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Abstract21

The estimation of extreme quantiles of the response distribution is of great interest22

in many areas. Extreme value theory provides a useful tool for estimating extreme23

quantiles. However, current extreme value literature focuses primarily on the ex-24
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treme quantiles of a univariate variable. In this chapter, we provide a survey of avail-1

able methods, including parametric, nonparametric, semiparametric and quantile-2

regression-based approaches, for estimating the extreme conditional quantiles of the3

quantity of interest when some covariates are recorded simulataneously. A simulation4

study is carried out to assess the performance of various methods.5

15.1 Introduction6

Estimation of tail quantiles is of great interest in many studies of rare events that7

happen infrequently but have heavy consequences. Extreme value theory provides a8

useful tool for modeling rare events and estimating extreme quantiles. The current ex-9

treme value literature focuses primarily on the tail quantiles of a univariate variable.10

However, in many applications, the conditional extreme quantiles of the response11

variable Y given some covariates X are of interest, for instance, high quantiles of12

tropical cyclone intensity given time or certain climate variables (Jagger and Elsner,13

2008), localized high precipitation conditional on global climate model projections14

(Friederichs, 2010), low conditional quantiles of a portfolio’s future return given the15

past or assumptions on future interest rate changes (Engle and Manganelli, 2004),16

low quantiles of birth weight given maternal behavior (Abrevaya, 2001), and so on.17

In this chapter, we provide a survey of methods for estimating extreme conditional18

quantiles. Without loss of generality, we focus on the estimation of conditional high19

quantiles, because a low quantile of Y can be viewed as a high quantile of −Y .20

Throughout, let Y denote the univariate response of interest, and X be the p-21

dimensional covariate vector. In addition, let ξ(x) denote the conditional extreme22

value index of Y given X = x, which determines the rate of tail decay of the con-23

ditional distribution of Y . Suppose that we observe a random sample {(yi,xi), i =24

1, . . . , n} of (Y,X). Our main interest is in estimating the τn-th conditional quantile25

of Y given X = x, QY (τn|x), which satisfies P{Y > QY (τn|x)|x} = τn, where26

τn → 1 as n → ∞. The conditional quantile QY (τn|x) can also be interpreted as27

the 1/(1− τn) return level of Y given that the covariate X = x.28

The rest of this chapter is organized as follows. In Section 15.2, we review the29

commonly used methods for estimating unconditional extreme quantiles. In Section30

15.3, we discuss four classes of approaches for estimating conditional extreme quan-31

tiles: (1) parametric methods; (2) semiparametric methods; (3) nonparametric meth-32

ods and (4) quantile-regression-based methods. We present some numerical com-33

parison of different estimation methods in Section 15.4 and some final remarks in34

Section 15.5.35
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15.2 Estimation of Extreme Unconditional Quantiles1

We first review some classic methods for estimating extreme quantiles of a uni-2

variate response distribution without considering the covariate information. Let3

{y1, . . . , yn} be a random sample of Y with cumulative distribution function F ,4

and y1,n ! y2,n ! · · · ! yn,n be the order statistics. Denote Q(τ) = F←(τ) =5

inf{y : F (y) " τ} as the τ -th quantile of Y . We are interested in estimating the high6

quantile Q(τn) when τn → 1 as n → ∞.7

For a general distribution F , we assume that F belongs to the maximum domain8

of attraction of an extreme value distribution Gξ with the extreme value index (EVI)9

ξ ∈ R that measures the heaviness of the tail of F , denoted by F ∈ D(Gξ). This10

means there exist an > 0 and bn ∈ R such that11

lim
n→∞

{F (any + bn)}n = Gξ(y) = exp{−(1 + ξy)−1/ξ}, 1 + ξy > 0.

This condition is equivalent to12

lim
t→∞

U(tx)− U(t)

a(t)
=

xξ − 1

ξ
, x > 0,

where U(t) = F←(1− 1/t) = Q(1− 1/t) and a(·) is some positive function. There13

are some other equivalent conditions for F ∈ D(Gξ), for example see Theorems14

1.1.6 and 1.1.8 in de Haan and Ferreira (2006). Based on the above relation, Q(τn)15

can be estimated by16

Q̂(τn) = yn−k,n + â(n/k)

{(
k

npn

)ξ̂
− 1

}
ξ̂−1,

where pn = 1 − τn, k = kn is a positive integer such that k → ∞ and k/n → 0, ξ̂17

and â(·) are some estimators of ξ and a(·), respectively. The asymptotic normality of18

Q̂(τn) can be obtained under some second order conditions. For example, Dekkers19

et al. (1989) and de Haan and Rootzén (1993) established the asymptotical properties20

of Q̂(τn) based on the moment estimator of (ξ, a). In general, if the estimator (ξ̂, â)21

is asymptotically normal (for example, the maximum likelihood estimator, see Drees22

et al. (2004)), then the asymptotic properties of Q̂(τn) can be obtained by applying23

Theorem 4.3.1 in de Haan and Ferreira (2006).24

For a heavy-tailed F , one common assumption is that for some ξ > 0,25

1− F (y) = y−1/ξl(y), as y → ∞, (15.1)

where l(·) is a slowly varying function that satisfies the condition l(ty)/l(y) → 1 as26

y → ∞ for all t > 0. The condition (15.1) is equivalent to the following condition27

on the quantile function:28

Q(1− 1/y) = yξL(y), (15.2)
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where L(·) is also a slowly varying function and is related to l(·). Consequently, as
τ → 1 and τn → 1, Q(τn)/Q(τ) ∼ {(1 − τ)/(1 − τn)}ξ. This is the basis of the
popular Weissman estimator (Weissman, 1978),

Q̂(τn) = yn−k,n [k/{n(1− τn)}]ξ̂ ,

where ξ̂ is some estimator of ξ, for instance, the Hill estimator (Hill, 1975)1

ξ̂ = k−1
∑k

i=1 log(yn−i+1,n/yn−k,n). Under some second order conditions, the2

asymptotic normality of the Weissman estimator Q̂(τn) based on some asymptot-3

ically normal estimator ξ̂ is presented in Theorem 4.3.8 of de Haan and Ferreira4

(2006).5

The Weismman estimator of extreme quantiles was also adapted to Weibull-tail6

distributions in Diebolt et al. (2008) and Gardes and Girard (2005). Recently, some7

bias-reduced extreme quantile estimation methods for heavy-tailed distributions have8

been developed; see for instance Gomes and Figueiredo (2006), Gomes and Pestana9

(2007), Li et al. (2010) and references therein. In addition, Drees (2003) discussed10

the estimation of extreme quantiles for dependent random variables.11

15.3 Estimation of Extreme Conditional Quantiles12

In this section, we focus on the estimation of extreme high conditional quantile of13

Y given covariate x, QY (τn|x), where τn → 1 as n → ∞. We discuss four differ-14

ent classes of approaches: parametric, semiparametric, nonparametric and quantile-15

regression-based methods. The focus of this chapter differs from that in Smith16

(1994), Portnoy and Jurečková (1999), which studied extreme quantile regression17

with quantile level τ = 0 or 1.18

15.3.1 Parametric Methods19

To incorporate the covariate information in modeling extremes, the first class of work20

fit parametric models such as the generalized extreme value (GEV) distribution based21

on block maximum data or the generalized Pareto distribution (GPD) based on ex-22

ceedances over high thresholds, where the location, shape and scale parameters are23

assumed to depend on covariates parametrically.24

One parametric model is based on block maximum data, for example, the annual25

maximum of daily precipitation. Suppose that Y is the block maximum variable. The26

basic model assumes that the conditional distribution FY (·|x) can be approximated27

by the GEV distribution, that is,28

FY (y|x)≈H{y;µ(x),σ(x), ξ(x)} = exp

[

−

{
1 + ξ(x)

y − µ(x)
σ(x)

}−1/ξ(x)

+

]

, (15.3)

where µ(x), σ(x) and ξ(x) are the location, scale and shape parameters, respectively,29
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and 1+ξ(x){y−µ(x)}/σ(x) > 0. The GEV approximation is based on the result of1

Fisher and Tippett (1928). Under this model assumption, the τ -th conditional quan-2

tile of Y given x is3

QY (τ |x) =
{
µ(x) + σ(x)

ξ(x)

{
(− log τ)−ξ(x) − 1

}
, ξ(x) ̸= 0,

µ(x)− σ(x) log(− log τ), ξ(x) = 0.
(15.4)

To capture the dependence of the distribution of Y on x, one common practice is to4

model µ(x), σ(x) and ξ(x) as some linear functions of x after known link transfor-5

mations, that is, assume6

µ(x) = Λµ(x
Tγ), σ(x) = Λσ(x

Tβ), ξ(x) = Λξ(x
Tθ),

where Λµ, Λσ and Λξ are some known link functions. We can then estimate γ,β,θ7

and the extreme conditional quantile QY (τn|x) by using existing estimation methods8

such as maximum likelihood estimation. This GEV modeling approach has been9

considered in Sang and Gelfand (2009), Coles (2001, Chapter 6), Friederichs and10

Thorarinsdottir (2012), to name a few.11

One limitation of the GEV modeling approach based on maximum data is its12

inefficient use of the available data. This problem can be remedied by using the ob-13

servations exceeding a high threshold (Davison and Smith, 1990; Smith, 1989). Let14

u be some high threshold, and Z = Y − u|Y > u be the positive exceedance. Mo-15

tivated by the GPD approximation result from Pickands (1975), the method assumes16

that for z > 0,17

FZ(z|x) =
FY (u+ z|x)− FY (u|x)

1− FY (u|x)
≈G{z;σ(x), ξ(x)}, (15.5)

where G(z;σ, ξ) = 1 − (1 + ξz/σ)−1/ξ is the cumulative distribution func-
tion of GPD, σ(x) > 0 and ξ(x) are the scale and shape parameters satisfying
1 + zξ(x)/σ(x) > 0. Similar to the method based on maximum data, σ(x) and
ξ(x) can be modeled parametrically by

σ(x) = Λσ(x
Tβ), ξ(x) = Λξ(x

Tθ),

where Λξ and Λσ are some known functions. Let (θ̂, β̂) be the estimator of (θ,β)18

based on the sample {(zi,xi), i = 1, . . . , n} with zi = yi − u > 0, for instance, the19

maximum likelihood estimator (Smith, 1985) or the method of moments estimator20

(Hosking and Wallis, 1987). Consequently, QY (τn|x) can be estimated by21

Q̂Y (τn|x) = u+
Λσ(xT β̂)

Λξ(xT θ̂)

[{
1− FY (u|x)

1− τn

}Λξ(x
T θ̂)

− 1

]
.

15.3.2 Semiparametric Methods22

Instead of assuming an exact distribution form for Y |x as in the parametric methods23

discussed in Section 15.3.1, some researchers (Beirlant and Goegebeur, 2003; Wang24
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and Tsai, 2009) considered semiparametric approaches that model the tail of Y |x as1

a Pareto-type distribution with parameters depending on x in a parametric way.2

The basic assumption is that the conditional distribution of Y given x is heavy-3

tailed or Pareto-type, that is, there exists a ξ(x) > 0 such that4

1− FY (y|x) = y−1/ξ(x)l(y;x), y > 0, (15.6)

where l(·;x) is an unknown slowly varying function at infinity, which means that5

for any y > 0, l(ty;x)/l(t;x) → 1 as t → ∞. The extreme value index ξ(x) is6

modeled parametrically. For instance, Beirlant and Goegebeur (2003) and Wang and7

Tsai (2009) assumed that ξ(x) = exp(xTβ) for some unknown parameter β.8

Suppose that the first element of x is 1. Write x = (1, x̃T )T , and β = (β0,βT
1 )

T
9

with β0 denoting the coefficient corresponding to the intercept. Beirlant and Goege-10

beur (2003) assumed that the transformation R = R(β1) = Y exp(−x̃Tβ1) removes11

the dependence of ξ and l on x completely, so that 1−FR(r|x) = r−1/ξ0 l(r), where12

ξ0 = exp(β0).13

Define Zj = j(logRn−j+1,n − logRn−j,n), j = 1, . . . , n, where R1,n ! · · · !
Rn,n are the order statistics of the so-called generalized residuals {R1, . . . , Rn}.
Under a so-called slow variation with remainder condition on the slowly varying
function l(·), Beirlant and Goegebeur (2003) proposed the following exponential
regression model:

Zj =

{
ξ0 + bn,k

(
j

k + 1

)−ρ}
Fj , j = 1, . . . , k,

where F1, . . . , Fk denote independent standard exponential random variables, ρ < 0,14

and bn,k = b{(n+1)/(k+1)} with b(·) a rate function satisfying b(t) → 0 as t → ∞.15

The authors then proposed a maximum likelihood estimation procedure to estimate16

ξ0, ρ, bn,k and consequently β.17

Wang and Tsai (2009) proposed an alternative approximate maximum likelihood18

estimator for β. They assumed that as y → ∞, the slowly varying function l(y;x)19

converges to a constant c(x) with a reasonably fast speed. Under this assumption,20

the distribution of Y given x can be approximated by an exponential distribution,21

that is, for sufficiently large y, fY (y|x) ≈ c(x)/ξ(x)y−1/ξ(x)−1. Therefore, the22

approximate maximum likelihood estimator of β is defined as23

β̂ = argmin
β

n∑

i=1

{
exp(−xT

i β) log(yi/ωn) + xT
i β
}
I(yi > ωn),

where ωn is the threshold. Under some second order conditions, Wang and Tsai24

(2009) established the asymptotic normality of β̂.25

Once β is estimated, by adapting the Weissman estimator, the extreme condi-26

tional quantile QY (τn|x) can be estimated by27

Q̂Y (τn|x) = Q̂Y (1− k/n|x)
{

k

n(1− τn)

}exp(xT β̂)

,
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where Q̂Y (1−k/n|x) is some estimation of the (1−k/n)-th conditional quantile of1

Y given x, for instance,
{
R̂n−k,n

}exp(x̃T β̂1)
with R̂n−k,n representing the (k+1)-th2

largest order statistic of the generalized residuals based on β̂1.3

15.3.3 Nonparametric Methods4

The parametric and semiparamtric methods all model the dependence of the distri-5

butional parameters (location, scale and shape) on covariates parametrically, which6

are often restrictive and may not describe the data well. As an alternative, researchers7

have considered nonparametric modeling of the distributional parameters, which are8

more flexible and can be used for exploratory data analysis or for checking the ade-9

quacy of a parametric model.10

In the current literature, there exist three main classes of nonparametric meth-11

ods. By focusing on either maximum data or exceedances, the first class of work is12

based on a likelihood assumption of either GEV distribution or GPD, which allow13

the parameters to depend on covariates in a nonparametric way. The second class of14

work is based on a local two-step estimation, where in the first step a subset of data15

within a neighborhood of x of interest is selected and then univariate extreme value16

theory is applied to yi in the neighborhood to estimate ξ(x) and QY (τn|x) in the17

second step. In the third class of work, the intermediate conditional quantiles are first18

obtained by inverting the kernel estimation of the conditional distribution function19

and then extrapolated to the high tails to estimate extreme conditional quantiles.20

15.3.3.1 Likelihood-Based Methods21

In Section 15.3.1, we discussed parametric methods that assume either the GEV dis-22

tribution for block maximum data or the GPD for exceedances over high thresholds,23

where the form of the dependence of the distributional parameters on x is fully spec-24

ified. In many applications, however, the dependence on x is more complex than25

what a simple parametric model could accommodate; see Hall and Tajvidi (2000)26

for examples. To allow more flexibility, we can model the parameters in the GEV27

distribution or GPD to be nonparametric functions of x. For instance, Davison and28

Ramesh (2000) assumed the GEV distribution (15.3) for block maximum data, and29

proposed a local polynomial estimator of µ(t), σ(t) and ξ(t), where t is the univariate30

time variable. Beirlant and Goegebeur (2004) proposed a local polynomial estima-31

tor by fitting the GPD to exceedances over high thresholds. To estimate QY (τn|x)32

at a given x, the method uses covariate-dependent thresholds ux and assumes that33

the positive exceedances zi = yi − ux are independent following the GPD as in34

(15.5). Focusing on the case with a univariate covariate x, the authors established35

the consistency and asymptotic normality of the proposed local polynomial estima-36

tor, and also suggested a leave-one-out cross validation procedure for choosing the37

bandwidth h and threshold ux. Using a similar GPD approximation to exceedances38

over high thresholds, Chavez-Demoulin and Davison (2005) proposed an alternative39
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smoothing spline estimator obtained by maximizing the penalized GPD likelihood,1

and studied the finite sample properties of the estimator.2

15.3.3.2 Two-Step Local Estimation3

Gardes and Girard (2010) developed a nearest-neighbor method and Gardes et al.4

(2010) developed a moving window approach for estimating the extreme conditional5

quantiles of heavy-tailed distributions. The main idea of the two methods is to first6

select observations in a neighborhood of x of interest, and then apply the univariate7

extreme value methods to the neighborhood data to estimate the conditional quantiles8

of Y given x.9

Suppose that the design points x1, . . . ,xn are nonrandom. Let E be a metric10

space associated to a metric d. Assume that for all x ∈ E, FY (·|x) is a heavy-tailed11

distribution with EVI ξ(x) > 0. In the first step of the estimation, Gardes and Girard12

(2010) proposed to first select mn,x = mx nearest covariates of x (with respect to13

the distance d), where mx is a sequence of integers such that 1 < mx < n. On the14

other hand, to accommodate functional covariates, Gardes et al. (2010) proposed to15

form the neighborhood covariates by including the mn,x covariates that belong to16

the ball B(x, hx) = {t ∈ E, d(t,x) ! hx}, where hx is a positive sequence tending17

to zero as n → ∞, and mx =
∑n

i=1 I{xi ∈ B(x, hx)}. Denote the covariates in18

the selected neighborhood by {x∗1, . . . ,x∗mx
}, and the associated observations taken19

from {y1, . . . , yn} by {z1, . . . , zmx
}. In the second step, univariate extreme value20

methods are applied to the order statistics z1,mx
! . . . ! zmx,mx

to estimate the21

EVI ξ(x) and QY (τn|x). For instance, Gardes and Girard (2010) considered the22

following estimator of ξ(x) based on weighted rescaled log-spacings:23

ξ̂(x; a,λ) =
∑kx

i=1 {w(i/kx, a,λ)i(log zmx−i+1,mx
− log zmx−i,mx

)} /
∑kx

i=1 w(i/kx, a,λ),

where kx = kn,x is a sequence of integers such that 1 ! kx ! mx, and

w(s, a,λ) =
λ−a

Γ(a)
s1/λ−1(− log s)a−1, for s ∈ (0, 1), a ! 1, 0 ! λ ! 1

is the density of log-gamma distribution defined in Consul and Jain (1971). The pa-
rameters (a,λ) in the weighting function determine the weights assigned to different
extreme order statistics. A special case a = λ = 1 leads to the Hill estimator (Hill,
1975), and (a,λ) = (2, 1) leads to the Zipf estimator (Kratz and Resnick, 1996;
Schultze and Steinebach, 1996). Adopting the unconditional quantile estimator pro-
posed by Weissman (1978), based on the local EVI estimator of ξ(x), QY (τn|x) can
be estimated by

Q̂Y (τn|x) = zmx−kx+1,mx

{
kx

mx(1− τn)

}ξ̂(x)
,

which can be viewed as an extrapolation from the (1− kx/mx)-th conditional quan-24

tile of Y . Suppose that kx is an intermediate sequence such that kx → ∞ and25

kx/mx → 0 as n → ∞. Under the second order condition and some regularity26

conditions, Gardes and Girard (2010) and Gardes et al. (2010) have established the27

asymptotic distribution of Q̂Y (τn|x).28
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15.3.3.3 Kernel Estimation1

Based on the kernel estimation of FY (·|x), Daouia et al. (2011) and Gardes and
Girard (2011) proposed kernel-type estimators of the extreme conditional quantile
QY (τn|x) for heavy-tailed distributions. Assume that FY (·|x) belongs to the Fréchet
maximum domain of attraction with EVI ξ(x). For any (x, y) ∈ Rp × R, Daouia
et al. (2011) defined the kernel estimator of FY (y|x) as

F̂Y (y|x) = 1−
{

n∑

i=1

Kh(x− xi)I(yi > y)

}
/

n∑

i=1

Kh(x− xi),

where h is the bandwidth such that h → 0 as n → ∞, and Kh(t) = K(t/h)/hp with
K being a p-dimensional kernel function. For any τ ∈ (0, 1), the kernel estimator of

QY (τ |x) is defined via the generalized inverse of F̂Y (·|x):

Q̂Y (τ |x) = inf{t : F̂Y (t|x) " τ}.

Daouia et al. (2011) showed that the kernel estimator Q̂Y (τn|x) still has the asymp-
totic normality for intermediate quantiles such that n(1 − τn) > {log(n)}p. How-
ever, for extreme order of quantiles, for instance τn → 1 at a rate faster than 1/n, the
kernel estimation is not feasible as it cannot extrapolate beyond the maximum ob-
servation in the ball centered at x with radius h. To overcome this difficulty, Daouia
et al. (2011) proposed a Weissman-type estimator of the extreme conditional quantile
QY (τn|x):

Q̂Y (τn|x) = Q̂Y (αn|x)
(
1− αn

1− τn

)ξ̂(x)
,

where αn is an intermediate quantile level, (1 − τn)/(1 − αn) → 0 as n → ∞ and

ξ̂(x) is an estimator of the conditional EVI ξ(x), for instance, a kernel version of the
Hill estimator (Hill, 1975)

ξ̂(x) =
J∑

j=1

(
log
[
Q̂Y {1− wj(1− αn)|x}

]
− log

{
Q̂Y (αn|x)

})
/

J∑

j=1

log(1/wj),

where w1 > w2 > . . . > wJ > 0 is a decreasing sequence of weights and J is2

a positive integer. This extrapolation allows the estimation of extreme conditional3

quantile with τn → 1 arbitrarily fast.4

The estimation procedure in Gardes and Girard (2011) is similar but the authors
considered a different double-kernel estimator of FY (y|x):

F̂Y (y|x) = 1−
[

n∑

i=1

Kh(x− xi)G{(yi − y)/λ}
]
/

n∑

i=1

Kh(x− xi),

where G(t) =
∫ t
−∞ g(s)ds with g(·) being a univariate kernel function, and λ is the5

bandwidth parameter associated with G(·).6



328 Extreme Value Modeling and Risk Analysis: Methods and Applications

15.3.4 Quantile Regression Methods1

Quantile regression, first introduced by Koenker and Bassett (1978), focuses on2

studying the impact of covariates on the quantiles of the response variable and thus3

provides a natural alternative to estimating conditional tail quantiles. Researchers4

have applied quantile regression for estimating tail quantiles in different areas of5

studies. For instance, Bremnes (2004a) and Bremnes (2004b) used a local quan-6

tile regression method to predict the conditional quantiles of precipitation and wind7

power given outputs from numerical weather prediction models. To account for zero8

precipitation, Friederichs and Hense (2007) applied a censored linear quantile re-9

gression method to estimate the high quantiles of precipitation conditional on the10

NCEP (National Centers for Environmental Prediction) reanalysis variables. Jagger11

and Elsner (2008) applied linear quantile regression to study the conditional quan-12

tiles of tropical cyclone wind speeds given climate variables. Taylor (2008) proposed13

an exponentially weighted quantile regression method to estimate the value at risk,14

which corresponds to the tail quantile of financial returns conditional on the current15

information. In the above work, conventional parametric or nonparametric quantile16

regression was directly applied even when the interests are at the extreme tails. How-17

ever, due to data sparsity, direct estimation from quantile regression is often unstable18

or infeasible at the extreme tails.19

To estimate extreme conditional quantiles in the very far tails with few or no ob-20

servations available, additional conditions or models for the tails are needed. Cher-21

nozhukov and Du (2008), Wang et al. (2012) and Wang and Li (2013) proposed new22

estimating methods for extreme conditional quantiles that combine linear quantile23

regression and extreme value theory.24

Let 0 < τL < 1 be a fixed constant that is close to one. Consider the following25

linear quantile regression model:26

QY (τ |x) = α(τ) + xTβ(τ), τ ∈ [τL, 1], (15.7)

where α(τ) ∈ R and β(τ) ∈ Rp are the unknown quantile coefficients. Given the27

random sample {(yi,xi), i = 1, . . . , n}, the quantile coefficients can be estimated28

by29

(α̂(τ), β̂(τ)) = argmin
α,β

n∑

i=1

ρτ (yi − α− xT
i β), (15.8)

where ρτ (u) = {τ − I(u < 0)}u is the quantile loss function.30

At the extreme quantiles such that τn → 1 as n → ∞, the conventional quantile31

regression estimators α̂(τ) and β̂(τ) are often not precise due to data sparsity. The32

basic idea of the estimation methods in Chernozhukov and Du (2008), Wang et al.33

(2012) and Wang and Li (2013) is to first estimate less extreme quantiles through34

conventional quantile regression, and then extrapolate these quantile estimates to35

the high end based on different assumptions on the tail behavior of the conditional36

response distribution. We will focus on the estimation for heavy-tailed distributions.37
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15.3.4.1 Estimation Based on the Common-Slope Assumption1

We first consider a common-slope assumption, which assumes that the quantile slope
coefficient β(τ) in model (15.7) is constant in the upper quantiles, that is, β(τ) = β
for τ ∈ [τL, 1]. In addition, assume that FY (·|x = 0) belongs to the maximum

domain of attraction with extreme value index ξ > 0. Let êi = yi − xT
i β̂, i =

1, . . . , n, where β̂ is a consistent estimator ofβ. For instance, we can take β̂ = β̂(τL)
or the composite estimator proposed in Koenker (1984) and Zou and Yuan (2008),
which is obtained by pooling information across a sequence of quantiles τL = τ1 <
. . . < τl = τU with τL < τU < 1 and l " 1. Let ê1,n ! · · · ! ên,n be the order
statistics of {ê1, . . . , ên}. Wang et al. (2012) showed that the upper order statistics
of êi are asymptotically equivalent to those of QY (ui|x = 0), where {u1, . . . , un}
is a random sample from U(0, 1). Therefore, the order statistics of {ê1, . . . , ên} can
be used to estimate the EVI ξ by existing estimating methods, for instance, the Hill
estimator (Hill, 1975),

ξ̂ =
1

k

k∑

j=1

log
ên−j+1,n

ên−k,n
,

where k is an integer such that k = kn → ∞ and k/n → 0 as n → ∞. A Weissman-
type extrapolation estimator for QY (τn|x) can be constructed by

Q̂Y (τn|x) = xT β̂ +

(
k/n

1− τn

)ξ̂
ên−k,n,

where 1− τn = o(k/n).2

15.3.4.2 Estimation without the Common-Slope Assumption3

We next discuss an estimation method proposed by Chernozhukov and Du (2008)4

based on a more relaxed assumption that allows the quantile slope coefficient β(τ)5

in model (15.7) to vary across τ . In addition to model (15.7), assume that after being6

transformed by some auxiliary regression line, the response variable Y has regularly7

varying tails with EVI ξ > 0. More specifically, suppose that there exists an auxiliary8

slope βe such that the following tail-equivalence relationship holds as τ → 1,9

QY (τ |x)− xTβe ∼ F←0 (τ), uniformly in x, (15.9)

where F0(·) is a distribution that belongs to the maximum domain of attraction with10

EVI ξ > 0. The tail-equivalence condition (15.9) implies that the covariate x affects11

the extreme quantiles of Y through βe approximately.12

Under model (15.7) and the tail-equivalence condition (15.9), Chernozhukov
(2005) showed that for intermediate order sequences τn → 1 and n(1 −
τn) → ∞, an{θ̂(τ) − θ(τ)} converges to a normal distribution with mean zero,

where θ(τ) = (α(τ),β(τ)T )T , θ̂(τ) = (α̂(τ), β̂(τ)T )T and an = {(1 −
τn)n}/

[
(1, E(X)T )T {θ(τn)− θ(1−m(1− τn))}

]
with m > 1. This suggests
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that we can estimate the intermediate conditional quantiles by conventional quan-
tile regression, and then extrapolate these estimates to the high tail to estimate ex-
treme conditional quantiles. With this idea, Chernozhukov and Du (2008) proposed
to estimate the EVI ξ by the Hill estimator

ξ̂ = {n(1− τ0n)}−1
n∑

i=1

log

(
yi

α̂(τ0n) + xT
i β̂(τ0n)

)

+

,

where log(u)+ = log(u)I(u > 0), τ0n → 1 and n(1 − τ0n) → ∞. For 1 − τn =1

o(1 − τ0n), the Weissman-type extrapolation estimator of QY (τn|x) thus can be2

constructed as3

Q̂Y (τn|x) = {α̂(τ0n) + xT β̂(τ0n)}
(
1− τ0n
1− τn

)ξ̂
. (15.10)

15.3.4.3 Three-Stage Estimation4

The methods in Chernozhukov and Du (2008) and Wang et al. (2012) are based on5

two main assumptions: (1) the conditional quantiles of Y are linear in x at the upper6

quantiles; (2) the conditional distribution FY (·|x) is tail equivalent across x with a7

common EVI ξ. In many applications, the covariate may affect the heaviness of the8

tail distribution of Y and thus the EVI ξ(x) is dependent on x. It would be interesting9

to construct a covariate-dependent EVI estimator while still being able to adopt linear10

quantile regression to borrow information across multi-dimensional covariates. How-11

ever, Proposition 2.1 in Wang and Li (2013) suggests that in situations where the EVI12

ξ(x) varies with x, it is rarely the case that the conditional high quantiles of Y are13

still linear in x. This result suggests that to accommodate covariate-dependent EVI,14

we have to consider nonparametric quantile regression, which, however, is known15

to be unstable at tails in finite samples especially when the dimension of x is high.16

Wang and Li (2013) showed that in some cases with covariate-dependent EVI, the17

quantiles of Y may still be linear in x after some appropriate transformation such18

as log transformation. Motivated by this, Wang and Li (2013) considered a power-19

transformed quantile regression model:20

QΛλ(Y )(τ |x) = zTθ(τ), τ ∈ [τL, 1], (15.11)

where z = (1,xT )T and21

Λλ(y) = {(yλ − 1)/λ}I(λ ̸= 0) + log(y)I(λ = 0) denotes the family of power22

transformations (Box and Cox, 1964).23

For estimating the extreme conditional quantiles of Y , Wang and Li (2013) pro-24

posed a three-stage estimating procedure. In the first stage, the power transformation25

parameter λ is estimated by26

λ̂ = argmin
λ∈R

n∑

i=1

{Rn(xi,λ; τL)}2 , (15.12)
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where Rn(t,λ; τ) = n−1
∑n

j=1 I(xj ! t)
[
τ − I{Λλ(yj)− zTj θ̂(τ ;λ) ! 0}

]
is a1

residual cusum process that is often used in lack-of-fit tests, x ! t means that each2

component of x is less than or equal to the corresponding component of t ∈ Rp, and3

θ̂(τ ;λ) = argminθ
∑n

i=1 ρτ
{
Λλ(yi)− zTi θ

}
.4

In the second stage, the conditional quantiles of Y at a sequence of intermediate5

quantile levels are estimated by first fitting model (15.11) on the transformed scale6

and then transforming the estimates back to the original scale. Specifically, define a7

sequence of quantile levels τL < τn−k < . . . < τm ∈ (0, 1), where k = kn → ∞8

and k/n → 0, m = n − [nη] with η ∈ (0, 1) as some small constant satisfying9

nη < k, and τj = j/(n + 1). The trimming parameter η is introduced for technical10

purposes, more specifically, to obtain the Bahadur representation of θ̂(τm;λ). In11

practice we can choose η = 0.1. For each j = n − k, . . . ,m, QΛλ(Y )(τj |x) can12

be estimated by zT θ̂(τj ; λ̂). By the equivariance property of quantiles to monotone13

transformations, we can estimate QY (τj |x) by Q̂Y (τj |x) = Λ−1
λ̂

{
zT θ̂(τj ; λ̂)

}
. For14

a given x, {Q̂Y (τj |x), j = n − k, . . . ,m} can be roughly regarded as the extreme15

order statistics of a sample from FY (·|x).16

In the third stage, extrapolation from the intermediate quantile estimates is per-17

formed to estimate QY (τn|x) with 1− τn = o(k/n) as18

Q̂Y (τn|x) = Q̂Y (τn−k|x)
(
1− τn−k
1− τn

)ξ̂(x)
, (15.13)

where ξ̂(x) = (k − [nη])−1
∑k

j=[nη ] log
{
Q̂Y (τn−j |x)/Q̂Y (τn−k|x)

}
is the Hill19

estimator based on the pseudo order statistics of a sample from FY (·|x).20

The method in Wang and Li (2013) allows the EVI ξ(x) to depend on x and21

thus provides more flexibility. However, due to lack of information, the covariate-22

dependent EVI estimator could be unstable in regions where x is sparse. In situations23

where ξ(x) is constant across x (or in some region of x), we can estimate the com-24

mon ξ by the pooled estimator ξ̂p = n−1
∑n

i=1 ξ̂(xi). Numerical studies in Wang25

and Li (2013) showed that the pooled EVI estimator often leads to more stable and26

efficient estimation of the extreme conditional quantiles when ξ(x) is indeed con-27

stant or varies little across x. To identify the commonality of the EVI, Wang and Li28

(2013) proposed a test statistic Tn = n−1
∑n

i=1{ξ̂(xi) − ξ̂p}2 and established the29

asymptotic distribution of Tn under H0 : ξ(x) = ξ for all x in its support. Suppose30

that E(X) = 0p. For two special cases: (1) homogenous case such as the location-31

shift model (Koenker, 2005); (2) the EVI of Λλ(Y ) is ξ∗ = 0, it was shown that32

kTn
d→ ξ2χ2(p− 1) under H0, so the test can be easily carried out.33

The quantile-regression-based methods discussed in this section can be regarded34

as semiparametric methods since they make no parametric distributional assumptions35

but assume that the conditional upper quantiles of the response (or some transforma-36

tion thereof) are linear in covariates. This quantile linearity assumption allows us to37

model the effect of covariates x across the entire range of x and thus borrow infor-38
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mation across x to estimate the extreme conditional quantiles of the response, and to1

avoid the curse of dimensionality issue faced by the nonparametric methods.2

15.4 Numerical Comparison3

We carry out a simulation study to compare different methods for estimating ex-4

tremely high conditional quantiles. The data are generated from the following four5

different models.6

• Model 1: yi = 2+ 2xi1 + 2xi2 + (2 + 1.6xi1)ϵi, ϵi ∼Pareto(0.5), i = 1, . . . , n.7

• Model 2: yi|xi ∼ Pareto with ξ(xi) = exp(−1 + xi), i = 1, . . . , n.8

• Model 3: log(yi) = 2 + xi1 + xi2 + (0.5 + 0.25xi1)ϵi, and ϵi are i.i.d. random9

variables with quantile function Q(τ) = τ − 1 − log(1 − τ) for τ ∈ (0, 1),10

i = 1, . . . , n. In this case, the conditional distribution of Y is in the domain of11

attraction with EVI ξ(xi1, xi2) = 0.5 + 0.25xi1.12

• Model 4: yi|xi ∼ Fréchet distribution with distribution function FY (y|xi) =13

exp{−y−1/ξ(xi)}, where ξ(x) = 1/2[1/10 + sin{π(x + 1)/2}]{11/10 −14

1/2 exp(−16x2)}, i = 1, . . . , n.15

In the four models, xi1, xi2, xi, i = 1, . . . , n, are independent random variables from16

Uniform(−1, 1). The sample size is set as n = 2000. For each model, the simulation17

is repeated 500 times.18

We compare five estimators: (1) the parametric method assuming GPD for the19

exceedances with scale σ(x) = exp(xTβ) and shape ξ(x) = exp(xTθ); (2) the20

semiparametric tail index regression (TIR) method of Wang and Tsai (2009); (3)21

the nonparametric kernel method (KER) of Daouia et al. (2011); (4) the quantile-22

regression-based method of Chernozhukov and Du (2008), denoted by CD; (5) the23

three-stage estimator (3Stage) of Wang and Li (2013).24

The extreme value index ξ(x) is a constant in Model 1, while it depends on25

the covariates in different ways in Models 2–4. The CD method is based on the26

assumption of linear conditional quantiles of Y , which is satisfied in Model 1 but27

violated in Models 2–4. Since the conditional quantiles of Y are linear in x after log28

transformation in Model 3, the model assumption required by the 3Stage method is29

satisfied in Models 1 and 3 but violated in Models 2 and 4. Both the GPD and TIR30

methods assume that log{ξ(x)} is linear in x, and this assumption is satisfied only31

in Models 1 and 2. The KER method is most flexible and it works in all four cases.32

Table 15.1 summarizes the performance of different estimators for estimat-33

ing QY (τn|x) at τn = 0.99 and 0.995. The IBias is the integrated bias de-34

fined as the average of n−1
∑n

i=1{Q̂Y (τn|xi) − QY (τn|xi)}, and RIMSE is the35

root integrated mean squared error defined as the square root of the average of36

n−1
∑n

i=1{Q̂Y (τn|xi)−QY (τn|xi)}2 across 500 simulated data. The GPD and TIR37

methods rely on the correct specification of the EVI function; they perform compet-38

itively well in Model 2 when ξ(x) is correctly specified but they are slightly less39

efficient than the 3Stage method in Model 3 when the function form is misspecified.40
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TABLE 15.1
The integrated bias (IBias) and root integrated mean squared error (RIMSE) of dif-
ferent estimators of QY (τn|xi) at τn = 0.99 and 0.995. Values in the parentheses
are the standard errors. The results of KER and 3Stage are taken from Tables 1–2 of
Wang and Li (2013).

IBias RIMSE

Method τn = 0.99 τn = 0.995 τn = 0.99 τn = 0.995

Model 1 (p = 2, constant EVI)
GPD 0.27 (0.16) 0.75 (0.42) 3.53 (4.47) 9.33 (9.33)
TIR -0.72 (0.07) -1.87 (0.14) 1.78 (0.50) 3.63 (1.04)
KER 0.77 (0.55) 2.08 (2.74) 12.23 (15.06) 61.29 (161.39)
CD 0.04 (0.06) -0.26 (0.10) 1.28 (0.37) 2.30 (0.66)
3Stage -0.52 (0.07) -1.62 (0.13) 1.75 (0.53) 3.26 (0.87)

Model 2 (p = 1, Pareto distribution)
GPD -2.63 (0.53) -5.65 (1.02) 12.09 (5.19) 23.45 (10.38)
TIR -2.60 (0.58) -5.90 (1.09) 13.25 (5.17) 25.02 (10.13)
KER 1.66 (0.81) 3.97 (2.32) 18.19 (13.35) 52.04 (58.19)
CD -3.66 (0.74) -9.05 (1.52) 16.97 (6.37) 35.15 (13.48)
3Stage -1.67 (0.42) -3.45 (1.11) 9.58 (9.74) 24.96 (29.69)

Model 3 (p = 2, EVI linear in x)
GPD 1.52 (4.89) 16.29 (11.84) 109.34 (83.00) 265.27 (171.47)
TIR 6.13 (6.53) 17.07 (9.85) 146.16 (60.98) 221.01 (94.47)
KER 18.31 (15.20) 74.73 (85.72) 340.28 (483.88) 1918.17 (4441.34)
CD -15.55 (8.09) -43.81 (13.89) 181.47 (75.09) 313.72 (131.05)
3Stage -14.01 (3.82) -41.09 (7.90) 86.47 (90.71) 181.27 (203.67)

Model 4 (p = 1, Fréchet distribution)
GPD 0.77 (0.16) 1.65 (0.31) 3.57 (1.61) 7.04 (3.63)
TIR 0.48 (0.12) 0.83 (0.18) 2.75 (0.61) 4.10 (0.90)
KER 0.26 (0.08) 0.67 (0.19) 1.90 (0.85) 4.22 (2.48)
CD 0.46 (0.12) 0.78 (0.18) 2.74 (0.60) 4.12 (0.90)
3Stage 0.13 (0.12) 0.07 (0.19) 2.79 (0.63) 4.27 (1.01)

In Model 1 with a constant EVI, the GPD and TIR methods underperform the CD1

and 3Stage methods due to the noise involved in estimating the zero parameters in2

ξ(x) = xTθ. The CD estimator is slightly more efficient than 3Stage in Model 13

when the conditional quantiles of untransformed Y are linear in covariates but the4

latter is more flexible and performs competitively well or slightly better in the other5

three models even in Models 2 and 4 where the power-transformation model (15.11)6

is violated. As observed in Wang and Li (2013), the nonparametric method KER is7

the most flexible and can capture complicated dependence of EVI on the covariates8

for instance as in Model 4. However, the KER method gives unstable estimation es-9
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pecially in Models 1 and 3 with two predictors due to the data sparsity and curse of1

dimensionality.2

15.5 Final Remarks3

Estimation of conditional extreme quantiles has drawn much attention in recent4

years. We surveyed and compared various types of estimation methods based on5

different model assumptions. As for most statistical problems, there is a tradeoff be-6

tween the model flexibility and stability. The nonparametric methods are more flex-7

ible but are subject to the curse of dimensionality and reduced effective sample size8

with local estimation. The parametric methods are sensitive to the misspecification9

of models. Semiparametric methods aim to achieve a better balance between model10

flexibility and parsimony. Regarded as also semiparametric, the quantile-regression-11

based methods discussed in Section 15.3.4 are relatively newer to the extreme value12

literature but they serve as useful alternative tools in cases where the conditional tail13

quantiles of the response after some transformation appear to be linear in covariates.14

In practice, we would suggest first use nonparametric methods as exploratory tools to15

examine the dependence of extreme value index and the conditional tail quantiles on16

the covariates, which may help identify a reasonable parametric or semiparametric17

model to carry out analysis with less variability.18

Acknowledgements19

The research of Wang is partially supported by the National Science Foundation20

CAREER award DMS-1149355. The research of Li is partially supported by the21

National Natural Science Foundation of China grant 11171074.22

References23

Abrevaya, J. (2001), “The effect of demographics and maternal behavior on the dis-24

tribution of birth outcomes,” Empirical Economics, 26, 247–259.25

Beirlant, J. and Goegebeur, Y. (2003), “Regression with response distributions of26

Pareto-type,” Computational Statistics and Data Analysis, 42, 595–619.27

— (2004), “Local polynomial maximum likelihood estimation for Pareto-type distri-28

butions,” Journal of Multivariate Analysis, 89, 97–118.29

Box, G. E. P. and Cox, D. R. (1964), “An analysis of transformations,” Journal of the30



Estimation of Extreme Conditional Quantiles 335

Royal Statistical Society, Series B, 26, 211–252.1

Bremnes, J. B. (2004a), “Probabilistic forecasts of precipitation in terms of quantiles2

using NWP model output,” Monthly Weather Review, 132, 338–347.3

— (2004b), “Probabilistic wind power forecasts using local quantile regression,”4

Wind Energy, 7, 47–54.5

Chavez-Demoulin, V. and Davison, A. C. (2005), “Generalized additive modelling of6

sample extremes,” Journal of the Royal Statistical Society, Series C, 54, 207–222.7

Chernozhukov, V. (2005), “Extremal quantile regression,” Annals of Statistics, 33,8

806–839.9

Chernozhukov, V. and Du, S. (2008), “Extremal quantiles and value-at-risk,” in The10

New Palgrave Dictionary of Economics, eds. Durlauf, S. N. and Blume, L. E.,11

Basingstoke: Palgrave Macmillan.12

Coles, S. (2001), An Introduction to Statistical Modeling of Extreme Values, Springer.13

Consul, P. C. and Jain, G. C. (1971), “On the log-gamma distribution and its proper-14

ties,” Statistische Hefte, 12, 100–106.15

Daouia, A., Gardes, L., Girard, S., and Lekina, A. (2011), “Kernel estimators of16

extreme level curves,” Test, 20, 311–333.17

Davison, A. C. and Ramesh, N. I. (2000), “Local likelihood smoothing of sample18

extremes,” Journal of the Royal Statistical Society Series B,, 62, 191–208.19

Davison, A. C. and Smith, R. L. (1990), “Models for exceedances over high thresh-20

olds,” Journal of the Royal Statistical Society. Series B, 52, 393–442.21

de Haan, L. and Ferreira, A. (2006), Extreme Value Theory: An Introduction,22

Springer.23

de Haan, L. and Rootzén, H. (1993), “On the estimation of high quantiles,” Journal24

of Statistical Planning and Inference, 35, 1–13.25

Dekkers, A., Einmahl, J., and de Haan, L. (1989), “A moment estimator for the index26

of an extreme-value distribution,” Annals of Statistics, 17, 1833–1855.27

Diebolt, J., Gardes, L., Girard, S., and Guillou, A. (2008), “Bias-reduced extreme28

quantiles estimators of Weibull distributions,” Journal of Statistical Planning and29

Inference, 138, 1389–1401.30

Drees, H. (2003), “Extreme quantile estimation for dependent data with applications31

to finance,” Bernoulli, 9, 617–657.32

Drees, H., Ferreira, A., and de Haan, L. (2004), “On maximum likelihood estimation33

of the extreme value index,” Annals of Apllied Probability, 14, 1179–1201.34

Engle, R. F. and Manganelli, S. (2004), “CAViaR: conditional autoregressive value35

at risk by regression quantiles,” Journal of Business and Economic Statistics, 22,36

367–381.37

Fisher, R. A. and Tippett, L. H. C. (1928), “Limiting forms of the frequency distri-38

bution in the largest particle size and smallest number of a sample,” Proceedings39

of the Cambridge Philosophical Society, 24, 180–190.40

Friederichs, P. (2010), “Statistical downscaling of extreme precipitation events using41

extreme value theory,” Extremes, 13, 109–132.42

Friederichs, P. and Hense, A. (2007), “Statistical downscaling of extreme precipi-43

tation events using censored quantile regression,” Monthly Weather review, 135,44

2365–2378.45



336 Extreme Value Modeling and Risk Analysis: Methods and Applications

Friederichs, P. and Thorarinsdottir, T. L. (2012), “Forecast verification for extreme1

value distributions with an application to probabilistic peak wind prediction,” En-2

vironmetrics, 23, 579–594.3

Gardes, L. and Girard, S. (2005), “Estimating extreme quantiles of Weibull tail-4

distributions,” Communications in Statistics–Theory and Methods, 34, 1065–1080.5

— (2010), “Conditional extremes from heavy-tailed distributions: an application to6

the estimation of extreme rainfall return levels,” Extremes, 13, 177–204.7

— (2011), “Functional Kernel Estimators of Conditional Extreme Quantiles,” in Re-8

cent Advances in Functional Data Analysis and Related Topics Contributions to9

Statistics, Springer, pp. 135–140.10

Gardes, L., Girard, S., and Lekina, A. (2010), “Functional nonparametric estimation11

of conditional extreme quantiles,” Journal of Multivariate Analysis, 101, 419–433.12

Gomes, M. and Figueiredo, F. (2006), “Bias reduction in risk modelling: semipara-13

metric quantile estimation,” Test, 15, 375–396.14

Gomes, M. I. and Pestana, D. (2007), “A sturdy reduced-bias extreme quantile (VaR)15

estimator,” Journal of the American Statistical Association, 102, 280–292.16

Hall, P. and Tajvidi, N. (2000), “Nonparametric analysis of temporal trend when17

fitting parametric models to extreme-value data,” Statistical Science, 15, 153–167.18

Hill, B. M. (1975), “A simple general approach to inference about the tail of a distri-19

bution,” Annals of Statistics, 3, 1163–1174.20

Hosking, J. R. M. and Wallis, J. R. (1987), “Parameter and quantile estimation for21

the generalized Pareto distribution,” Technometrics, 339, 339–349.22

Jagger, T. H. and Elsner, J. B. (2008), “Modeling tropical cyclone intensity with23

quantile regression,” International Journal of Climatology, 29, 1351–1361.24

Koenker, R. (1984), “A note on L-estimates for linear models,” Statistics and Proba-25

bility Letters, 2, 323–325.26

— (2005), Quantile Regression, Cambridge University Press, Cambridge.27

Koenker, R. and Bassett, G. (1978), “Regression Quantiles,” Econometrica, 46, 33–28

50.29

Kratz, M. and Resnick, S. (1996), “The QQ-estimator and heavy tails,” Stochastic30

Models, 12, 699–724.31

Li, D., Peng, L., and Yang, J. (2010), “Bias reduction for high quantiles,” Journal of32

Statistical Planning and Inference, 140, 2433–2441.33

Pickands, J. (1975), “Statistical inference using extreme order statistics,” Annals of34

Statistics, 3, 119–131.35
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