THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 2115: Engineering Electronics Laboratory

Experiment #5: Characterization of an NPN Bipolar Junction Transistor (BJT)

COMPONENTS

T	ype	Value	Symbol Name	Multisim Part	Description
Re	sistor	1kΩ	R _B	Basic/Resistor	
Re	sistor	100kΩ	Rc	Basic/Resistor	
Trar	nsistor	2N3904	Q ₁	Transistors/BJT_NPN/2N3904	NPN BJT

Table 1 – Component List

OBJECTIVES

 \cdot To characterize a BJT using a DC power supply and DMM

 \cdot To compare measured characterization results to manufacturer specifications

PRELAB

Part I – Generate Equipment List

1. Read through the lab manual and generate an equipment list.

Part II – Parametric Sweep Simulation of a BJT

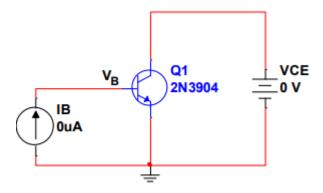


Figure P.1 - BJT Test Circuit

- 1. Build and simulate the circuit in Figure P.1 using Multisim.
 - a. Use the "Parametric Sweep Simulation of a BJT" tutorial on the lab website to generate an I-V curve ($I_C vs. V_{CE}$) for the 2N3904 BJT.
 - b. Sweep V_{CE} from 0V to 10V in 0.2V increments.
 - c. Sweep I_B from 10µA to 50µA in 20µA increments.
 - d. Plot the collector current to generate three different I-V curves.
 - e. Place markers at VcE = 2V on each curve.
 - f. Record the values for VcE, Ic, and IB from the markers in Table P.1.
 - g. **Re-run** the simulation, plotting the voltage at node V_B instead of the collector current and again place markers at $V_{CE} = 2V$.
 - h. Record the values for V_{BE} from the markers in Table P.1.

Experiment #5: Characterization of an NPN Bipolar Junction

I _B	Value	Calculated	Simulated	Measured
10µA	I _B			
	V _{CE}			
	I _C			
	V _{BE}			
	β			
	IB			
	V _{CE}			
30µA	lc			
	V _{BE}			
	β			
	I _B			
	V _{CE}			
50µA	I _c			
	V _{BE}			
	β			

Table P.1 - BJT Values

Part III – BJT Calculations

1. Use Equation P.1 to calculate IC and record the values in the calculated section of Table P.1.

- a. Calculate I_C for each value of V_{BE} collected in the simulations in Part II.
- b. Assume Is = 6.734fA and the typical value for $V_T = 26mV$ (thermal voltage).
- c. Calculate the value of the DC current gain ($\beta = Ic / I_B$) for each value of I_B in Table P.1.

$$I_C \cong I_S\left(e^{\frac{V_{BE}}{V_T}}\right)$$

Equation P.1 – Collector Current of NPN BJT in the Active Region of Operation (Assumes $V_A >> V_{CE}$ and n = 1)

Part IV – Specification Sheet Values

- 1. In the simulation above, we have swept V_{CE} from 0V to 10V and I_B from 10µA to 50µA. However, the 2N3904 BJT can handle a significantly higher set of values.
 - a. From the specification sheet for the 2N3904 BJT, gather the following specifications:

Parameter	Value
Maximum Collector-Emitter Voltage (V _{CEO})	
Maximum Emitter-Base Voltage (V _{EBO})	
Maximum Continuous Collector Current (Ic)	
Maximum Collector-Base Voltage (V _{CBO})	
Maximum DC Current Gain (β or h_{FE})	
Base-Emitter ON Voltage (V_{BE}) when V_{CE} =5V and I_{C} =10mA at room temperature	

Table P.2 - 2N3904 BJT Spec Sheet Values

Lab

Part I – Transistor Characterization Using a Test Circuit

In this part of the lab, you will generate only three I-V curves ($I_C vs. V_{CE}$) as you did in the prelab. I_B will be the parameter whose value will step from 10µA to 50µA in 20µA steps.

In the prelab, you generated an I-V curve for the 2N3904 transistor using the schematic in **Figure P.1**. You were able to generate base current I_B in the range of 0μ A to 50μ A. In the lab, the power supply can behave as a current source, but it **cannot** produce a current as small as 50μ A. To create the same family of I-V curves in the lab, we must use the circuit in **Figure 2.1**. The voltage source combined with the $100k\Omega$ resistor at the base will behave as the 0μ A to 50μ A current source from **Figure P.1**.

The data collected during this part of the lab is to be recorded under the *Measured* column of Table

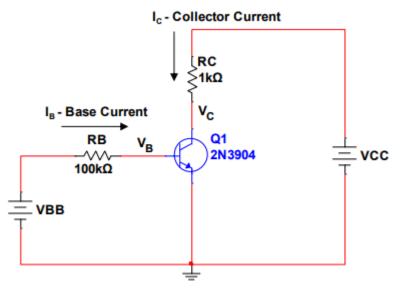
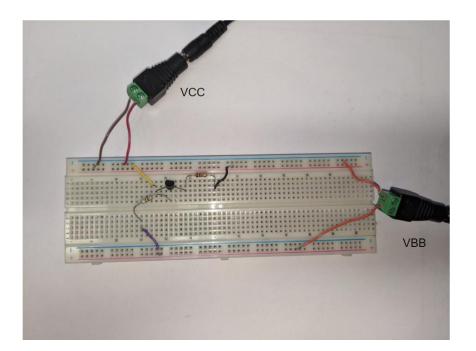



Figure 2.1 – BJT Test Circuit to Generate Family of I-V Curves

1. Measure the $I_B = 10\mu A$ curve.

- a. **Build** the circuit depicted in **Figure 2.1** using the 2N3904 BJT.
- b. Measure the exact resistances of R_B and R_C using the DMM and record these values.
- c. Use a DMM to measure the voltage at node VB in the circuit. This is VBE.
- d. Use a DMM to measure the voltage at node Vc in the circuit. This is VcE.
- e. Adjust V_{CC} until V_{CE} equals 2V.
- f. Adjust V_{BB} until V_{BE} equals the value found in the prelab when $I_B = 10\mu A$ and $V_{CE} = 2V$.
- g. **Readjust** V_{CC} until V_{CE} equals 0V.
- h. Record V_{CC} , V_{CE} , V_{BB} , and V_{BE} in Table P.1.
- i. **Calculate** the voltage across R_B to **calculate** and **record** the current I_B in **Table P.1**.
- j. Calculate the voltage across R_C to calculate and record the current I_C in Table P.1.
- k. Adjust V_{CE} from 0V to 2V in 0.2V increments, repeating steps h-j at each step.
- I. Adjust V_{CE} from 2V to 10V in 1V increments, repeating steps h-j at each step.
- m. **Calculate** β for each recorded value of I_C and IB.

Note: Remember, you can do voltages from -5 to 5 Volts using the AD2. If you need voltages higher than this, you will need to use the 3-24V power sources.

2. Measure the $I_B = 30\mu A$ curve.

- a. **Repeat** steps a-m above, but in step f, adjust V_{BB} until I_B = 30μ A. You will need to calculate the current I_B from the voltage across R_B.
- 3. Measure the $I_B = 50\mu A$ curve.
 - a. **Repeat** steps a-m above, but in step f, adjust V_{BB} until $I_B = 50\mu$ A. You will need to calculate the current I_B from the voltage across R_B .

SEAS

POST-LAB ANALYSIS

1. Plot a family of I-V curves for the calculated and measured data collected in Table P.1.

2. **Compare** the **Calculated**, **Simulated**, and **Measured** (DMM) results via graphs (overlaying them where possible) and percentage error in all cases.