# THE GEORGE WASHINGTON UNIVERSITY

## WASHINGTON, DC

## School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 2115: Engineering Electronics Laboratory

Experiment #7: Designing and Measuring a Common-Emitter Amplifier

## **COMPONENTS**

| Туре       | Value  | Symbol Name                                         | Multisim Part              | Description          |
|------------|--------|-----------------------------------------------------|----------------------------|----------------------|
| Resistor   | Ω      | R <sub>B1</sub>                                     | Basic/Resistor             | Determined in Prelab |
| Resistor   | Ω      | R <sub>B2</sub>                                     | Basic/Resistor             | Determined in Prelab |
| Resistor   | Ω      | Rc                                                  | Basic/Resistor             | Determined in Prelab |
| Resistor   | Ω      | R <sub>E</sub>                                      | Basic/Resistor             | Determined in Prelab |
| Resistor   | Ω      | R <sub>E1</sub>                                     | Basic/Resistor             | Determined in Prelab |
| Resistor   | 4kΩ    | RL                                                  | Basic/Resistor             |                      |
| Resistor   | 28     | RL                                                  | Basic/Resistor             |                      |
| Resistor   | 10kΩ   | R <sub>test</sub>                                   | Basic/Resistor             |                      |
| Capacitor  | F      | C <sub>C1</sub> , C <sub>C2</sub> , C <sub>B1</sub> | Basic/Capacitor            | Determined in Prelab |
| Transistor | 2N3904 | Q <sub>1</sub>                                      | Transistors/BJT_NPN/2N3904 | NPN BJT              |

Table 1 – Component List

## **OBJECTIVES**

- · To design a common-emitter amplifier to meet a set of specifications
- · To simulate the designed common-emitter amplifier
- · To build the designed common-emitter amplifier
- $\cdot$  Measure voltage gain (A\_V) with and without load in laboratory
- $\cdot$  Measure R<sub>in</sub>, R<sub>out</sub> with and without load in laboratory

#### Part I – Generate Equipment List

1. Read through the lab manual and generate an equipment list.

#### Part II – Common-Emitter Amplifier Design

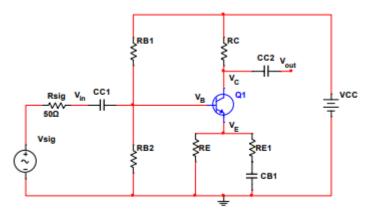



Figure P.1 – Common-Emitter Amplifier with Emitter Degeneration Parallel Resistor

- 1. Read the tutorial "Designing a Common-Emitter Amplifier" for help completing this prelab.
- 2. **Design** a **common-emitter amplifier** using a 2N3904 NPN BJT to meet the following specifications (hand in all calculations):
  - · Quiescent Current (I<sub>CQ</sub>) = 1mA
  - $\cdot$  V<sub>CC</sub> = 20V
  - $\cdot$  A<sub>Vo</sub> (unloaded) = -100 V/V
  - $\cdot$  R<sub>in</sub> = 4k $\Omega$
  - $\cdot R_L = 4k\Omega$
  - · V<sub>in</sub> = 10mV @ 10kHz
- 3. **Determine** the voltage gain (Av) with load.
- 4. Determine the output impedance  $(R_{out})$  without the load.
- 5. Determine the output impedance  $(R_{out})$  with the load.

#### Part III – Common-Emitter Amplifier Simulation

- 1. Build the amplifier you have designed in Multisim. Use  $50\Omega$  for  $R_{\text{sig.}}$
- 2. Run a DC Operating Point Analysis to determine the DC bias voltages and currents in the circuit. a. Show the DC voltages and DC currents at every node.
  - b. Verify that the simulated DC values approximate your calculations.
- 3. **Run** a **Transient Analysis** to show five cycles of V<sub>in</sub> (**not** V<sub>sig</sub>) and V<sub>out</sub>. Ensure that both voltages are plotted with their own y-axis as done in the previous lab.
  - a. Place labels at the peaks of  $V_{\text{in}}$  and  $V_{\text{out}}$  making sure to mark this at the same point in time.
  - b. Determine the small signal voltage gain of the amplifier (Av) with and without the load.
    Verify that it approximates your calculations.
  - c.  $R_{in}(AC) = V_{in} / I_{in}$ . Plot and measure the input current  $I_{in}$  to determine  $R_{in}(AC)$ .
  - d.  $R_{out}$  (AC) =  $V_{out}$  /  $I_{out}$ . Plot and measure the output current  $I_{out}$  to determine  $R_{out}$  (AC).
  - e. **Increase** V<sub>in</sub> until V<sub>out</sub> is distorted (looks like a clipped sine wave). For the maximum value of V<sub>in</sub>, what is V<sub>out</sub>? Does it match the calculated max voltage swing from the IV curve for the 2N3904 transistor?

SEAS

#### <u>LAB</u>

#### Part I – Bias Point Verification (DC Measurements)

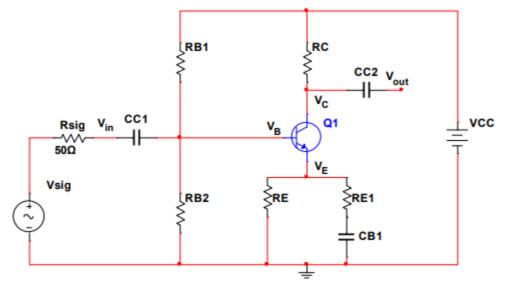



Figure 1.1 – Common-Emitter Amplifier with Emitter Degeneration Parallel Resistor

- 1. Before building the circuit in Figure 1.1, measure the exact resistances of all resistors using the DMM. Record these values.
- 2. Build the circuit in Figure 1.1 using transistor 2N3904 and the resistor values found in the prelab.
- 3. Before attaching the function generator (Wavegen), oscilloscope, or the load:
  - a. Measure VB, VE, and Vc using the DMM.
  - b. From the measured voltages, calculate VBE, VCE, VCB, IB, IE, IC, and β.
- 4. Place all hand calculated, simulated, and measured values for I<sub>B</sub>, I<sub>E</sub>, I<sub>C</sub>, V<sub>B</sub>, V<sub>E</sub>, V<sub>C</sub>, V<sub>BE</sub>, V<sub>CE</sub>, V<sub>CB</sub>, and  $\beta$  in a single table for analysis in your lab report.

#### Part II – Common-Emitter Amplifier Verification (Small-Signal Measurements)

1. Apply the 10mV, 10kHz input signal using the function generator (Wavegen) with no load

attached.

**Note:** The 10mV (20mV<sub>PP</sub>) set on the function generator (Wavegen) is " $v_{sig}$ ," NOT " $v_{in}$ " and the output impedance of the function generator (Wavegen) is 50 $\Omega$  (R<sub>sig</sub>).

- 2. Use CH-1 of the oscilloscope to measure vin.
  - a. You CANNOT use autoset. Determine the proper period for the 10kHz signal.
  - b. Ensure CH-1 is set for Peak to Peak to get the gain. Remember,

| Max Output _ | V <sub>peak to peak output</sub> |  |
|--------------|----------------------------------|--|
| Max Input    | V <sub>peak to peak input</sub>  |  |

- c. For If you are experiencing any noise, add a shunt capacitor
- d. Include relevant measurements such as  $V_{max}$  on the waveform.

3. Use CH-2 of the oscilloscope to measure vout.

- a. You CANNOT use autoset. Determine the proper period for the 10kHz signal.
- b. Ensure CH-2 is set for Peak to Peak to get the gain.
- c. If you are experiencing any noise, add a shunt capacitor
- d. Include relevant measurements such as  $V_{max}$  on the waveform.
- 4. Determine Avo from the measured vout, vin.
- 5. Measure  $R_{in} = V_{in} / I_{in}$ .
  - a. Because the scope can only measure voltage (not current), we use the following technique to determine **R**<sub>in</sub>:
    - i. You have previously recorded vin.
    - ii. Attach a  $10k\Omega$  resistor between the function generator (Wavegen) and your amplifier's input. Measure the voltage across it.

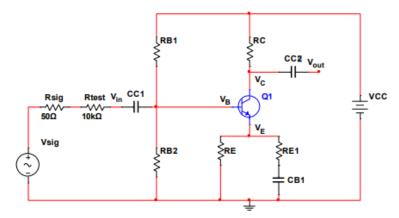



Figure 2.1 – Circuit with Inserted 10kΩ Rtest

- iii. Use Ohm's law to calculate the current through the  $10k\Omega$  resistor (lin). iv. Since the  $10k\Omega$  is in series with your amplifier, lin is the same with or without the  $10k\Omega$  resistor.
- v. Calculate  $R_{in} = v_{in} / I_{in}$  (use the value for  $v_{in}$  recorded before the 10k $\Omega$  resistor).
- 6. Increase vin until vout saturates (clips). Record the value of vin where saturation occurs.
- 7. Attach the  $4k\Omega$  load resistor and measure  $v_{out}$  (across the  $4k\Omega$  load). Determine A<sub>V</sub> (loaded).
- 8. Attach an 8 $\Omega$  load resistor and measure  $v_{out}$  (across the 8 $\Omega$  load). Determine Av (8 $\Omega$  load).
  - a. Calculate the current (lout) through this resistor.
- 9. Attach a load resistor that is the same size as Rc and measure  $v_{out}$  (across the load). Determine Av ( $Rc \Omega$  load).
- 10. Calculate Rout(unloaded) = vout / lout.
  - a. Use the value of *v*out recorded when there was no load attached.
  - b. Use the value of  $I_{out}$  calculated when there was an  $8\Omega$  load attached.

SEAS

#### POST-LAB ANALYSIS

- 1. Include all hand calculations in the final lab report.
- 2. For each part of the lab, **create tables** to compare your hand **calculated** data, **simulated** data, and **measured** data. If there are waveforms, include the waveforms from your prelab in your lab report to accurately compare them to the waveforms captured in lab.
- 3. Calculate percent error between hand calculations, simulations, and measurements.
- 4. What is the maximum output voltage swing of your amplifier?
  - a. Did it match your calculations?
- 5. Is the input impedance (Rin) of a common-emitter amplifier high or low? Explain.
- 6. Is the **output impedance** (**R**out) of a common-emitter amplifier high or low? **Explain**.
- 7. When the amplifier is attached a load comparable to Rc, what effect does it have on the gain?
- 8. When the amplifier is attached a small load, what effect does it have on the gain? Explain why this occurs.
  - a. What conclusion can you draw about the type of load that a common-emitter amplifier can handle and still maintain gain?

SEAS