THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 2110: Circuit Theory Laboratory

Experiment \#11:
Final Project Preparation Lab 1 - Active Filter Design

EQUIPMENT

Lab Equipment	Equipment Description
(1) DC Power Supply	Keysight E36311A Triple Output DC Power Supply
(1) Function Generator	Agilent 33522A Function/Arbitrary Waveform Generator
(1) Digital Multimeter (DMM)	Agilent 34460A (DMM)
(1) Digital Oscilloscope	Keysight DSOX1024G Digital Oscilloscope
(1) Breadboard	Prototype Breadboard
(1) BNC T-Connector	One input to two output BNC connector
(1) Test Leads	Banana to Alligator Lead Set
(2) Test Leads	BNC to Banana Lead Set
(1) BNC Cable	BNC to BNC Cable

Table 1 - Equipment List

Components

Type	Value	Symbol Name	Multisim Part	Description
Resistor	$---\Omega$	R	Basic/Resistor	Various Values
Capacitor	---F	C	Basic/Capacitor	Various Values
Op-Amp	LM741	LM741	Basic/Analog/OpAmp/741	---
Power Amp	LM386	LM386	---	Audio Amplifier
Speaker	6Ω	---	---	$18 W$ Speaker

Table 2 - Component List

Objectives

- Understand the difference between active and passive filters
- Design and build a band-pass filter using active components
- Understand the limitations of the LM741
- Understand what an LM386 is and why it is necessary
- Build and measure a band-pass filter using LM741s and an LM386

Note: At this point, the final project should be introduced by the GTA. Ideally, an introduction to the project will be given at the end of the last lab to prepare students for this prelab and lab. Students, please find the final project specifications document on the ECE 2110 lab website under the Projects section.

INTRODUCTION

This lab will introduce you to the concept of active filters and explain how they differ from passive filters and why they are necessary. In Lab 10, you were introduced to passive filters. Passive filters consist of only passive components (inductors, capacitors, resistors). Because passive components cannot provide average power to a circuit, you cannot make a filter with a gain greater than 1 using only passive components. In many situations, you may wish to create a filter with a gain greater than 1 . For this, you must incorporate an op-amp into the filter design.

Active $1^{\text {st }}$ Order Low-Pass Filter

Figure 1 - Inverting Amplifier

Figure 2 - Active 1st Order Low-Pass Filter

Figure 1 shows an inverting amplifier. From the lab on DC Operational Amplifiers, we know the gain of this amplifier is $\mathbf{V}_{\text {out }} / \mathbf{V}_{\text {in }}=-\mathbf{R}_{\mathrm{f}} / \mathbf{R}_{\text {in }}$. Instead of using just resistors, we can substitute impedances Z_{f} and $Z_{\text {in }}$, and the gain becomes $V_{\text {out }} / V_{\text {in }}=-Z_{f} / Z_{\text {in }}$.

Figure 2 shows the same amplifier, now with a capacitor inserted in the feedback path. $Z_{\text {in }}$ is still $R_{\text {in }}$, but $Z f$ is the impedance of the resistor and capacitor in parallel, so $\mathbf{Z}_{\mathbf{f}}=\mathbf{Z}_{\mathrm{Rf}} \boldsymbol{\|} \mathbf{Z}_{\mathrm{CL}}$: Substituting in the impedances as shown in Figure 2:

$$
Z_{f}=R_{f} I \frac{1}{j w C_{L}}=\frac{\frac{R_{f}}{j w C_{L}}}{R_{f}+\frac{1}{j w C_{L}}}=\frac{R_{f}}{1+j w R_{f} C_{L}}
$$

Typically, for filters, the transfer function of interest is the voltage gain, defined as $\mathbf{T}(\boldsymbol{\omega})=\mathbf{V}_{\text {out }} / \mathbf{V}_{\text {in }}$. Since the voltage gain of the amplifier in Figure $\mathbf{2}$ is $\mathbf{V}_{\text {out }} / V_{i n}=-Z_{i} I Z_{i n}$, the transfer function for the filter becomes:

$$
T(w)=\frac{V_{o u t}}{V_{i n}}=-\frac{Z_{f}}{Z_{\text {in }}}=-\frac{R_{f}}{R_{\text {in }}}\left(\frac{1}{1+j w R_{f} C_{L}}\right)
$$

What should be familiar is the expression in parentheses in the equation above, it is the transfer function for a low-pass filter. The expression outside of the brackets: $-\mathbf{R}_{\mathbf{f}} / \mathbf{R}_{\mathbf{i n}}$, means this low-pass filter has gain!

The cutoff frequency for this low-pass filter is:

$$
w_{e}=\frac{1}{R_{f} C_{L}}
$$

Note: To design this filter, one chooses the appropriate resistors: R_{f} and $R_{\text {in }}$ to set the gain, then determines C_{L} for the desired cutoff frequency (ω_{C}).

Active $1^{\text {st }}$ Order High-Pass Filter

Figure 3 - Inverting Amplifier

Figure 4 - Active $1^{\text {st }}$ Order High-Pass Filter

Figure 4 shows how we can make the inverting amplifier into a high-pass filter by rearranging the capacitor to be in series with the input resistor. The transfer function then becomes:

$$
T(w)=\frac{V_{o u t}}{V_{\text {in }}}=\frac{Z_{f}}{Z_{\text {in }}}=\frac{R_{f}}{R_{\text {in }}+\frac{1}{j w C_{H}}}
$$

When the frequency is low (e.g. $\omega \rightarrow 0$), the transfer function approaches 0 . As the frequency gets higher and higher (e.g $\omega \rightarrow \infty$), the transfer function becomes $-\mathbf{R}_{\mathbf{f}} / \mathbf{R}_{\mathbf{i n}}$. This is the behavior of a high-pass filter. The cutoff frequency for this filter can be derived as:

$$
w_{e}=\frac{1}{R_{f} C_{H}}
$$

Creating an Active Band-Pass Filter by Cascading Filters

When two filters are chained together this is called cascading. Passive filters can be cascaded together, as can active filters. As a simple example, we can cascade the low-pass and high-pass filters discussed above to create a band-pass filter as follows:

What you should notice in Figure 5 is the addition of a simple inverting amplifier shown as Stage 3. What is often done when cascading filters is to have the final stage provide all of the gain for the system. In this example, we set the gain of our active low-pass filter (Stage 1) to unity or 1 . The next stage, the high-pass filter (Stage 2) also has a unity gain. Then, in the final stage, the inverting amplifier will set the gain for the system.

When amplifiers are cascaded, the gain of each stage is multiplied together to determine the overall gain. To determine the transfer function for the system in Figure 5, we multiply each individual transfer function for each stage:

$$
T(w)=\frac{V_{\text {out }}}{V_{\text {in }}}=T_{1}(w) * T_{2}(w) * T_{3}(w)=-\frac{R_{f 1}}{R_{\text {in } 1}} \frac{1}{1+j w R_{f 1} C_{L}} *\left(\frac{R_{f 2}}{R_{\text {in2 }}+\frac{1}{j w C_{H}}}\right) * \frac{R_{f 3}}{R_{\text {in3 }}}
$$

We see the overall gain for the system is set by the final stage ($\mathrm{R}_{\mathrm{t} 3} / \mathrm{R}_{\mathrm{in} 3}$).

The low-pass section, Stage 1 , sets the upper cutoff frequency ($\boldsymbol{\omega}_{1}$). The high-pass section, Stage 2 , sets the lower cutoff frequency $\left(\boldsymbol{\omega}_{2}\right)$. The bandwidth of this band-pass filter is simply $\boldsymbol{\omega}_{2}-\boldsymbol{\omega}_{1}$.

$$
w_{2}=\frac{1}{R_{f_{1}} e_{L}} \quad w_{1}=\frac{1}{R_{f 2} e_{H}}
$$

Note: To design a band-pass filter using this configuration, first choose the desired gain and set $R_{f 3}$ and $R_{\text {in3 }}$. Then, choose $R_{f 2}$ and $R_{i n 2}$ to have unity gain. Similarly, $R_{f 1}$ and $R_{i n 1}$ are chosen setting the gain of the first stage to 1 as well. Lastly, the cutoff frequencies are chosen and the values of the capacitors: C_{L} and C_{H} are solved for using the cutoff frequency equations.

Prelab

Part I-Active Band-Pass Filter Design

Figure P. 1 - Active Band-Pass Filter with Gain Stage

1. Using the procedure discussed in the Introduction, design an active band-pass filter with a gain of -10 , a lower cut-off frequency of 150 Hz and an upper cutoff frequency of 5 kHz . Be sure to show all work and mention any relevant assumptions or design decisions.
Note: When choosing resistor values to set the gain for each stage, be certain to keep them very large in the high $\mathrm{k} \Omega$ range.

- $\omega_{1}=150 \mathrm{~Hz}$
- $\omega_{2}=5 \mathrm{kHz}$
- Gain =-10

2. Save this design as you will need to simulate it later in this prelab.

Part II - Active Low-Pass Filter Simulation

Figure P. 2 - Active $1^{\text {st }}$ Order Low-Pass Filter

1. Simulate the active low-pass filter section of the band-pass filter in Multisim using the LM741.

- DC Supply Voltage ($\mathrm{V}_{\mathrm{cc}+}$ and V_{cc}): $\mathbf{\pm 1 2 \mathrm { V }}$
- $\mathrm{V}_{\mathrm{in}}: 300 \mathrm{mV} \mathrm{V}_{\text {rms }}$ sine wave
- Load: $1 \mathrm{k} \Omega$

2. Run an AC Analysis from $\mathbf{1 0 H z}$ to $\mathbf{6 k H z}$. Measure $\mathrm{V}_{\text {out }}$ (in RMS voltage) across the $1 \mathrm{k} \Omega$ load at the following frequencies: $10 \mathrm{~Hz}, 150 \mathrm{~Hz}, 1 \mathrm{kHz}, 4 \mathrm{kHz}, 5 \mathrm{kHz}, 6 \mathrm{kHz}$
3. Using the peak output voltage of V out, calculate the peak power dissipated by the $1 \mathrm{k} \Omega$ load resistor at each frequency.
4. Calculate the current drawn by the $1 \mathrm{k} \Omega$ load resistor at the peak output power in each case.
5. Record these values in Table P.2.
6. Plot the magnitude and phase of $V_{\text {out }} / V_{\text {in }}$ (in dB) versus frequency from 10 Hz to 6 kHz . 7 . Determine the -3dB frequency from this plot.

Frequency	$V_{\text {in }}(r m s)$	Vout (rms)	Gain (Vout/Vin)	$P_{\text {out }}$ (peak)	Iout $^{\text {(peak) }}$	
10 Hz						
150 Hz						
1 kHz						
4 kHz						
5 kHz						
6 kHz						
Simulated	$-3 d B$ Freq.					

Table P. 2 - Low-Pass Filter Simulation Data

Part III - Active High-Pass Filter Simulation

Figure P. 3 - Active $1^{\text {3I }}$ Order High-Pass Filter

1. Simulate the active high-pass filter section of the band-pass filter in Multisim using the LM741.

- DC Supply Voltage ($\mathrm{V}_{\mathrm{cc}+}$ and V_{cc}): $\pm 12 \mathrm{~V}$
- $\mathrm{V}_{\text {in }}: 300 \mathrm{mV} \mathrm{V}_{\text {rms }}$ sine wave
- Load: $\mathbf{1 k \Omega}$

2. Run an AC Analysis from $\mathbf{1 0 H z}$ to $\mathbf{6 k H z}$. Measure $\mathrm{V}_{\text {out }}$ (in RMS voltage) across the $1 \mathrm{k} \Omega$ load at the following frequencies: $10 \mathrm{~Hz}, 150 \mathrm{~Hz}, 1 \mathrm{kHz}, 4 \mathrm{kHz}, 5 \mathrm{kHz}, 6 \mathrm{kHz}$
3. Using the peak output voltage of $\mathrm{V}_{\text {out, }}$, calculate the peak power dissipated by the $1 \mathrm{k} \Omega$ load resistor at each frequency.
4. Calculate the current drawn by the $1 \mathrm{k} \Omega$ load resistor at the peak output power in each case.
5. Record these values in Table P.3.
6. Plot the magnitude and phase of $V_{\text {out }} / V_{\text {in }}$ (in dB) versus frequency from 10 Hz to 6 kHz .7 . Determine the - 3 dB frequency from this plot.

Frequency	$V_{\text {in }}(r m s)$	$V_{\text {out }}(r m s)$	Gain (Vout $\left.V_{\text {in }}\right)$	$P_{\text {out }}(p e a k)$	lout $(p e a k)$	
10 Hz						
150 Hz						
1 kHz						
4 kHz						
5 kHz						
6 kHz						
	$-3 d B$ Freq.					
Simulated						

Table P. 3 - High-Pass Filter Simulation Data

Part IV - Active Band-Pass Filter Simulation

Figure P. 4 - Active Band-Pass Filter with Gain Stage

1. Simulate the cascaded active band-pass filter, including the inverter gain stage, in Multisim using the LM741.

- DC Supply Voltage ($\mathrm{V}_{\mathrm{cc}+}$ and $\mathrm{V}_{\mathrm{cc}-}$): $\mathbf{\pm 1 2 \mathrm { V }}$
- $V_{i n}: 300 \mathrm{mV}$ rms sine wave
- Load: 1k

2. Run an AC Analysis from $\mathbf{1 0 H z}$ to $\mathbf{6 k H z}$. Measure $V_{\text {out }}$ (in $R M S$ voltage) across the $1 \mathrm{k} \Omega$ load at the following frequencies: $10 \mathrm{~Hz}, 150 \mathrm{~Hz}, 1 \mathrm{kHz}, 4 \mathrm{kHz}, 5 \mathrm{kHz}, 6 \mathrm{kHz}$
3. Using the peak output voltage of $\mathrm{V}_{\text {out }}$, calculate the peak power dissipated by the $1 \mathrm{k} \Omega$ load resistor at each frequency.
4. Calculate the current drawn by the $1 \mathrm{k} \Omega$ load resistor at the peak output power in each case.
5. Record these values in Table P.4.
6. Plot the magnitude and phase of $V_{\text {out }} / V_{\text {in }}$ (in $d B$) versus frequency from 10 Hz to 6 kHz .
7. Determine both the lower and upper -3dB frequencies from this plot.

Frequency	Vin (rms)	Vout (rms)	Gain (Vout/Vin)	Pout (peak)	Iout (peak)
10 Hz					
150 Hz					
1 kHz					
4 kHz					
5 kHz					
6 kHz					
Simulated					

Table P. 4 - Band-Pass Filter Simulation Data

LAB

Part I-Active Low-Pass Filter

Figure 1.1 - Active $1^{\text {st }}$ Order Low-Pass Filter

1. Build the active low-pass filter section on a breadboard. Show the GTA your setup before applying power.

- DC Supply Voltage ($\mathrm{V}_{\mathrm{cc}+}$ and $\mathrm{V}_{\mathrm{cc}-}$): $\mathbf{\pm 1 2 \mathrm { V }}$
- $V_{i n}: 300 m V_{\text {rms }}$ sine wave
- Load: 1k

2. Measure $\mathrm{V}_{\text {out }}$ using the DMM (RMS voltage) across the $1 \mathrm{k} \Omega$ load at the following frequencies: $10 \mathrm{~Hz}, 150 \mathrm{~Hz}, 1 \mathrm{kHz}, 4 \mathrm{kHz}, 5 \mathrm{kHz}, 6 \mathrm{kHz}$
3. Using the peak output voltage of $\mathrm{V}_{\text {out, }}$, calculate the peak power dissipated by the $1 \mathrm{k} \Omega$ load resistor at each frequency.
4. Calculate the current drawn by the $1 \mathrm{k} \Omega$ load resistor at the peak output power in each case.
5. Record these values in Table 1.1.
6. Adjust the frequency of the function generator until you find the exact -3dB frequency of the filter, where $V_{\text {out }}=\frac{1}{\sqrt{2}} *\left(\max V_{\text {out }}\right)$.

Frequency	Vin (rms)		Vout (rms)		Gain ($V_{\text {out }} / V_{\text {in }}$)		Pout (peak)		Iout (peak)	
	Sim.	Meas.								
10Hz										
150Hz										
1kHz										
4kHz										
5kHz										
6kHz										
	-3dB	req.								
Simulated										
Measured										
Error										

Table 1.1 - Low-Pass Filter Output Characteristics with $1 \mathrm{k} \Omega$ Load

Part II - Active High-Pass Filter

Figure 2.1 - Active $1^{\text {th }}$ Order High-Pass Filter

1. Build the active high-pass filter section on a breadboard. Show the GTA your setup before applying power.

- DC Supply Voltage ($\mathrm{V}_{\mathrm{cc}+}$ and $\mathrm{V}_{\mathrm{cc}-}$): $\pm 12 \mathrm{~V}$
- $V_{\text {in }}: 300 \mathrm{~m} V_{\text {rms }}$ sine wave
- Load: $1 \mathrm{k} \Omega$

2. Measure $\mathrm{V}_{\text {out }}$ using the DMM (RMS voltage) across the $1 \mathrm{k} \Omega$ load at the following frequencies: $10 \mathrm{~Hz}, 150 \mathrm{~Hz}, 1 \mathrm{kHz}, 4 \mathrm{kHz}, 5 \mathrm{kHz}, 6 \mathrm{kHz}$
3. Using the peak output voltage of $\mathrm{V}_{\text {out }}$, calculate the peak power dissipated by the $1 \mathrm{k} \Omega$ load resistor at each frequency.
4. Calculate the current drawn by the $1 \mathrm{k} \Omega$ load resistor at the peak output power in each case.
5. Record these values in Table 2.1.
6. Adjust the frequency of the function generator until you find the exact -3dB frequency of the filter, where $V_{\text {out }}=\frac{1}{\sqrt{2}} *\left(\max V_{\text {out }}\right)$.

Frequency	$V_{\text {in }}(\mathrm{rms})$		$V_{\text {out }}(\mathrm{rms})$		Gain ($V_{\text {out }} / V_{\text {in }}$)		Pout (peak)		Iout (peak)	
	Sim.	Meas.								
10Hz										
150Hz										
1kHz										
4kHz										
5kHz										
6kHz										
	-3dB	req.								
Simulated										
Measured										
Error										

Table 2.1 - High-Pass Filter Output Characteristics with 1k Ω Load

Part III - Active Band-Pass Filter

Figure 3.1 - Active Band-Pass Filter with Gain Stage
7. Build the active low-pass filter section on a breadboard. Show the GTA your setup before applying power.

- DC Supply Voltage ($\mathrm{V}_{\mathrm{cc}+}$ and V_{cc}): $\pm 12 \mathrm{~V}$
- $V_{\text {in }}: 300 \mathrm{~m} V_{\text {rms }}$ sine wave
- Load: $1 \mathrm{k} \Omega$

8. Measure $\mathrm{V}_{\text {out }}$ using the DMM (RMS voltage) across the $1 \mathrm{k} \Omega$ load at the following frequencies: $10 \mathrm{~Hz}, 150 \mathrm{~Hz}, 1 \mathrm{kHz}, 4 \mathrm{kHz}, 5 \mathrm{kHz}, 6 \mathrm{kHz}$
9. Using the peak output voltage of $\mathrm{V}_{\text {out }}$, calculate the peak power dissipated by the $1 \mathrm{k} \Omega$ load resistor at each frequency.
10. Calculate the current drawn by the $1 \mathrm{k} \Omega$ load resistor at the peak output power in each case.
11. Record these values in Table 3.1.
12. Adjust the frequency of the function generator until you find the exact -3dB frequencies (upper and lower) of the filter, where $V_{\text {out }}=\frac{1}{\sqrt{2}} *\left(\max V_{\text {out }}\right)$.

Frequency	$V \mathrm{in}$ (rms)		Vout (rms)		Gain (Vout/Vin)		Pout (peak)		Iout (peak)	
	Sim.	Meas.								
10Hz										
150Hz										
1kHz										
4kHz										
5kHz										
6kHz										
	Lowe	-3dB	Upp	$-3 d B$						
Simulated										
Measured										
Error										

Table 3.1 - Band-Pass Filter Output Characteristics with 1k』 Load

Part IV - Active Band-Pass Filter with Small Load

1. For the band-pass filter you have simulated and measured, calculate the amount of current a 6Ω load would draw at the highest value of $\mathbf{V}_{\text {out }}$ you recorded in Table 3.1.
a. What is the value in mA? Include this in your lab write-up
b. Can the LM741 op-amp provide this much current to a $\mathbf{6 \Omega}$ load?
i. Download the LM741 specification sheet from the lab website. ii. Look for the electrical parameter: "Output Short Circuit Current"
iii. Is this value more or less than the amount of current a 6Ω load would draw?
c. Replace the $1 \mathrm{k} \Omega$ load in your Multisim simulation with a 6Ω load.
i. Run an AC Analysis from $\mathbf{1 0 H z}$ to $\mathbf{6 k H z}$. Measure $\mathrm{V}_{\text {out }}$ (in RMS voltage) across the 6Ω load at the following frequencies: $10 \mathrm{~Hz}, 150 \mathrm{~Hz}, 1 \mathrm{kHz}, 4 \mathrm{kHz}, 5 \mathrm{kHz}, 6 \mathrm{kHz}$
ii. What do you notice about your results?
2. From Step 1 you should realize that the LM741 cannot support a small load like 6Ω.
a. We need an amplifier for the $3^{\text {rd }}$ stage of our band-pass filter that can provide enough current to our 6Ω load.
b. For this, we will replace Stage 3 of our amplifier with a power amplifier called the LM386.
i. The LM386 is not an op-amp. It is a self-contained amplifier that can provide a great deal of current to small loads. ii. Download the LM386 specification sheet from the lab website.
3. On page 5 of the LM386 specification sheet a sample configuration is shown.
a. Replace the $3^{\text {rd }}$ stage of your amplifier with this sample configuration.
b. Instead of a 6Ω load, use the speaker provided in your kit.
4. Measure $\mathrm{V}_{\text {out }}$ using the DMM (RMS voltage) across the speaker at the following frequencies: 10 Hz , $150 \mathrm{~Hz}, 1 \mathrm{kHz}, 4 \mathrm{kHz}, 5 \mathrm{kHz}, 6 \mathrm{kHz}$
5. Using the peak output voltage of $V_{\text {out, }}$ calculate the peak power dissipated by the speaker at each frequency.
6. Calculate the current drawn by the speaker at the peak output power in each case.
7. Record these values in Table 4.1.
8. Adjust the frequency of the function generator until you find the exact -3dB frequencies (upper and lower) of the filter, where $V_{\text {out }}=\frac{1}{\sqrt{2}} *\left(\max V_{\text {out }}\right)$.

Frequency	$V_{\text {in }}(\mathrm{rms})$		$V_{\text {out }}(\mathrm{rms})$		Gain ($V_{\text {out }} / V_{\text {in }}$)		Pout (peak)		Iout (peak)	
	Sim.	Meas.								
10Hz										
150Hz										
1kHz										
4kHz										
5kHz										
6kHz										
	Low	-3dB	Upp	-3dB						
Simulated										
Measured										
Error										

Table 4.1 - Band-Pass Filter Output Characteristics with 6ת Load
\qquad

Post-Lab Analysis

Be certain to include:

1. Your calculations for how you designed the band-pass filter.
2. The Multisim schematic for the band-pass filter.
3. The Multisim output showing $\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}$ (in dB) versus frequency for the low-pass filter, high-pass filter, and finally the band-pass filter.

Answer the following questions and provide some discussion on the following:

1. Why was the LM741 incapable of driving a 6Ω load?
2. Why is the LM386 capable of driving the 6Ω load?
3. Why did we use the speaker instead of a 6Ω resistor in Part IV?

References

[1] Thomas, Roland E., Albert J. Rosa, and Gregory J. Toussaint. The Analysis and Design of Linear Circuits. $7^{\text {th }}$ ed. Hoboken, NJ: Wiley, 2012.

