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to study empirically the coverage properties and lengths of these
intervals. Another interesting related question would be to try
to provide some form of uncertainty quantification for the vari-
able having greatest absolute correlation with the response. The
ideas of stability selection (Meinshausen and Bühlmann 2010;
Shah and Samworth 2013) provide natural quantifications of
variable importance through empirical selection probabilities
over subsets of the data. However, it is not immediately clear
how to use these to provide, say, a (nontrivial) confidence set of
variable indices that with at least 1 − α probability contains all
indices of variables having largest absolute correlation with the
response (in particular this would be set full set {1, . . . , p} of
indices under the global null).

Although understanding marginal relationships between vari-
ables and the response is useful in certain contexts, in other
situations, the coefficients from multivariate regression are
of more interest. It would be interesting to see whether the
ART methodology can be extended to provide confidence
intervals for the largest regression coefficients in absolute
value.

[Received September 2013. Revised July 2014.]

REFERENCES

Beran, R. J. (1997), “Diagnosing Bootstrap Success,” Annals of the Institute of
Statistical Mathematics, 4, 1–24. [1439]

Chatterjee, A., and Lahiri, S. N. (2011), “Bootstrapping Lasso Estimators,”
Journal of the American Statistical Association, 106, 608–625. [1439]

Fan, J., and Lv, J. (2008), “Sure Independence Screening for Ultrahigh Dimen-
sional Feature Space” (with discussion), Journal of the Royal Statistical
Society, Series B, 70, 849–912. [1439]

Fan, J., Samworth, R., and Wu, Y. (2009), “Ultrahigh Dimensional Feature Se-
lection: Beyond the Linear Model,” Journal of Machine Learning Research,
10, 2013–2038. [1439]

Goeman, J. J., van de Geer, S. A., and van Houwelingen, H. C. (2006), “Testing
Against a High Dimensional Alternative,” Journal of the Royal Statistical
Society, Series B, 68, 477–493. [1439,1440]

Laber, E., and Murphy, S. A. (2011), “Adaptive Confidence Intervals for the
Test Error in Classification” (with discussion), Journal of the American
Statistical Association, 106, 904–913. [1439]
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Comment
Emre BARUT and Huixia Judy WANG

We congratulate Ian McKeague and Min Qian for a stim-
ulating, timely, and interesting article on the important topic
of hypothesis testing and post-selection inference in high-
dimensional regression.

The authors developed an adaptive resampling test (ART)
procedure for detecting the presence of significant predictors
through marginal regression. In statistical applications, identi-
fying the important predictors is at least as important as detect-
ing their significance. For this purpose, the authors suggested
a forward stepwise ART method, where in after identifying the
first significant predictor, the ART procedure is successively ap-
plied by treating residuals from the previous stage as the new
response until no more significant predictors are detected. The
authors showed that this stepwise method performs very well
in the cross-validation study of the HIV drug data. In the first
section of our discussion, we carry out a small-scale simulation
experiment to compare the performance of the forward stepwise
ART method with other procedures built for high-dimensional
inference. In these simulation experiments, it is seen that, unsur-
prisingly, the performance of ART (as well as other inference
procedures) declines as the correlation between covariates in-
creases.

Emre Barut is Assistant Professor (E-mail: barut@gwu.edu) and Huixia
Judy Wang (E-mail: judywang@gwu.edu) is Associate Professor, Department of
Statistics, George Washington University, Washington, DC 20052. The research
is partially supported by the NSF CAREER Award DMS-1149355.

It is well known in the literature that increased correlation
between the variables can deteriorate the performance of vari-
able selection procedures. However, we speculate that the per-
formance of ART can be improved by extending ART to for-
ward regression, in which the coefficients of already included
variables are refit at each step. This would yield different re-
sults than the current forward stepwise ART procedure, which
uses the residuals as the response at each stage; and hence is
more susceptible to problems due to high correlation. This new
forward-regression-based ART procedure will certainly require
new theoretical developments as well as changes to the boot-
strapping procedure.

As correlation between the important and the nonimpor-
tant variables increases, marginal-regression-based methods are
known to be susceptible to the problem of ”unfaithfulness”
(Genovese et al. 2012): high correlation between the inactive
variables and the active variables can cause (1) marginal co-
efficients of active variables to be close to zero and hence
much harder to detect, (2) the marginal coefficients of inac-
tive variables might be large because of their correlation to
other important active variables. In the second section of our
discussion, we argue that conditional marginal regression (e.g.,
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Journal of the American Statistical Association

December 2015, Vol. 110, No. 512, Theory and Methods
DOI: 10.1080/01621459.2015.1100619

D
ow

nl
oa

de
d 

by
 [

N
or

th
 C

ar
ol

in
a 

St
at

e 
U

ni
ve

rs
ity

] 
at

 0
8:

19
 0

5 
Fe

br
ua

ry
 2

01
6 

mailto:barut@gwu.edu
mailto:judywang@gwu.edu
http://www.amstat.org
http://pubs.amstat.org/loi/jasa
http://dx.doi.org/10.1080/01621459.2015.1100619


1443

forward regression) may help alleviate some of the issues due to
faithfulness.

1. FORWARD STEPWISE ART

In this section, we carry out a small-scale simulation study to
compare the performance of the forward stepwise ART method,
with the single sample splitting method (denoted by “sSplit”) of
Wasserman and Roeder (2009), and the multiple sample split-
ting method (denoted by “mSplit”) of Meinshausen, Meier, and
Bühlmann (2009). Both sSplit and mSplit use the three-stage
stepwise regression, where data are randomly split into three
parts to be used for screening, cross-validation and cleaning,
respectively. The p-values from the mSplit method are calcu-
lated using 50 random sample splitting. All three methods are
based on marginal regression of responses or residuals on each
covariate separately in each step.

We generate data from the model Yi = ∑100
k=1 Xikβk + εi ,

i = 1, . . . , n, where εi ∼ N (0, 1). Four cases are considered.
The coefficients are set as β1 = β2 = β3 = 1 in Cases 1 and 3,
(β1, β2, β3) = (1, 2/3, 1/3) in Cases 2 and 4, and βk = 0 for
k = 4, . . . , 100. The covariates Xik, k = 1, . . . , 100 are inde-
pendent standard normal random variables in Cases 1 and 2,
and they are from a multivariate normal with mean zero, vari-
ance 1, and an exchangeable correlation of 0.5 in Cases 3 and
4.

Table 1 summarizes the simulation results for n = 99 and
n = 300. In Cases 1–2 with independent covariates, the ART
method is the most effective one; it shows higher chance to
identify the correct model while controlling the false positive
rate close to the nominal level of 0.05. When covariates are
correlated, all three marginal-regression-based methods have
difficulty identifying the correct model especially for situations
with small sample sizes or weak signals. For instance in Case
4, all three methods have difficulty selecting the third covariate
with weaker coefficient β3 = 1/3 even with larger sample size
n = 300. Relatively speaking, in Cases 3 and 4, the ART method
is competitive to mSplit and both work better than sSplit for
smaller samples.

2. FAITHFULNESS AND CONDITIONAL MARGINAL
REGRESSION

In this section, in an effort to understand the effects of cor-
relation on forward stepwise ART’s performance, we study the
variable selection properties of forward regression. More specif-
ically, we provide sufficient conditions for consistent variable
selection of forward regression assuming some set C has already
been recruited. We compare these conditions to those of Lasso
and show that there are strong similarities.

We consider the setting in which the responses are generated
from the following model,

Y = Xβ� + ε,

and Y is a n-dimensional vector, X is an n × p matrix and ε ∼
N (0n, σ

2In). We do not place any distributional assumptions on
X. Instead, we assume that it is deterministic, and the columns
of X, Xj , are normalized and each column has mean zero and
variance 1. We define the Gram matrix G as G := n−1XT X.

For clarity, we do not use any notation based on n, although the
variables, for example, Y, G, all depend on n.

We consider conditional marginal regression (Barut, Fan, and
Verhasselt 2015), in which a predetermined set of conditioning
variables C ⊂ {1, 2, . . . , p} are included with each marginal
regression. We let P = {1, . . . , p} and define

β̂C
j = arg min

β̂C
j

(
min
β̂C

∥∥Y − XCβ̂
C − Xj β̂

C
j

∥∥2

2

)
, for j ∈ P\C.

After the conditional marginal coefficients are estimated, one
can perform screening by recruiting variables for which the
conditional marginal coefficient is above a threshold value, t,
that is, by screening out the set {j : |β̂C

j | < t}. In the forward
regression framework, one adds the variable with the highest
coefficient to the set C (after adjusting for correlation) and re-
peats this over several iterations. Therefore, consistency results
on conditional marginal screening can be extended to forward
regression.

We assume that Xij are bounded, although generalizations
can be made to nonbounded but concentrated Xij as in Fan and
Song (2010). By the sub-Gaussanity of noise, using simple con-
centration arguments (Boucheron, Lugosi, and Massart 2013),
it holds with high probability that∥∥βC

j − β̂C
j

∥∥
∞ ≤ c1σ

2

√ |C| log (p − |C|)
n

, (1)

where βC
j are the noiseless (population) conditional marginal

regression (CMR) coefficients, |C| is the cardinality of the set C
and c1 is a constant. The constant c1 is inversely proportional to
the minimum eigenvalue of the |C| + 1 sized sub-blocks of G.

To make the following presentation better, we introduce
variable-specific partitions of the set P . For a given C and j,
we denote the set of other covariates by O:

O = P\ (C ∪ j ) .

Furthermore, the Gram matrix G is partitioned as

G =

⎡⎢⎣GCC GCj GCO
GT

Cj Gjj GjO
GT

CO GT
jO GOO

⎤⎥⎦ ,

where GAB = 1
n
XT

AXB . In addition, due to standardization, it
holds that Gkk = 1 for all k ∈ {1, . . . , p}.

It is trivial to show that the noiseless CMR coefficients βC
j are

given by

βC
j = β�

j + 1

κ2
j

(
GjO − GT

CjG−1
CC GCO

)
β�
O, (2)

where κ2
j = 1 − GT

CjG−1
CC GCj < 1, that is, the conditional vari-

ance of Xj given XC . The second term in βC
j can be expressed

as the “correlation of j and O, conditional on C.” That is, con-
ditional on C, if the jth variable is not significantly correlated
to other variables, the second term will be small. This is not a
surprising result, since any active variables that are not included
in C will not “disrupt” the estimation of βC

j if they do not have
any correlation with Xj conditional on C.

We next present the conditions for which, given some set C,
forward regression recruits an active variable with high prob-
ability. We use S to represent the set of active variables, that
is, S = {j ∈ P : β�

j �= 0}, and we use N = P\S to denote the
complement of S.
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Table 1. Simulation results for three stepwise regression methods

n = 99 n = 300

Case Method OracleP FP TP1 TP2 TP3 OracleP FP TP1 TP2 TP3

1 ART 1.00 0.05 1.00 1.00 1.00 1.00 0.05 1.00 1.00 1.00
sSplit 0.71 0.00 0.87 0.86 0.88 1.00 0.01 1.00 1.00 1.00
mSplit 0.99 0.00 0.99 1.00 1.00 1.00 0.00 1.00 1.00 1.00

2 ART 0.31 0.04 1.00 1.00 0.31 0.98 0.04 1.00 1.00 0.98
sSplit 0.02 0.00 0.97 0.62 0.03 0.46 0.00 1.00 1.00 0.46
mSplit 0.00 0.00 1.00 0.71 0.00 0.57 0.00 1.00 1.00 0.57

3 ART 0.49 0.01 0.83 0.83 0.83 1.00 0.00 1.00 1.00 1.00
sSplit 0.25 0.10 0.58 0.60 0.58 1.00 0.00 1.00 1.00 1.00
mSplit 0.75 0.01 0.92 0.90 0.92 1.00 0.00 1.00 1.00 1.00

4 ART 0.01 0.06 1.00 0.88 0.07 0.16 0.00 1.00 1.00 0.16
sSplit 0.00 0.06 0.79 0.36 0.03 0.25 0.01 1.00 0.98 0.26
mSplit 0.00 0.01 0.98 0.50 0.02 0.23 0.00 1.00 1.00 0.23

Notes: OracleP is the proportion of selecting the correct active covariates, FP is the false positive rate (i.e., the proportion of selecting at least one inactive covariates), and TP1, TP2,
and TP3 are the proportions of selecting the first three active covariates, respectively.

Condition 1 (Beta-min). For the active variables it holds that,

min
j∈S

∣∣β�
j

∣∣ > cβmin > 0.

The constant cβmin can depend on n and/or p. In the literature,
cβmin is often assumed to be on the order of

√
logp/n.

Condition 2 (Beta-max). Active variables that are not in-
cluded in C are bounded above in magnitude, that is

max
j∈S\C

∣∣β�
j

∣∣ = ∥∥β�
S\C
∥∥

∞ ≤ cβmax.

Remark 1. Although the Beta-min condition is plausible, and
almost always necessary in a high-dimensional framework, the
Beta-max condition is much more restrictive as it requires that
all of the variables with large coefficients are contained in the set
C. However, in practice, one would expect that bigger variables
are easier to “spot,” and the Beta-max condition is not very re-
strictive for such situations. Note that, there are no assumptions
about the other elements of C. The conditioning set can include
nonactive variables and the results continue to hold as long as
the largest active coefficients are included in C.

The variables recruited with the conditional set C will be in
the active set, if it holds that

min
j∈S\C

∣∣β̂C
j

∣∣ > max
j /∈S∪C

∣∣β̂C
j

∣∣ .
Conditioning on the high probability set in which Equation (1)
holds, we can write sufficient conditions as

min
j∈S\C

∣∣∣∣∣βC
j ± Cσ 2

√ |C| log (p − |C|)
n

∣∣∣∣∣
> max

j /∈S∪C

∣∣∣∣∣βC
j ± Cσ 2

√ |C| log (p − |C|)
n

∣∣∣∣∣ ⇐

min
j∈S\C

∣∣βC
j

∣∣ > max
j /∈S∪C

∣∣βC
j

∣∣+ 2Cσ 2

√ |C| log (p − |C|)
n︸ ︷︷ ︸

�C,n,p

. (3)

If condition (3) holds, then with high probability, forward re-
gression recruits an active variable, one that is in S.

Plugging in the expression for βC
j in (2), we rewrite the condi-

tion (3). First, we create matrix A ∈ Rq×q , where q = p − |C|,
and set Ajj = 0 for all j. The remaining terms in the jth row of
A are given by

Aj,−j =
[

1

κ2
j

(
GjO − GT

CjG
−1
CCGCO

)]
,

where O is implicitly dependent on j. Entries of matrix A can
be thought as the conditional covariances (conditional on C)
between covariates not in C. It then follows that, condition (3)
is equivalent to

min
j∈S\C

∣∣β�
j + AT

j,−jβ
�
O
∣∣ > max

j /∈S∪C
∣∣AT

j,−jβ
�
O
∣∣+ �C,n,p. (4)

Next, we obtain a lower bound for the LHS, and an upper
bound for the RHS of the equation. The LHS of (4) can be
bounded below as,

min
j∈S\C

∣∣β�
j + AT

j,−jβ
�
O
∣∣ ≥ min

j∈S\C
(∣∣β�

j

∣∣− ∣∣AT
j,−jβ

�
O
∣∣)

≥ cβmin − max
j∈S\C

∣∣AT
j,−jβ

�
O
∣∣ . (5)

With Condition 2, the last term in Equation (5) can be bounded
above by

max
j∈S\C

∣∣AT
j,−jβ

�
O
∣∣ = max

j∈S\C
∣∣AT

j,(S\(C∪j ))β
�
(S\(C∪j ))

∣∣
≤ max

j∈S\C,‖ν‖∞≤cβmax

∣∣AT
j,(S\(C∪j ))ν

∣∣
≤ cβmax

∥∥A(S\C),(S\C)

∥∥
∞ ,

where the norm ‖·‖∞ is defined as the maximum of the absolute
sum of the rows of the matrix. Similarly, the other term in (4)
can be bounded with the same norm

max
j /∈S∪C

∣∣AT
j,−jβ

�
O
∣∣ ≤ max

j∈N \C,‖ν‖∞≤cβmax

∣∣AT
j,(S\(C∪j ))ν

∣∣
≤ cβmax

∥∥A(N \C),(S\C)

∥∥
∞ .
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We now state our main result.

Lemma 1. Given some conditioning set C, the forward re-
gression recruits an active variable with high probability if Con-
ditions 1 and 2 hold and

cβmin > cβmax
(∥∥A(N \C),(S\C)

∥∥
∞ + ∥∥A(S\C),(S\C)

∥∥
∞
)

+�C,n,p. (7)

Remark 2. A stronger statement can be made: if the condi-
tions hold, the first |S\C| coefficients selected by conditional
marginal regression will be active. If the conditional correla-
tion coefficient to other active variables is small, one can work
with much more general conditions. In fact, if conditional on
C, none of the active variables are correlated (for instance in an
equal correlation design in which C includes one element), the
condition (6) simply becomes

cβmin >
∥∥A(S\C),(S\C)β

�
S\C
∥∥

∞ + �C,n,p = 0 + �C,n,p = �C,n,p.

As given in Genovese et al. (2012), three sufficient conditions
for the variable selection consistency of Lasso are:

• Minimum eigenvalue condition: λmin(GS,S ) ≥ c2 > 0,
• Irrepresentability condition: ‖GNSG−1

SS‖∞ < 1,
• Tuning parameter condition: cβmin > λ‖G−1

S,S‖∞,

where λ is the tuning parameter for the penalty term in Lasso and
needs to be taken on the order of

√
logp/n. For ease of com-

parison, we rewrite the sufficient condition (6) of our Lemma as
follows:

cβmin > η1cβmax

∥∥A(N \C),(S\C)

∥∥
∞ ,

cβmin > η2cβmax

∥∥A(S\C),(S\C)

∥∥
∞ ,

cβmin > η3�C,n,p,

where η1 + η2 + η3 ≤ 1. We compare the condition (6) to re-
construction conditions for Lasso in Table 2. As can be seen
from Table 2, the conditions are comparable. The minimum
eigenvalue condition is replaced by a minimum eigenvalue con-
dition on the submatrices of G. This condition is necessary to
ensure that the conditional coefficients converge to their true
(population) values.

The irrepresentability condition of Lasso is also replaced with
a very similar condition. The Lasso condition limits the co-
variance of the active and nonactive variables, while the same

Table 2. Comparison of variable selection consistency conditions for
Lasso and conditional marginal screening.

Lasso condition Related condition for conditional screening

λmin(GS,S ) ≥ c2 > 0 minj∈P\C λmin(GS∪j,S∪j ) > 1
c1∥∥GNSG−1

SS
∥∥

∞ < 1 η1

∥∥A(N \C),(S\C)

∥∥
∞ <

cβmin

cβmax

cβmin > λ
∥∥G−1

S,S
∥∥

∞ cβmin > η2cβmax

∥∥A(S\C),(S\C)

∥∥
∞

condition for conditional screening limits the conditional covari-
ance of the active and nonactive variables, conditioned on C. If
conditioning helps reduce some of the correlation between the
variables, conditional covariance will be significantly smaller.
Hence, in practical applications with highly correlated variables,
one would expect this condition to be easier to satisfy than the
irrepresentability condition of Lasso.

Finally, the tuning parameter condition is analogous to the
condition on A(S\C),(S\C). The tuning parameter λ is generally
taken on the order of O(

√
logp/n). If the conditioned set can

be chosen to ensure cβmax = O(
√

logp/n), which will happen
if large variables are easily recognizable, these two conditions
are very similar. In addition, by conditioning on more variables,
one would expect ‖A(S\C),(S\C)‖∞ to decrease. Therefore, as is
the case with the other conditions, the recovery conditions for
conditional regression are often less stricter than those of Lasso.

These results suggest that forward regression can be a very
powerful method for variable selection. In fact, forward regres-
sion can overperform Lasso, if in the early stages forward re-
gression recruits variables that are large in magnitude (so that
cβmax is small) and/or if recruited variables have high correlation
with others.

3. CONCLUSION

We would like to once again congratulate the authors for their
timely and beautiful results on this important topic. We expect
that some readers may be cautious in implementing ART, think-
ing that unfaithfulness causes issues with marginal regression.
To ease such concerns, we have shown forward regression will
select important variables under conditions that are comparable
to those of Lasso. It would be very interesting to see an adapta-
tion of ART for forward regression, and we hope that the results
presented in this discussion are encouraging for such a method.
We conclude by thanking the authors for this inspirational and
stimulating article.

[Received September 2013. Revised July 2014.]
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