, or where 
incentive funds can be used to bribe or provide kickbacks 
to public officials. In this context we can define partner 
corruption risk as encompassing bribery and incentive and 
concession abuse. 

Indeed, Microsoft has faced investigations regarding 
scenarios just like this (e.g., Fiscutean, 2014; Hinshaw & 
Greene, 2018; Matthews & Ovide, 2013). Even with no 
wrongdoing on the part of Microsoft, exposure to risks like 
this can bring at minimum significant reputational damage, 
and conceivably lead to government-imposed monitoring, 
potential fines of tens (or hundreds) of millions of dollars, 
or even jail time for executives. This risk was recently 
highlighted by a settlement reached between Microsoft, 
the US Department of Justice, and the US Securities and 
Exchange commision worth $26M regarding just such a 
bribery scheme in the Hungarian subsidiary (Greene, 2019). 
Identifying problematic behavior and potentially corrupt 
partners early and systematically is obviously of paramount 
importance to the company both legally and financially.

Here we describe Microsoft’s High Risk Partner (HRP) 
program, which is the first initiative to use data science to 
systematically identify potential corruption risk within 
Mirosoft’s channel partner ecosystem. The HRP program 
provides a model-driven platform for human reviewers to 
identify and better understand corruption risk in partner 

organizations. It launched into production in January 
2019 and is now an integral part of the company’s partner 
vetting process when entering into and renewing contractual 
relationships with reseller partners. It augments the existing 
human-based vetting process managed by the OneVet 
organization, within Commercial Operations. 

The HRP data model takes a hybrid rule-based analytical 
and data science-based anomaly detection approach to 
deliver a risk score between 0 and 100 for each partner. 
This hybrid approach is the result of collaborations between 
data scientists, engineers, and compliance experts; it was 
designed to provide more intuitive, actionable information 
than standard machine learning-only models can generally 
provide. This hybrid, interpretable structure has resulted 
in crucial buy-in from the organizations accountable for 
onboarding and offboarding partners from our channel 
ecosystem, which has in-turn led to broad adoption of the 
platform, with a resulting substantial business impact. The 
current scope of the HRP platform in production focuses on 
delivering insights for Microsoft’s reseller partner network in 
the company’s volume licensing space. However, the scoring 
logic is general and is being rolled out to other partner types 
(e.g., software advisors, cloud solution providers, etc.), as well 
as during other points during the partner lifecycle beyond 
vetting (e.g., when the company is approving discounts, 
investment funds, and credit term extensions).

Before describing and evaluating the HRP model, we first 
describe Microsoft’s previous partner vetting approach, 
other machine learning work on identifying corruption risk, 

Figure 1: Schematic of channel partner sales model.
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and finally traits of the HRP problem space and dataset that 
make our modeling target very different from prior work on 
corruption.

1.2. Previous Partner Vetting Approach
Partner vetting is carried out primarily by Microsoft’s internal 
vetting organization, OneVet. OneVet performs numerous 
types of vetting for organizations across the company, 
including annual and, when necessary, on-demand partner 
corruption risk evaluations. However, most relevant to the 
present work is OneVet’s annual enhanced anti-corruption 
review (EACR) cycle. This is the most in-depth type of 
vetting that occurs at the partner-level, and the outcomes 
of EACR serve as the only gold standard labels for partner 
corruption risk in Microsoft’s network. 

Each year, EACR is carried out for approximately 2000 
partners. The EACR process can last weeks to several 
months for a given partner based on the presence and 
severity of corruption red flags found. The cost of the vetting 
process also varies by the level of depth needed, but the 
average monetary cost is approximately $1500/partner. Prior 
to the launch of the HRP platform, selection for EACR 
was carried out manually by Microsoft compliance experts 
based primarily on consideration of three factors: 1) the 
geographical area in which the partner is operating, which 
is mapped to area-specific corruption risk determinations 
provided by CELA in the form of the CELA risk tier; 2) 
the type of partner; and 3) the partner’s revenue stream with 
Microsoft. Geographical area and revenue have traditionally 
been the largest factors driving selection. Because of these 
considerations, most reviews have historically focused on 
partners with large revenue streams operating in areas where 
corruption risk is known to be high.

EACR is a multi-tiered process, the exact details of which 
can vary based on the needs of a particular partner’s case, but 
all reviews share some core elements. First, anti-corruption 
reports and scores are ordered from external providers for 
all partners selected for EACR. These reports detail adverse 
media and negative news, presence on specific watchlists, 
sanctioned parties, and politically exposed persons. Second, 
partners complete extensive questionnaires, with questions 
supplied by Microsoft’s Office of Legal Compliance. This 
information, as well as information about prior review 
outcomes from previous EACR or OneVet reviews is taken 
to make an initial risk determination. For partners with no 
red flags for corruption risk at this review stage, approval 
takes days to weeks. Red flags in this case could refer to 
adverse media reports indicative of corruption found in the 

externally-sourced reports, or previous findings of corruption 
risk (see below), which may require follow-up diligence and 
risk mitigation (i.e., enhanced controls).

For partners with corruption red flags, more thorough vetting 
is carried out. The details of this vetting vary based on the 
exact context and type of red flag, but may include further 
research and diligence into partner business practices or 
validation of partner compliance with previously-implemented 
corruption controls. At this stage, partners with actionable 
corruption risks that can be mitigated by enhanced controls 
can be approved. In higher risk cases, a determination of 
“do not approve” is given and processes are started to restrict 
Microsoft’s engagement with the partner. These cases are 
escalated to other compliance organizations within Microsoft, 
such as the Office of Legal Compliance, who do further work 
to determine the scope of disengagement. In certain high-risk 
cases, this could include fully off-boarding the partner from 
Microsoft’s channel ecosystem.

Although this process has been successful in discovering and 
mitigating Microsoft’s exposure to corruption risk in many 
cases, it does suffer from some drawbacks. First, vetting was 
only carried out once yearly. Even in cases where corruption 
risks may have become apparent through media reports about 
a particular partner at some point during the year, unless a 
specific on-demand vetting were requested, the media coverage 
would not be taken into account until the next yearly cycle. 
This cycle timing is not frequent enough to capture ongoing 
changes to partner risk profiles. Second, risk determinations 
were made primarily based on purchased external reports, 
and did not consider what in some cases are long-standing 
partnerships with Microsoft. In these instances, analysis of 
the partner’s 360-degree business relationship with Microsoft 
could provide important clues to identify potential corruption 
risk. Third, decisions about inclusion in the annual cycle were 
made primarily based on two attributes: partner geography and 
revenue. Therefore, some partners with very low corruption 
risk but perhaps high revenue streams were vetted each year 
(i.e., redundant vetting despite no new evidence of risk), 
while some partners with smaller revenue streams but other 
potential red flags went unreviewed. Failing to asses risk for 
the entire partner ecosystem could have the unfortunate effect 
of exposing Microsoft to corruption risk that could otherwise 
be successfully mitigated. 

1.3. Prior Modeling Approaches to Risk and 
Corruption
Risk modeling has been an area of extensive work within 
the machine learning (ML) literature. For example, 
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bankruptcy, credit default risk, and fraud detection (e.g., 
credit card or other transaction fraud) have received a 
large degree of attention (e.g., Adewumi & Akinyelu, 2017; 
Barboza et al., 2017; Fu et al., 2016; Galindo & Tamayo, 2000; 
Hua, et al., 2007; Olson et al., 2012; Zheng et al., 2018), and 
more recently ‘RegTech’ for regulatory compliance in the 
financial industry has been a growing area of focus (Aziz & 
Dowling, 2019; Wall, 2018). Bad transactions or regulatory 
breaches can often be identified with a clear binary label in 
supervised modeling (e.g., default or no default; regulatory 
breach or no regulatory breach). Current state of the art 
models typically adopt a binary classification approach 
using K-nearest neighbors, SVM, boosted trees, deep neural 
networks, Bayesian networks, or some stacked ensemble of 
multiple of these approaches.

In comparison to fraud or default risk, much less published 
work has focused on using ML to identify corruption risk. 
Corruption is more abstract than fraud or default making 
it harder to model, and acquiring labels requires lengthy 
(months- or years-long) investigations. As such, datasets 
are much smaller and labels are less reliable. Nonetheless, 
the few existing reports using ML to predict corruption 
have used traditional supervised approaches, with gradient 
boosted trees performing well in several applications 
(Colonnelli et al., 2019; Gallego, et al., 2018; Grace et 
al., 2016). 

One troubling issue in modeling corruption risk is that 
while outcomes of investigations may provide some clear 
positive (risky, corrupt) labels, negative labels are not always 
as clearly defined. Because of the cost and time overhead of 
launching corruption investigations, many datasets include 
large number of uninvestigated and therefore unlabeled 
cases. This leads to a non-trivial choice about what subset 
of cases to include in the ML model as negative labels. 
Including all cases, including uninvestigated and unlabeled 

cases, means potentially contaminating the ‘good guy’ pool 
in the model, since unknown bad actors may be among 
the unlabeled observations. Alternately, including only 
investigated cases in the model may drastically reduce size 
of the dataset. For example, when prototyping a model for 
predicting corruption risk in World Bank contracts, Grace 
et al. (2016) used only investigated cases, reducing their 
dataset size from ~200k total contracts to only 600. Such 
small datasets can lead to drastic overfitting, which is likely 
the case with Grace et al.’s model, and even make ML 
fully untenable. 

1.4. Challenges in Modeling Partner Risk and 
Modeling Principles
Modeling corruption risk in the HRP space faces several 
challenges that make traditional supervised learning 
approaches like those describe above untenable. First, the 
models we use must be fully intelligible by human reviewers 
who are non-ML experts. Final risk determinations for 
partners are still made by OneVet reviewers. Goals for our 
models are to both indicate the riskiest partners for reviewers 
to focus their attention on, and to reveal to the reviewers those 
partners’ riskiest attributes that require follow-up research 
and diligence, thus increasing efficiency and saving overhead 
costs. Because of this, no black box algorithms can be used. 
Even regression coefficients or outputs of tree interpreter 
algorithms (e.g., SHAP or LIME) can be difficult for non-
experts to understand, especially when they involve marginal 
effects and interactions. 

Second, only 2048 (<1%) of the 246k partners in our database 
have been reviewed; over 99% therefore have unknown 
risk profiles and no associated risk category label. Third, of 
the reviewed partners, only 87 (0.04% of the total dataset) 
received the highest risk assessment from OneVet (see Table 
1 for risk category descriptions). 

Category Description Risk Level No. of 
Partners

1 Internal Issue Found: 
Escalated

Internally severe issues were detected by Audit or CELA OLC Very High 87

2 OneVet Reviewed: Red 
Flag + AC Control

Vetted by OneVet; severe red flag found; anticorruption training 
was made as a control

High 165

3 OneVet Reviewed: Red 
Flag (No AC Control)

Vetted by OneVet; red flag found but not significant and thus no 
controls made

Med 95

4 OneVet Reviewed: No 
Red Flag

Vetted by OneVet; no red flags Low/Med 1701

5 Not Reviewed Not vetted Unknown >244K

Table 1: OneVet vetting outcomes with risk categories for partners in the dataset.
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Taken together, this means that standard supervised 
learning methods that strictly classify a given partner as 
risky or not cannot be used. Restricting our dataset to 
include only investigated partners (i.e., partners with true 
labels) would make it too small for ML to yield reliable 
results. Additionally, the minority class (very high-risk 
partners) has so few instances that splitting the data into 
train/test strata and cross-validation folds would result 
in too few observations for any supervised learner to 
perform adequately, and there are too few instances for up-
sampling methods such as SMOTE (Chawla et al., 2002) to 
perform well.

In some cases such as ours with incomplete labels, weakly- 
or semi-supervised learning approaches can be used to learn 
labels in addition to building a machine learning classifier 
(see, e.g., Zhou, 2018). However, some of these approaches, 
such as active learning, assume a human ‘oracle’ who can 
adjudicate label predictions. In our case, such an oracle is 
unfeasible because of the cost (~$1.5k/partner) and duration 
of reviewing (months) by OneVet. Other approaches such 
as mixture modeling presume that data come from known 
probability distributions (e.g., Gaussian), which our data do 
not. Still other label-learning approaches assume that at least 
some labels are clearly defined as either positive or negative 
classes (e.g., high or low risk). However, as we describe in 
3.1, below, we have no clear low-risk labels: the only labels 
we have are for partners who presented with at least some 
level of risk to human reviewers. Thus, even semi-supervised 
approaches cannot adequately meet the unique challenges 
that our data presents.

We therefore approached the present problem with four 
primary modeling principles in mind. First, the model 
cannot rely on labels for training, and as such, there is no 
objective cost function that can be minimized. Instead, 
we use a multiple anomaly detection ensemble approach. 
Second, because we do have reliable labels for a very small 
subset of our data (<1%) from prior human reviews, we 
can use this partial information about known bad actors to 
both determine optimal weights for ensembling individual 
risk models into an overall risk score and to assess model 
performance. Third, because final risk assessments are 
ultimately carried out by human compliance managers and 
because the aim of the program is to maximally facilitate 
these efforts, the model must maintain strict intelligibility. 
That is, no ‘black box’ algorithms can be used to derive risk 
profiles, and the model output must be fully transparent to 
and intelligible by human reviewers, who are subject matter 
experts in compliance, but non-ML-experts, via a dashboard 

tool. Fourth, we acknowledge that risk is not inherently 
categorical, but rather abstract and relative. Our models are 
therefore designed to produce relative risk scores for partners, 
with separate relative risk scores for specific risk areas.

2. Method
2.1. Modeling Approach
We approached these unique challenges by building a multiple 
anomaly detection ensemble model, which can intelligibly 
guide expert human reviewers for final risk determination. 
Our selected mechanism takes a multi-stage approach by 
breaking the overall model into a set of component models. 
First, we obtain risk scores for each attribute (e.g., revenue, 
discounting, ECIF, etc.). This score is in-turn made up of 
subscores that consider different aspects of the attribute, with 
scoring approaches appropriate for each respective attribute 
and its corresponding data type (see Section 2.2, below). Each 
risk attribute score is scaled between 0 and 100, representing 
the low and high ends of the risk spectrum, respectively. We 
then built a final risk score from the attribute scores using a 
weighted linear average. Weights were determined using the 
partial information about partner risk available from prior 
reviews (see Section 3.2 for more detail), combined with 
input from compliance experts and stakeholders from the 
compliance reviewer community. This multi-stage approach 
maintains interpretability for non-ML-expert human 
reviewers so that the largest risk attribute contributor(s) 
to a partner’s final risk score can be communicated to the 
reviewer, who can then direct their review efforts to the areas 
that present the most pressing concerns for compliance risk.

In this way our multi-stage approach bears some 
resemblance to model stacking methods described in 
previous literature (e.g., Breiman, 2004; Leblanc & Tibshirani, 
1996; Sill et al., 1999; Smyth & Wolpert, 1999; Wolpert, 
1992). However, in standard stacking approaches, model 
predictions are generated by pooling the predictions of 
several independently-trained learners of the same type 
(e.g., regression, neural networks), which are each trained 
for the same objective but with a different subset of data. 
Our approach bears more resemblance to feature-weighted 
linear stacking (Sill et al., 1999) than to pure stacking 
methods; however, even feature-weighted stacking methods 
generally combine not only multiple feature-weighted 
instances of a single learner type, but also pool multiple 
different types of learners, each of which is aimed at the 
same outcome (e.g., multiple weighted instances of both 
singular value decomposition and k-nearest neighbors for 
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recommender engines, with weights for each contributing 
model determined by the value of some feature). Our 
component models are each trained on separate datasets 
with separate modeling objectives, and then linearly 
combined into a single risk score assignment.

2.2. Risk Areas and Sub-Models
Major risk areas that are included in the HRP model 
risk score are described in the appendix, in Table A1, 
along with information about the respective risk source. 
Numerical contributions of these risk areas to the overall 
score are depicted in Figure 2. We first group risk attributes 
into three broad risk areas: entity trustworthiness, 360° 
business relationship, and business environment. Scores 
for entity trustworthiness are provided to us by other 
vetting organizations within Microsoft when available, 
with scores being determined by that organization based on 
its own research and due diligence. These scores are based 

on the external reports that were previously the primary 
determinants of risk for partner vetting. Scores in the other 
two major risk areas – 360° business relationships and 
business environment – are computed in our model from 
Microsoft-internal data. CELA risk tier information aside, 
these two areas and their component sub-models represent 
the major novel contribution of the HRP program to 
Microsoft’s vetting process.

The 360° relationship score is comprised of risk scores 
derived from previously found issues, partner revenue data, 
and data on payments made to partners. Each of these is 
further built from a set of risk attribute scores (terminal 
nodes in Figure 2). The score for each risk attribute is further 
derived from one or more models. Where there is more than 
one model, the various models consider different aspects of 
the risk attribute and score in slightly different ways (see 
Tables A2-4 for details). For most models, scores for a given 

Figure 2: Major risk areas and contributions to final risk score. Score for a given node reflect that node’s contribution to the parent’s score.
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partner are assigned based on the partner’s location in peer 
comparison distributions, where peer groups are defined 
based on partner area, region, sub-region, subsidiary, and 
sector. The targets of each risk attribute and sub-model, as 
well as the scoring logic/method for each sub-model, were 
determined based on consultation with domain experts in 
risk and compliance.

Most models are built around a logic of ranking partners 
relative to peers, taking into consideration different time 
frames. Some scores focus on the most recent financial 
quarter; some consider the past eight quarters in aggregate; 
some consider each of the last eight quarters individually, 
and then assign an overall score by taking the maximum risk 
score across quarters and peer groups (when a given partner 
can be assigned to more than one peer group). More details 
about each of the component risk scores can be seen in the 
appendix, in Tables A2, A3, and A4. 

In these tables, ‘hockey stick’ scoring functions refer to a 
scoring logic where partners in the lower tier of percentiles of 
risk in their peer comparison receive a score of  0, but above 
an inflection point (e.g., above the 85th percentile), partners 
receive increasing scores, which are linearly scaled between 
0 and 100. The ‘stretched Z’ function describes a scoring 
logic where partners whose percentile rank falls below an 
inflection point (e.g., <70th percentile) all receive scores of 
0, partners within a specified percentile interval (e.g., 70th 
>= partner percentile < 85th) receive scores linearly scaled 
between 0 and 100, and partners above the interval all receive 
scores of 100. Other models assign specific scores to bins of 
partners based on a scoring logic determined in consultation 
with domain experts. 

One particular type of ML anomaly detection model used 
as part of the risk attribute score for four of the payments 
attributes is the Isolation Forest. Isolation Forests (Liu, Ting, 
& Zhou, 2008, 2012) are an unsupervised, nonparametric 
anomaly detection algorithm suitable for large datasets, 
where multiple feature dimensions need to be considered 
simultaneously in order to identify multivariate outliers. 
A given isolation tree is created by recursively partitioning 
feature space; forests are created by ensembling multiple 
trees in an analogous way to the better-known random forest 
algorithm. However, unlike random forests, the feature 
chosen to split over and the split point are randomly selected. 
That is, no objective cost function is being minimized, and 
the model does not ‘learn’ in the traditional sense. Isolation 
Forests are a fully unsupervised partitioning algorithm that 
can be used to generate anomaly scores.

3. Results
3.1. Component Score Evaluation
As mentioned above, risk category labels are available 
for <1% of partners. Although this is too few to use for 
traditional supervised machine learning, we can use these 
known risk labels for this subset to assess the performance 
of individual component (risk attribute-level) models. Risk 
category labels were derived from OneVet review outcomes 
and are described in Table 1; for reviewed partners, these are 
true gold standard labels. Five categories are delineated. Over 
99% of partners fall into Category 5 (Not Reviewed) and 
therefore have unknown risk. Presumably, the vast majority 
of these partners pose no corruption risk; however, the lack 
of any vetting information on them does not allow us to 
clearly categorize them as such. Partners in Categories 3 and 
4 were manually selected for review based on their partner 
profile, which indicates some degree of perceived risk in their 
portfolio (primarily large revenue streams and/or business in 
a geographical area with known high risk). However, further 
investigation by OneVet raised no concerns (Cat. 4) or 
previous red flags, which have been successfully mitigated 
(Cat. 3). We thus classify these partners as low/medium and 
medium risk, respectively. OneVet reviews for partners in 
Categories 1 and 2 did reveal significant compliance issues, 
which led to either anti-corruption mitigation controls 
(Cat. 2) or further escalation within Microsoft’s compliance 
ecosystem, such as to the Office of Legal Compliance, One 
Commercial Partner (OCP) organization, or Partner Audit 
program in Internal Audit (Cat. 1). In the case of Category 
1 partners, escalation outcomes could potentially lead to 
partner off-boarding. We consider these to be high- and very 
high-risk partners, respectively. 

If our individual anomaly detection models are sensitive to 
partner-level risk, we should observe a correlation between 
risk category and anomaly score (i.e., higher anomaly scores 
for Cats. 4 and 5, than for 1 and 2). Importantly however, 
we do not expect any one scoring model to uniquely or 
exhaustively discriminate between lower and higher risk 
partners. Rather, the trend across partners should show 
higher score assignment to higher risk partners, and this 
should generally hold across risk attributes.

Here we show evaluations of four separate risk attributes: 
ECIF, discounting, partner incentives, and public sector 
business. Where there is more than one model constituting 
a risk attribute in Tables A2, A3, and A4, the plots show 
the weighted average of those models, combined based on 
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the weightings in the corresponding table (the procedure for 
determining these weights is described in 3.2).

Depictions of mean risk scores and 95% confidence 
intervals (CIs) for these risk attributes as a function of risk 
category are shown in Figure 3. We see that average partner 
risk scores increase with risk category for all four of the 
risk attributes, though the overall value of the mean risk 
scores differs across attributes. Average values are higher 
for discounting and public sector business than for ECIF 
and partner incentives. This is because very few partners 
actually receive ECIF or incentive payments. Because 
risk is only found when these payments are distributed to 
partners, partners not receiving these funds are given scores 
of 0 for the corresponding risk attribute. That is, if Microsoft 
does not provide the partner with ECIF or incentives, the 
partner cannot abuse these payments, so no risk is present. 
Thus, the lower mean scores reflect a large number of zero 
values contributing to the bins’ averages. Note also that the 
95% CIs of the mean show little overlap across categories. 
This is the case in particular for the highest risk categories 
(Cats. 1 and 2), as well as for the unvetted and lowest vetted 
risk categories (Cats. 5 and 4, respectively). 

These results show that, on average, our anomaly-based risk 
scores are useful for identifying risky partners in general. 
Moreover, by computing separate risk scores for separate 
sources of risk (i.e., first scoring within distinct risk attributes), 
we can provide individual risk attribute scores to OneVet 
reviewers. This then allows the reviewers to focus their 
research and vetting efforts on the riskiest and potentially 
most problematic areas of a partner’s business milieu and 
Microsoft’s business relationship with the partner.

3.2. Final Risk Model Composition and Results
After identifying risk attributes and building attribute-
level scores, weights for the final ensemble risk score were 
determined. Our process for weight optimization departed 
from traditional ML practices due to a series of practical 
constraints. First, because of the modeling challenges we 
faced (Section 1.4) traditional performance measures to 
maximize via cross-validation such as precision, recall, and 
F-beta scores could not be used, as the delineation between 
positive (risky) and negative (safe) cases in our data is not 
precise. That is, only a small number of bad actors who were 
offboarded or escalated via CELA OLC, OCP, and Audit 
are known, and this list is incomplete, since the vast majority 

Figure 3: Mean risk scores for ECIF, discounting, partner incentives, and public sector business as a function of risk category. Risk categories 
are those from Table 1. Error bars show 95% CIs of the mean.
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of partners did not receive any form of OneVet review. 
Moreover, the list of clear good actors among un-reviewed 
partners is not known. Thus, we cannot compare our 
predicted outcome or risk score with any true state for the 
vast majority of partners. Furthermore, because the number 
of known Category 1 (highest risk) partners is exceedingly 
small, performing train/test splits and cross-validation to 
optimize feature weights for the level-2 ensemble model was 
untenable. Finally, a key component necessary for the success 
of the HRP platform is buy-in from the reviewer community; 
without trust and endorsement from the reviewers who 
are the intended users of the product, some of whom are 
skeptical of ‘black box’ machine learning scores, insights 
our platform provides might go unactioned. Input from the 
reviewer community on how scores should be combined was 
therefore taken into consideration. 

With these constraints in mind, we used a two-stage 
optimization process. The first stage involved quantitative 
optimization; the second stage involved human adjustment 
to the weights determined in the first stage. In the first stage, 
risk scores were computed for each partner over a series 
of weight combinations using a grid search approach. We 
then identified the proportion of Category 1 (very high-
risk) partners captured in the top 1%, 5%, and 10% of risk 
scores for each weight combination. Identifying the weight 
combinations that maximized this proportion, which we 
term ‘pseudo-recall,’ was the primary objective in this stage, 
and provided a set of candidate weights for the second stage. 

We chose the name ‘pseudo-recall’ for the optimization 
objective because our metric is related to recall, but true 
positive and false negative rates cannot be calculated exactly. 
Unlike binary classification models, our model does not 
return the probability of a partner belonging to a given class, 
but instead gives an overall risk score; the objective of the risk 
score is not discrete categorization based on class membership 
probabilities. Additionally, the number of false negatives 
cannot be calculated, since the majority of partners remain 
unvetted. Instead, pseudo-recall computes the proportion of 
known very high-risk partners who fall above a given quantile 
threshold out of the population of known very high-risk 
partners. We strove to maximize pseudo-recall because our 
primary objective is to identify all known risky partners, so as 
to minimize Microsoft’s potential exposure to said risk.

After obtaining a set of weight combinations that maximized 
pseudo-recall at the three different percentile cut-off values, 
they were combined into a single weight combined into using 
human evaluation of their commonalities; these weights were 

then human-adjusted for the final model after considering a set 
of desiderata. These included maintaining high pseudo-recall at 
the 1%, 5%, and 10% levels, while also choosing a combination 
that would be transparent to, and interpretable and trusted by, 
the users of the HRP platform (OneVet reviewers). The first 
way this was achieved was by reviewing the set of highest-
performing weights, and constraining risk attribute-level 
weights for the a priori chosen risk attributes (described above) 
to be non-zero. Next, component score weights were rounded 
to the nearest 5% for individual risk attributes, based on how 
they were to be reported in the final reviewer dashboard. This 
constraint was added to aid interpretability to reviewers. Where 
weights in a given risk attribute in Tables A1, A2, and A3 are 
not round, those individual scores are displayed as a single 
summed score in the reviewer dashboard (e.g., PI1, PI2, and 
PI3 in A3 are reported as a single score totaling 40% of the 
partner incentives attribute score in the HRP dashboard).

Pseudo-recall metrics for the final weights are given in Table 
6, and mean risk scores by risk category with 95% CIs for 
the final model are depicted in Figure 4. When considering 
approximately the top 1% of partner risk scores, 81.4% of 
known risky partners are captured. When considering the 
top 5.7% of risk scores, pseudo-recall rises to approximately 
92%. Figure 4 shows that mean scores increase monotonically 
across increasing risk categories, and 95% CIs for the lowest 

Figure 4: Mean final HRP risk score by risk category.  Error bars 
show 95% CIs of the mean.

Top 
quantile

No. Risk Cat. 1 
Partners Flagged

Risk Cat. 1 Pseudo-recall

0.15% 64 65.98%
1.12% 79 81.44%
5.72% 89 91.75%
9.75% 96 98.97%
16.24% 97 100%

Table 6: Final risk model pseudo-recall scores.
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risk categories (4 and 5) show no overlap with the highest 
risk categories (1 and 2).

The final model therefore shows good separation in scores between 
the lowest and highest risk partners, among those partners in our 
database during model construction. However, unlike traditional 
ML approaches where the final model is validated on a hold-out 
set of the data, this evaluation was carried out on the dataset from 
which the model was built. In principle this can lead to overfitting 
of the development data, and poor generalization to new data. 
However, as discussed above, because of the extreme imbalance 
in our data and the paucity of known high-risk partners in our 
existing partner ecosystem, using a traditional hold-out dataset 
was untenable for the present problem. This initial evaluation 
should therefore be considered exploratory. A true test of the 
efficacy of our model requires evaluation on a novel dataset over 
which weights were not optimized. Such a dataset first became 
available after our model was launched in production, and it will 
be discussed below. 

3.3. Production and Ecological Validation
The High Risk Partners Platform was launched in January 
2019, and it is in use by OneVet for partner review in the volume 
licensing space. In the OneVet platform, the risk score for a 
given partner is presented for reviewers in a dashboard along 
with the top-5 risk drivers for a given partner. On a partner’s 
landing page, reviewers see the final risk score given by the 
model, along with information that led to that specific risk score 

determination. The dashboard provides a high-level overview 
of a partner’s risk score components (Figure 5), with qualitative 
relative risk information by risk attribute (high/medium/low 
risk flags based on final risk score bins). Reviewers can then 
click into any risk attribute for a deep dive into the data and 
business drivers behind any risk attribute score with embedded 
PowerBI (Figure 6, next page). This dashboard thus provides 
reviewers not only with the final score for a partner, but also 
information on how that score was derived. This includes both 
information on which risk attributes are driving the score, as 
well as the ability to dive into the raw data supporting the score.

Since the platform was launched, we have acquired a large set of 
new labels obtained on an out of sample dataset in the form of 
Cloud Solution Provider (CSP) vetting outcomes. This partner 
type is not normally included in the annual EACR cycle. 
Because CSP partners are relatively new in Microsoft’s channel 
partner ecosystem, and because the CSP space represents one 
of the company’s top areas for growth, OneVet is currently 
engaged in a special reviewing cycle to rapidly vet and assess risk 
among CSP partners, with the goal of vetting all partners new 
to the CSP ecosystem. The present dataset reflects the partner 
vetting population that was completed during the second half 
of FY2019. These partners were not included in the dataset used 
to optimize model weights, and therefore represent an ideal out 
of sample dataset. Importantly, this dataset is not a traditional 
hold-out dataset, which may not necessarily reflect a good 
proxy for the types of data that the model will be used for once 

Figure 5: High level risk score overview from HRP dashboard for hypothetical partner.
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deployed. Rather, this is a true ecological validation to assess the 
efficacy of HRP scores in predicting risk in real-life scenarios. 

During the second half of FY2019, vetting outcomes 
were received for 8542 CSP partners. From the OneVet 
determinations, we categorized partners as either high-risk 
or low-risk. Partners categorized as high-risk are those who 
were rejected (and escalated), approved with anti-corruption 
controls because of red flags, or assigned to high-risk tier 
determinations for further compliance monitoring; partners 
who were approved without any controls were categorized as 
low risk. 344 partners were determined to be high-risk, and 
8198 were determined to be low risk.

Density-normalized HRP risk score distributions for the high 
and low risk partners are depicted in Figure 7. As can be seen, 

the high and low risk partners appear as separate distributions. 
That is, the plot shows that HRP scores provide a very good, 
though not perfect, predictor of partner corruption risk. A 
Welch’s t-test for independent samples (assuming unequal 
variance) showed that the mean scores for the two partner 
types were reliably different (t = 26.02, p < .00001).

Currently in the HRP platform, partners who receive a total 
score of 50 or greater are flagged as ‘high-risk partners’ and 
recommended for vetting review. We refer to these partners 
as being “system flagged.” To asess the HRP model’s ability 
to disciminate high and low risk partners, we used system 
flagging as a binary categorization variable, and compared 
these flags against the high and low risk determinations 
by OneVet (that is, the ground truth determinations). A 
confusion matrix with raw and column-normalized values is 
presented in Table 7. Using system flagging with a threshold 
score of 50 leads to a recall of 51% and precision of 44%. 

Figure 6: Discounting risk attribute score deep dive for hypothetical partner in HRP dashboard.

Figure 7: Density-normalized HRP risk score distributions for high 
and low risk CSP partners.

System flagged?

Raw Column-
normalized

No Yes No Yes

Ve
tt

in
g 

O
ut

co
m

e

High 
Risk 169 175 0.021 0.439

Low 
Risk 7974 224 0.980 0.561

Table 7: Confusion matrix for CSP vetting validation outcomes.
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To compare this outcome with the prior OneVet selection 
process, if we take the ~2k partners selected for vetting as a 
“predicted positive,” and binarize the partner risk categories 
delineated in Table 1 into high and low risk (where Cats. 
1 and 2 are considered high-risk and Cats. 3 and 4 are 
considered low risk), we can compute a precision of 12%. 
True recall rates for the prior OneVet selection process 
cannot be computed due to the issues discussed in Section 
3.2. This precision rate means that only 12% of partners 
selected for review using OneVet’s prior selection strategy 
actually showed high-risk attributes needing mitigation or 
escalation. This contrasts with a 44% hit rate for high-risk 
partners among those who would be selected for review 
based on our system flagging threshold from the HRP score. 

4. Conclusions and Future Directions
The High Risk Partners platform is currently one of the most 
impactful compliance tools in Microsoft. It is the product 
of collaborations involving numerous stakeholders across 
disparate parts of the company, and now provides important, 
actionable insights to OneVet reviewers who make final risk 
determinations during partner vetting. It provides an early 
monitoring and warning tool for Microsoft’s compliance 
and corruption monitoring organizations, by giving humans 
both quantitative and qualitative insights in an interpretable 
and user-friendly manner, while still maintaining scoring 
integrity and ability to identify partners in need of further 
vetting scrutiny. 

The current product is in use by OneVet and is now a key 
driver for partner vetting selection in the volume licensing 
reseller space. The platform is currently being rolled out to 
include CSP resellers, and further extensions to include 
partner types, including software advisors, distributors, 
and others, are in progress. The solution we described here 
overcomes some of the key limitations of OneVet’s previous 
partner selection and vetting system described in Section 
1.2. Namely, partners are recommended for vetting based 
on anomalous behavior across a number of data streams 
available from Microsoft-internal data, and not simply on 
partner geography and revenue. Moreover, partner scoring 
now occurs quarterly, as new quarterly financial data are 
ingested, with a goal of moving toward continuous scoring. 
In this way, changes in partner details that can be indicative 
of risk can be taken into account as data becomes available, 
and not simply during the once-yearly standard EACR 
vetting cycle. The platform additionally scores all partners 
for risk simultaneously, and therefore provides a window 

into risk profiles for smaller partners and partners from non-
risky geographical areas, who would have gone unscrutinized 
under the previous system.

Throughout the model building process we faced a number 
of data challenges and balanced a number of competing 
constraints. Most relevant to the data science and modeling 
problem were the lack of reliable labels for the vast majority 
of our dataset, as well as the severe imbalance among those 
partners who were labeled. This made traditional ML methods 
and solutions such as supervised learning, or validation 
methods and metrics untenable in the HRP program. 
Additionally, we weighed the concerns, opinions, and needs 
of the human reviewers who use our product heavily in both 
the model building process and design of the final dashboard 
tool, where the model outputs are reported and described 
to the reviewer community. Without trust and buy-in from 
reviewers, the production model would go unused in practice. 
The final model approach and architecture therefore reflect 
a balance of data-driven optimization constraints with 
human-centered design and reporting considerations. 

With this initial model in place, the HRP program will be able 
to rapidly iterate, grow, and mature our data science approach 
in at least two major ways. First, the introduction of a model-
based system to the reviewing community has the effect of 
familiarizing the reviewers with data science and machine 
learning concepts, and will build trust among reviewers in the 
accuracy and efficacy of data science-based models. Once a 
base level of trust is established, more sophisticated (and less 
transparent) ML models will be able to be introduced without 
sacrificing buy-in among the user base. 

Second, instead of manually selecting partners for review out 
of an unsorted heap, our HRP scores will enable reviewers to 
focus their vetting efforts on only those partners who have 
profiles strongly indicative of corruption and compliance 
risk. This will speed the identification of risky partners, 
who may have been missed by the less structured previous 
selection approach. Metaphorically, instead of looking for 
risky needles in a haystack, reviewers will be looking for 
needles in a handful of hay. In turn, this will quicken the 
accumulation of high-risk partner labels. As these labels 
are added to our dataset, more accurate supervised learning 
approaches to corruption risk will become tenable. 
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5. Appendix
Risk Area Risk Rationale
Entity trustworthiness Scores from external vetting groups using media and other reports on partner organization 

trustworthiness indicating partner risk.
Previously found issues Partners who have prior partner- or contract-level red flags from vetting outcomes or who have 

previously been off-boarded are risky.
Discounting Partners receiving larger discounts relative to peers are risky.
Returns Partners who return products at higher rates and for higher amounts relative to peers and relative to 

their revenue are risky.
Business trends Partners with unusually large deals relative to peers are risky.
Business tenure New partners with unknown track records are risky; extremely long-tenure partners present risk 

through high knowledge of concession system.
End Customer Investment 
Funds (ECIF)

ECIF is payments for services delivered to end customers in support of Microsoft products, to drive 
deployment or migration of products, or to provide customer support. Large payments relative to 
peers are risky.

Credit Term Extensions (CTE) Partners requesting large or long extensions to credit terms relative to peers are risky.
Marketing Development Funds 
(MDF)

MDF is payments made to partners for marketing purposes. Large payments relative to peers are 
risky.

Partner incentives Disproportionately large incentive payments, or an unusual number of payments, made to a partner 
relative to revenue/peers are risky.

CELA Risk Tier Risk tier of geographic location of partner assigned by Microsoft’s Corporate, External and Legal Affairs 
group. Partners doing business in areas with higher known rates of corruption are riskier.

Public sector business Partners doing business in areas with a high proportion of business with public sector business are 
riskier.

Unvetted entities Partners in geographic subsidiaries where few partners have been vetted are potentially riskier.
Table A1: HRP risk attribute definitions and risk rationales.

Risk Attribute Model Weight (per 
risk attribute)

Scoring Overview

Discounting DISC1 40.0% Compute z-scores for average discount over last 8 quarters within peer groups; score using 
stretched Z function.

DISC2 60.0% Angle for ratio of discount amount (as percentage of total sales) to total sales using 
arctangent; angles scaled between 0 and 100.

Tenure TEN 100.0% Compute percentile ranks for partner tenure within peer groups. Short tenures receive 
decreasing scores; intermediate tenures score 0; long tenures receiving increasing scores.

Returns RET1 5.6% Compute percentiles for partner returns as percentage of transactions within peer groups 
over last 8 quarters; score with hockey stick function.

RET2 22.4% Compute percentiles for partner returns as percent of total partner revenue within peer 
groups over last 8 quarters; score with hockey stick function.

RET3 2.4% Compute percentiles for number of returns in the most recent fiscal quarter within peer 
groups; score with hockey stick function.

RET4 9.6% Compute percentiles for total monetary value of returns in last fiscal quarter; score with 
hockey stick function.

RET5 60.0% Angle for ratio of returns amount (as percentage of total sales) to total sales using 
arctangent; scale angles between 0 and 100.

Business Trends BT1 40.0% Compute percentiles for total contract value per partner within peer groups over last 8 
quarters; score with hockey stick function.

BT2 60.0% Compute percentiles for total contract value per partner within peer groups for each 
quarter; score with hockey stick function; take max over previous 8 quarters.

Table A2: Scoring description for models contributing to Revenue score.
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Risk Attribute Model Weight (per 
risk attribute)

Scoring Overview

ECIF ECIF1 10.0% Calculate ECIF amount as percent of total revenue over previous 8 quarter; penalize 
high percentages.

ECIF2 10.0% Calculate z-scores for ECIF amount per geographical area over previous 8 quarters; 
penalize z-scores above 1.

ECIF3 10.0% Calculate number of projects receiving ECIF funds per partner per geographical area 
per quarter; penalize high counts.

ECIF4 10.0% Calculate number of ECIF-receiving projects for each partner-customer dyad; penalize 
high counts.

ECIF5 60.0% Isolation Forest anomaly detection score.

Partner 
Incentives

PI1 13.3% Calculate z-scores for partner incentives received per quarter. Penalize z-scores above 1.

PI2 13.3% Calculate percentage increase in partner incentives going into most recent quarter; 
penalize high percentages.

PI3 13.3% Calculate number of times partner received incentives in a given quarter over previous 
8 quarters; penalize high counts.

PI4 60.0% Isolation Forest anomaly detection score.

Credit Term 
Extensions

CTE1 10.0% Penalize long-duration CTEs.

CTE2 10.0% Penalize high number of CTE enrollments.

CTE3 10.0% Calculate z-scores for CTE amounts; penalize z-scores over 1.

CTE4 10.0% Penalize CTE amounts greater than geo area average.

CTE5 60.0% Isolation Forest anomaly detection score.

Marketing 
Development 
Funds

MDF1 20.0% Calculate z-scores for MDF amounts per geo area; penalize z-scores above 1.

MDF1 20.0% Calculate z-scores for number of distinct MDF POs received in a given geo area; 
penalize z-scores above 1.

MDF2 60.0% Isolation Forest anomaly detection score.

Table A3: Scoring description for models contributing to Payments score.
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