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A probably-familiar matroid invariant

The Tutte polynomial T (M; x , y) of a matroid M on E is

T (M; x , y) =
∑
A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A).

Specializations:
the chromatic polynomial of a graph,
the weight enumerator of a linear code,
the Jones polynomial of an alternating knot,
the number of regions in an arrangement of hyperplanes, . . .

This is the generating function for the multiset of pairs (r(A), |A|)
over all A ⊆ E .

See: Handbook of the Tutte Polynomial and Related Topics,
(Joanna A. Ellis-Monaghan, Iain Moffatt, eds.) CRC Press, 2022.



The G-invariant, first step: rank sequences

Let M be a rank-r matroid on E with |E | = n.

The rank sequence of a permutation
π = e1, e2, . . . , en of E is r(π) = r1r2 . . . rn where

ri = r({e1, e2, . . . , ei})− r({e1, e2, . . . , ei−1}).
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5, 2, 6, 4, 1, 3
r(5) = 1 1

r(5, 2) = 2 11
r(5, 2, 6) = 2 110

r(5, 2, 6, 4) = 3 1101
r(5, 2, 6, 4, 1) = 3 11010

r(5, 2, 6, 4, 1, 3) = 3 110100

So ri ∈ {0, 1}. Also, {ei : ri = 1} is a basis.



The G-invariant

To a sequence r of r 1’s and n − r 0’s, associate a variable [r ].

Let the set of these variables be a basis of a vector space, G(n, r),
over a field of characteristic 0.

Derksen, 2009; recast:
The G-invariant is G(M) =

∑
permutations π

[r(π)].

In effect, G(M) is the generating function for rank sequences r(π),
using formal symbols [r ] rather than powers of x .

This contains the Tutte polynomial since what T (M; x , y) records,
the number of sets of size i and rank j , for each i , j , is

the sum of the coefficients of the terms [r] in G(M) with r1 + · · ·+ ri = j

i !(n − i)!
.
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Some easy observations

The rank sequence of π = e1, e2, . . . , en: r(π) = r1r2 . . . rn
where ri = r({e1, e2, . . . , ei})− r({e1, e2, . . . , ei−1}).

The G-invariant: G(M) =
∑

permutations π

[r(π)].

The number of loops of M is the number of 0s in a longest initial
string of 0s in any rank sequence from M.

If L is the set of loops of M, we get G(M\L) by taking just the
terms in G(M) with |L| initial 0s, removing those initial 0s, and
dividing each coefficient by |L|!.

We get G(M) from G(M\L) by “shuffling” |L| zeros into the terms
of G(M\L) and multiplying each coefficient by |L|!.
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Some easy observations

Similar remarks apply to coloops, using the longest final string of
1s in any rank sequence from M.

Indeed, to get G(M∗), start with G(M), switch 0 and 1, and
reverse the order of each 0, 1-sequence

So, if we want, we can assume that M has no loops and no coloops.



Example

The G-invariant is G(M) =
∑

permutations π

[r(π)].

M

The smallest pair of matroids

that have the same Tutte

polynomial. Each has rank 3. N

Two rank sequences:

111000 if {e1, e2, e3} is a basis;

there are
((6

3

)
− 2

)
· 3! · 3! = 648 such permutations;

110100 otherwise;

there are 2 · 3! · 3! = 72 such permutations.

So G(M) = G(N) = 648 [111000] + 72 [110100].



Preparing for another perspective — flags and compositions

A flag of a rank-r matroid M is a maximal chain of flats

cl(∅) = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xr−1 ⊂ Xr = E .

Its composition is the sequence a0, a1, . . . , ar where ai = |Xi −Xi−1|.

The composition is a way to record |X0|, |X1|, . . . , |Xr |.

A permutation of E yields a flag: take the closures of initial intervals.

E.g., 5, 2, 6, 4, 1, 3 gives the flag ∅ ⊂ {5} ⊂ {2, 5, 6} ⊂ E .
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cl({5}) = {5}

cl({5, 2}) = {2, 5, 6} = cl({5, 2, 6})

Each of {5, 2, 6, 4}, {5, 2, 6, 4, 1}, and
{5, 2, 6, 4, 1, 3} has closure E .
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Going from flags to permutations and rank sequences

With basic counting, we can deduce how many permutations yield
a given flag, and how many of them have a given rank sequence.

We get the flag ∅ ⊂ {5} ⊂ {2, 5, 6} ⊂ E from the permutations that:
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start with 5;

follow that by either 2 or 6;

and then have any permutation of the
remaining elements.

Those that start 5, 2, 6 or 5, 6, 2 have the rank sequence 110100;

the others have rank sequence 111000.

So this flag contributes 2 · 3! [110100] + 3 · 3! [111000] to G(M).

These deductions use only the sizes of the flats, so just the
composition of the flag.
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Another basis of G(n, r)
If a flag (X0,X1, . . . ,Xr ) has composition a0, a1, . . . , ar , then

γ(a0, a1, . . . , ar ) =
∑

π giving (X0,X1,...,Xr )

[r(π)]

depends only on a0, a1, . . . , ar , not M and not (X0,X1, . . . ,Xr ).

The set {γ(a0, a1, . . . , ar )}, over all compositions, is a basis of
G(n, r), the γ-basis.

Theorem (Bonin and Kung, 2018)

Let ν(M; a0, a1, . . . , ar ) be the number of flags in M with
composition a0, a1, . . . , ar . We have

G(M) =
∑

(a0,a1,...,ar )

ν(M; a0, a1, . . . , ar ) γ(a0, a1, . . . , ar ).

This re-interpretation of G(M) via flags and compositions provides

essential insight into G(M).
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The G-invariant is stronger than the Tutte polynomial

Two matroids with the same Tutte polynomial but different
G-invariants.

M1

M1 M2

ν(Mi ; 0, 1, 1, 5) 4 6

ν(Mi ; 0, 1, 2, 4) 7 3

ν(Mi ; 0, 1, 3, 3) 4 6

ν(Mi ; 0, 2, 1, 4) 1 3

ν(Mi ; 0, 2, 2, 3) 2 1
M2

The Tutte polynomial does not detect the fact that the number of rank-2
flats with two elements is different (2 versus 3; the first row in the table).

More broadly, the Tutte polynomial detects the number of flats of a given

rank that have the largest size, but not the numbers of smaller flats of

that rank.



The G-invariant is far stronger than the Tutte polynomial

The Tutte polynomial T (M; x , y) is a generating function for the
multiset of pairs (|A|, r(A)) for A ⊆ E .

From G(M), one can find, for each triple (m, k , c) of integers, the
number of sets A with |A| = m and r(A) = k for which the
restriction M|A has c coloops (and more!).

From G(M), but not T (M; x , y), one can deduce the numbers of
circuits and cocircuits of M of each size (including whether there are

spanning circuits).

From G(M), but not T (M; x , y), one can deduce the the number
of chains of flats with specified sizes and ranks.

The Tutte polynomial is universal among invariants that satisfy
deletion-contraction rules.

Derksen and Fink showed that the G-invariant is a universal
valuative invariant for subdivisions of matroid base polytopes.



A central question

A key question for any invariant: how strong is it?

In this setting: what can account for non-isomorphic matroids that
have the same G-invariant?

How can we construct such matroids?



Cyclic flats

The flag and composition view of G(M) shows that we can get G(M)

from the lattice L(M) of flats of M, but do we really need all that data?

A set X in a matroid M is cyclic if X is a union of circuits.

We are most interested in cyclic flats.
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M
∅
0

{a,b,c}
2

{c,d,e}
2

E(M)
3

ba

ed f

c

N

∅
0

{a,b,c}
2

{d,e,f }
2

E(N)
3

The set Z(M) of cyclic flats of M, ordered by inclusion, is a
lattice.

join: X ∨ Y = cl(X ∪ Y ).

meet: X ∧ Y is the union of all circuits in M|X ∩ Y .
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The cyclic flats and their rank determine a a matroid

A matroid M is determined by E and the pairs (X , r(X )) with
X ∈ Z(M). (Brylawski, 1975)

One way to see this: show that, for all X ⊆ E ,
r(X ) = min{r(A) + |X − A| : A ∈ Z(M)}.

There are axioms for matroids using cyclic flats and their ranks, and that

justifies some of the examples we will see later.



Flags and chains of cyclic flats

Now assume that M has no loops and no coloops, so ∅,E ∈ Z(M).

Let (X0= ∅,X1, . . . ,Xr = E ) be a flag of M.

From each flat Xi , remove the coloops of M|Xi ; this gives a chain
of cyclic flats.

The (possibly empty) chain we get by removing ∅ and E from this
chain is the reduced cyclic chain of the flag.
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(∅, {1, 2}, {1, 2, 3, 4},E ) 7→ ({1, 2}, {1, 2, 3, 4})
(∅, {4}, {1, 2, 3, 4},E ) 7→ ({1, 2, 3, 4})
(∅, {5}, {3, 5},E ) 7→ ( )

(∅, {7, 8}, {3, 7, 8},E ) 7→ ({7, 8})



Flags and chains of cyclic flats: going the other way

Can we find all flags with a given reduced cyclic chain?

5

1

4

2

3

6
7

8

9

Which flags have reduced cyclic
chain ({1, 2, 3})?

(∅, {i}, {1, 2, 3}, {1, 2, 3, j},E ),
(∅, {i}, {i , j}, {1, 2, 3, j},E ),
(∅, {j}, {i , j}, {1, 2, 3, j},E ), and
where i ∈ {1, 2, 3} and j ∈ {6, 7}.

Why? {1}, {2}, and {3} are the independent hyperplanes of
M|{1, 2, 3}, and {6} and {7} are the independent hyperplanes of
M/{1, 2, 3}.
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4 6 7
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Flags and chains of cyclic flats: going the other way

Let Z◦(M) = Z(M)− {∅,E}.

Lemma (Bonin and Kung, 2018)

Let C = {F1 ⊂ F2 ⊂ · · · ⊂ Ft} be a chain in Z◦(M). Set F0 = ∅ and
Ft+1 = E . Let L be the set of all lists of r(M) entries, all different,
obtained this way:

▶ for j ∈ [t + 1], pick an independent hyperplane Hj of M|Fj/Fj−1,

▶ consider lists in which the entries are the sets F1,F2, . . . ,Ft+1

along with the singleton subsets of H1,H2, . . . ,Ht+1,

▶ such a list is in L iff, for all j ∈ [t], Fj+1 occurs after (a) all
smaller Fi and (b) all singleton subsets of Hj+1.

Map L ∈ L to the flag ϕ(L), the ith entry of which is the union of the
first i sets in L, for 0 ≤ i ≤ r(M). The map ϕ is a bijection from L
onto the set of flags for which C is the reduced cyclic flag.
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sets in L, for 0 ≤ i ≤ r(M). The map ϕ is a bijection from L onto the set of

flags for which C is the reduced cyclic flag.

Let ι(M) be the number of independent hyperplanes of M.

Corollary

The multiset of compositions we get from flags whose reduced cyclic
chain is C is determined by the sizes and ranks of F1,F2, . . . ,Ft , and
E , along with ι(M|F1), ι(M|Fj/Fj−1) for 2 ≤ j ≤ t, and ι(M/Ft).



The configuration of a matroid

The multiset of compositions we get from flags whose reduced cyclic chain is

{F1 ⊂ F2 ⊂ · · · ⊂ Ft} is determined by the sizes and ranks of F1,F2, . . . ,Ft ,

and E , along with ι(M|F1), ι(M|Fj/Fj−1) for 2 ≤ j ≤ t, and ι(M/Ft).

The configuration of M is the triple (L, s, ρ), where L is a lattice,
s : L → Z, ρ : L → Z, and there is an isomorphism ϕ : L → Z(M)
with s(x) = |ϕ(x)| and ρ(x) = r(ϕ(x)) for all x ∈ L. (Eberhardt, 2014)
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Theorem (Eberhardt, 2014)

From the configuration of a
matroid with no coloops, we
can get its Tutte polynomial.

Theorem (Bonin and Kung, 2018)

From the configuration of a
matroid with no coloops, we can
get its G-invariant.

The key is to show how to compute ι(M) from the configuration.



The configuration of a matroid

The multiset of compositions we get from flags whose reduced cyclic chain is

{F1 ⊂ F2 ⊂ · · · ⊂ Ft} is determined by the sizes and ranks of F1,F2, . . . ,Ft ,

and E , along with ι(M|F1), ι(M|Fj/Fj−1) for 2 ≤ j ≤ t, and ι(M/Ft).

The configuration of M is the triple (L, s, ρ), where L is a lattice,

s : L → Z, ρ : L → Z, and there is an isomorphism ϕ : L → Z(M)

with s(x) = |ϕ(x)| and ρ(x) = r(ϕ(x)) for all x ∈ L. (Eberhardt, 2014)

Theorem (Eberhardt, 2014)

From the configuration of a
matroid with no coloops, we
can get its Tutte polynomial.

Theorem (Bonin and Kung, 2018)

From the configuration of a
matroid with no coloops, we can
get its G-invariant.

The key is to show how to compute ι(M) from the configuration.



The configuration and minors

The multiset of compositions we get from flags whose reduced cyclic chain is

{F1 ⊂ F2 ⊂ · · · ⊂ Ft} is determined by the sizes and ranks of F1,F2, . . . ,Ft ,

and E , along with ι(M|F1), ι(M|Fj/Fj−1) for 2 ≤ j ≤ t, and ι(M/Ft).

If F ∈ Z(M), then Z(M|F ) is the interval [cl(∅),F ] in Z(M),
and Z(M/F ) is {A− F : A ∈ Z(M) and F ⊆ A}, which is
isomorphic to the interval [F ,E ] in Z(M).

So, from the configuration of M, we get the configuration of any
minor M|F/G with F ,G ∈ Z(M) and G ⊂ F .



Huge collections of G-equivalent matroids

Huge collections of non-isomorphic matroids can share the same
configuration, and so have the same G-invariant and Tutte
polynomial.

A paving matroid is a matroid M in which each flat of rank
r(M)− 2 or less is independent.

Two paving matroids of rank r on n elements where, for each i ,
both have the same number of hyperplanes of size i have the same
configuration.

It is conjectured that, asymptotically, almost all matroids are paving.



Going further

How can we get matroids with different configurations but the
same G-invariant?

A simple construction: take non-isomorphic matroids with the
same G-invariant (perhaps with the same configuration) and replace
each element by m parallel elements, for a fixed m > 1.

An example with m = 2.

Why this works:

▶ this takes each flag of each matroid and multiplies all terms in
the corresponding composition by m, and

▶ the lattices of cyclic flats of the new matroids are isomorphic
to the lattice of flats (not cyclic flats!) of the original matroids.
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An example with m = 2.

Why this works:

▶ this takes each flag of each matroid and multiplies all terms in
the corresponding composition by m, and

▶ the lattices of cyclic flats of the new matroids are isomorphic
to the lattice of flats (not cyclic flats!) of the original matroids.



Free cones

M N
a

Q1(M)

a

Q1(N)

The free m-cone of a
matroid M is formed from
the direct sum of M and
U1,1 on a (the tip) by
adding m point freely to
each line {a, e} with
e ∈ E (M) (via principal
extension).

Theorem (Bonin and Long, 2022)

Let M and N be nonisomorphic loopless matroids with
G(M) = G(N). For all m ≥ 1, Qm(M) and Qm(N) have
the same G-invariant and different configurations.
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Free cones

a If M and N are nonisomorphic loopless

matroids with G(M) = G(N), then

Qm(M) and Qm(N) have the same

G-invariant and different configurations.

The bird’s-eye view of the proof:

Why the G-invariants are the same: we can write the flags and
compositions of a cone using the flags and compositions of the
original matroid (a combination of geometry and counting).

Why the configurations are different: flats F with a ∈ F and
|F | > 1 are cyclic; in the lattice of cyclic flats of the cone, in effect
these flats give a copy of the lattice of flats of the original matroid.
That sublattice can be picked out via lattice properties.

For both parts, working with the lattice of cyclic flats of the free
m-cone is very useful.



Free cones

Let M and N be nonisomorphic loopless matroids with G(M) = G(N). For all

m ≥ 1, Qm(M) and Qm(N) have the same G-invariant and different configurations.

With the basic result, we adapt the ideas to get counterparts for
the tipless (if m > 1), baseless (if m > 1), and tipless and baseless
(if m > 2) variations on the construction.

This construction assigns fairly restricted size and rank data to the
lattice of cyclic flat of Qm(M) to get the configuration.

Can we find large families of lattices where mild restrictions on the
size and rank data give different configurations but the same
G-invariant?
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Revisit an earlier construction
We turned our first example of matroids

with the same G-invariant into an example

with different configurations by replacing

each element by m parallel elements.

What if we add parallel elements more selectively?
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1 3 4

8

7

5 6

M

2

1
3

4

5
6

8

7

N(0, 0)

(2, 1) (2, 1)

(4, 2) (4, 2) (4, 2)

(8, 3)

(0, 0)

(2, 1) (2, 1)

(4, 2)(4, 2) (4, 2)

(8, 3)

The lattices are different, but the chains of cyclic flats are the same.
Recall:

The multiset of compositions we get from flags whose reduced cyclic chain is

{F1 ⊂ F2 ⊂ · · · ⊂ Ft} is determined by the sizes and ranks of F1,F2, . . . ,Ft ,

and E , along with ι(M|F1), ι(M|Fj/Fj−1) for 2 ≤ j ≤ t, and ι(M/Ft).
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Sorting flags by their reduced cyclic chains

For a reduced cyclic chain C , let flag(C ) be the set of all flags of
M whose reduced cyclic chain is C .

For a set T of reduced cyclic chains, let flag(T ) be
⋃

C∈T flag(C ).

For a set S of flags, let comp(S) be the multiset of compositions
of the flags in S .

So, comp(flag(T )) is the multiset of all compositions of all flags
whose reduced cyclic chain is in the set T of reduced cyclic chains.

2

1 3 4

8

7

5 6

flag({7, 8}) contains

(∅, {3}, {3, 7, 8},E ) (∅, {7, 8}, {3, 7, 8},E )

(∅, {4}, {4, 7, 8},E ) (∅, {7, 8}, {4, 7, 8},E )

comp(flag({7, 8})) = {(0, 1, 2, 5)2, (0, 2, 1, 5)2}



An example

2

1 3 4

8

7

5 6

M

2

1
3

4

5
6

8

7

N

(Below, we omit ∅
and E from flags for

brevity.)

C = ({1, 2}): flagM(C ) contains ({1, 2}, {1, 2, i}) and ({i}, {1, 2, i})
for i ∈ {5, 6}; comp(flagM(C )) = {(0, 2, 1, 5)2, (0, 1, 2, 5)2}.

For N, flagN(C ) = ∅.

C ′ = ({7, 8}): flagM(C ′) contains ({7, 8}, {7, 8, i}) and ({i}, {7, 8, i})
for i ∈ {3, 4}; comp(flagM(C ′)) = {(0, 2, 1, 5)2, (0, 1, 2, 5)2}.

For N, flagN(C
′) contains ({7, 8}, {7, 8, i}) and ({i}, {7, 8, i}) for

i ∈ {3, 4, 5, 6}; comp(flagN(C
′)) = {(0, 2, 1, 5)4, (0, 1, 2, 5)4}.

{comp(flagM(C )), comp(flagM(C ′))} ≠ {comp(flagN(C )), comp(flagN(C
′))},

but comp(flagM({C ,C ′})) = comp(flagN({C ,C ′}))



An example

Neither has flags with reduced cyclic chain ({1, 2, 7, 8}).

Each has eight flags with the empty reduced cyclic chain; each has
composition (0, 1, 1, 6).

Each of M and N has four 2-element reduced cyclic chains; each
arises from exactly one flag; that flag has composition (0, 2, 2, 4).

Each of the reduced cyclic chains ({1, 2, 3, 4}) and ({5, 6, 7, 8}) in
M, and ({1, 2, 3, 4}) and ({1, 2, 5, 6}) in N, arise from two flags;
each such flag has composition (0, 1, 3, 4).

2

1 3 4

8

7

5 6

M

2

1
3

4

5
6

8

7

N

So G(M) = G(N).



A consequence of the definitions and a lemma

Theorem (Bonin, 2022)

Let M and N have neither loops nor coloops. Let {P1,P2, . . . ,Pd}
and {Q1,Q2, . . . ,Qd} be a partition of the set of reduced cyclic
chains of M and of N, resp. If comp(flagM(Pi )) = comp(flagN(Qi ))
for each i ∈ [d ], then G(M) = G(N).

So we want results that let us deduce that partitions have the key
property comp(flagM(Pi )) = comp(flagN(Qi )) for all i ∈ [d ].

The paper has a number of technical lemmas of that type.

We skip them here so we can sample the applications.



Motivating the next construction: gluing lattices together
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1 3 4
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M
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8
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N(0, 0)

(2, 1) (2, 1)

(4, 2) (4, 2) (4, 2)

(8, 3)

(0, 0)

(2, 1) (2, 1)

(4, 2)(4, 2) (4, 2)

(8, 3)



Applications

Let a1, a2, . . . , am be distinct elements of a finite lattice L where

▶ there is a b ∈ L with ai ∧ aj = b for all i , j ∈ [m] with i ̸= j ,

▶ for all distinct i , j ∈ [m], there is a lattice isomorphism
τi ,j : [0̂, ai ] → [0̂, aj ] with τi ,j(y) = y for all y ∈ [0̂, b].

Having τ1,m, τ2,m, . . . , τm−1,m gives the rest via inverses and compositions.

Let L1, L2, . . . , Ln be finite lattices that are disjoint from each
other and from L.

Fix functions s : [n] → [m] and t : [n] → [m].

Form a lattice Ls as follows:

▶ for i ∈ [n], to get L′i , in Li replace 1̂Li by 1̂L and 0̂Li by as(i),

▶ let Ls be the transitive closure of L∪ L′1 ∪ L′2 ∪ · · · ∪ L′n (viewed

as a relation).

Define Lt similarly.



Applications

0̂

a b

c

1̂

L

0̂

a1 a2

x c y

1̂

Ls

0̂

a1 a2

xc y

1̂

Lt

In terms of Hasse diagrams, Ls is obtained by, for each i ∈ [n],
inserting Li into the interval [as(i), 1̂L] of L, where 0̂Li is identified

with as(i), and 1̂Li is identified with 1̂L.

So, Ls and Lt have the same elements.



Applications

0̂

a1 a2

x c y

1̂ As Hasse diagrams, Ls is obtained by, for

each i ∈ [n], inserting Li into the interval

[as(i), 1̂L] of L, where 0̂Li is identified

with as(i), and 1̂Li is identified with 1̂L. 0̂

a1 a2

xc y

1̂

Theorem (Bonin, 2022)

Let Ls and Lt be as defined above. Let Ms and Mt be matroids,
with rank functions rs and rt , respectively, neither having loops nor
coloops, for which, for some lattice isomorphisms ϕs : Ls → Z(Ms)
and ϕt : Lt → Z(Mt),

▶ |ϕs(y)| = |ϕt(y)| and rs(ϕs(y)) = rt(ϕt(y)) for all y in Ls , and

▶ if y ∈ [0̂, am], then |ϕs(y)| = |ϕs(τm,i (y))| and
rs(ϕs(y)) = rs(ϕs(τm,i (y))) for all i ∈ [m − 1].

Then G(Ms) = G(Mt).



An illustration

0̂

a1 a2 a3 · · · am

1̂ If we attach n copies of a
3-element chain into the lattice
of flats of an m-point line, we get
lattices of the form

0̂

a1 a2 · · · am

x1 · · · xi−1 xi · · · xj−1 · · · xk · · · xn

1̂

(some intervals

(ah, 1̂) may be

empty).

In two such lattices, if all ai s are assigned the same rank/size data,
and each xj is assigned the same rank/size data in each lattice
(perhaps different from other xks), then the G-invariants are the same.

The number of nonisomorphic lattices of this type is the number of
integer partitions of n with at most m parts.
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An illustration

0̂

a1 a2 · · · am

x1 · · · xi−1 xi · · · xj−1 · · · xk · · · xn

1̂

E.g., in rank-4 with m = n and |E | = n(n + 9)/2, we can let each
ai correspond to a 3-point line, and each xj correspond to a cyclic
plane with a single dependent line (the 3-point line), where all
planes have different sizes.

The number of such configurations with non-isomorphic lattices is
the nth Bell number, the number of set partitions of {1, 2, . . . , n}.



An illustration

1̂

a1 a2

· · ·

am

x1 · · · xi−1 xi · · · xj−1 · · · xk · · · xn

0̂

Similarly, the order dual produces a plethora of G-equivalent,
configuration-distinct matroids since the restrictions to the flats
corresponding to the ai s can be paving matroids.



Wrap up

The paper has a result of a similar flavor using the lattices of flats
of paving matroids that have the same configuration as the lattices
for different configurations that yield matroids with the same
G-invariant.

Open problem

Find good upper bounds on the number of distinct
G-invariants among rank-r matroids on n elements.
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Thank you for listening.
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