THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 2110: Circuit Theory Laboratory

Experiment \#10:
Passive Filter Design

EQUIPMENT

Lab Equipment	Equipment Description
(1) Function Generator	Agilent 33522A Function/Arbitrary Waveform Generator
(1) Digital Multimeter (DMM)	Agilent 34460A (DMM)
(1) Digital Oscilloscope	Keysight DSOX1024G Digital Oscilloscope
(1) Breadboard	Prototype Breadboard
(1) BNC T-Connector	One input to two output BNC connector
(1) Test Leads	Banana to Alligator Lead Set
(2) Test Leads	BNC to Mini-Grabber Lead Set
(1) BNC Cable	BNC to BNC Cable

Table 1 - Equipment List

Components

Type	Value	Symbol Name	Multisim Part	Description
Resistor	$3.3 \mathrm{k} \Omega$	R	Basic/Resistor	---
Resistor	510Ω	R_{2}	Basic/Resistor	---
Capacitor	820 pF	C	Basic/Capacitor	Ceramic Disk, 821J
Inductor	4.7 mH	L	Basic/lnductor	---

Table 2 - Component List

Objectives

- Find the frequency response of a series RC and RL circuit
- Plot the magnitude and phase response of a series RC and RL circuit
- Design, build, and test a low-pass filter
- Design, build, and test a high-pass filter
- Find the frequency response of a series and parallel resonance circuit
- Plot the magnitude and phase response of a series and parallel resonance circuit • Design, build, and test a band-pass filter

INTRODUCTION

This lab will focus on understanding the behavior of common filters and how we can create filters with simple passive components such as capacitors, inductors, and resistors.

Filters

An electric filter modifies the frequency content of a signal. Figure 1 shows the four main types of filters: high-pass (HPF), low-pass (LPF), band-pass (BPF), and band-stop (notch). A low-pass filter allows low frequencies to pass to the load while attenuating high frequencies. A high-pass filter allows high frequencies to pass while attenuating low frequencies. A band-pass filter allows a range of frequencies to pass while attenuating frequencies outside of that range. A band-stop filter attenuates a range of frequencies while passing frequencies outside of that range.

In Figure 1, the x-axes represent frequency (ω) in radians per second. By convention, frequency is represented by the variable ω when its units are radians per second and f when its units are Hertz. The yaxes represent the gain of each filter. In this instance, gain is defined as the voltage across the load divided by the input voltage. As is shown in the figure, the gain of a filter is different at different frequencies.

Figure 1 - Gain Responses (Thomas et al., page 602)

Common Filter Terms

The range of frequencies that are attenuated is called the stopband. The range of frequencies that pass to the load is called the passband. The cutoff frequency (ω_{c} or f_{c}) is the frequency at the transition between the stopband and passband (band-pass and band-stop filters will have two cutoff frequencies). An ideal filter passes frequencies in the passband without modifying their magnitude (Gain $=1$) and completely attenuates frequencies in the stopband (Gain $=0$). However, ideal filters do not exist in practice. One convention is to define cutoff frequencies as the frequency at which the magnitude of the voltage at the load is decreased by 3 dB from its maximum value $\frac{V V m m a a x x}{}$, $\sqrt{C} 2^{2}$ alled the -3 dB frequency. There are other ways to define the cutoff frequency, so when reading or specifying ω_{c}, make sure that you understand which definition is being used. With respect to a filter, a decibel (dB) is defined as ten times the logarithm to base 10 of the ratio of the output power to the input power. When the input and output powers are delivered to an equal resistance, a decibel can be defined with respect to the voltage gain of the filter. This derivation is shown in Equation 1. Using this definition, it can be shown that a 3dB reduction in voltage is approximately equal to a reduction of $\frac{1}{\sqrt{2}}$ in voltage or a reduction of half the power.
\# of $\boldsymbol{d B}=10 \log _{10} \frac{\text { Pout }}{\text { Pin }}=10 \log _{10} \frac{\frac{V_{\text {out }}^{2}}{R}}{\frac{V_{\text {in }}^{2}}{R}}=10 \log _{10} \frac{\text { Vout }}{\text { Vin }} \frac{V \text { out }}{V \text { in }} 10 \log _{10} \frac{\text { Vout }}{V \text { Vin }}+10 \log _{10} \frac{\text { Vout }}{\text { Vin }}=\mathbf{2 0} \log _{10} \frac{\text { Vout }}{\text { Vin }}$
Equation 1 - Decibel Derivation (Thomas et al., page 603)
The center frequency (ω_{0} or f_{0}) is the frequency where the voltage at the load is at its maximum value. The bandwidth (B) of a filter is the difference between the two cutoff frequencies. The quality factor (Q) is the ratio of the center frequency to the bandwidth $\left(Q Q={ }^{\omega 0_{B B}}\right)$. The gain function of a filter is the ratio of the magnitude of the frequency response of the filter at the load to the magnitude of the frequency response of the source.
Note: For passive circuits, the gain must be less than one.
As an example, the magnitude and phase of the voltage at the load of a series RL circuit, given a source voltage of $1 \angle 0^{\circ} \mathrm{V}$, is shown in Figure P1. The red line illustrates the voltage across the inductor, and the blue line is the voltage across the resistor (load). The magnitude plot shows that the circuit has a cutoff frequency (-3 dB frequency) of approximately 30 kHz , a passband from 0 to 30 kHz , and a stopband from 30 kHz to Infinity.

Figure P1: Low-Pass Filter - magnitude (top), phase (bottom)

Prelab

Review the provided Excel spreadsheet (lab10_example.xlsx). It demonstrates a partial solution to Part I of the prelab. Using this spreadsheet as an example, produce similar spreadsheets for Parts II-IV.

Part I-Series RC Circuit

Figure P. 1 - Series RC Circuit

1. Compute the equivalent impedance $\mathbf{Z}_{T H}$ for the circuit in Figure P.1.
2. Establish the general equations for the phasor voltages $\mathrm{V}_{\mathbf{C}}$ and $\mathbf{V}_{\mathbf{R}}$ associated with C and R (leave in rectangular form).
3. Use Excel to calculate the amplitudes and phase differences of the phasor voltages ($\mathbf{V}_{\mathbf{c}}, \mathbf{V}_{\mathbf{R}}$) for frequencies from 1 kHz to 10 MHz . Use the following increments as shown in the sample Excel sheet: $1 \mathrm{kHz}, 2 \mathrm{kHz}, \ldots, 9 \mathrm{kHz}, 10 \mathrm{kHz}, 20 \mathrm{kHz}, \ldots, 90 \mathrm{kHz}, 100 \mathrm{kHz}, 200 \mathrm{kHz}, \ldots, 900 \mathrm{kHz}, 1 \mathrm{MHz}$, $2 \mathrm{MHz}, \ldots, 10 \mathrm{MHz}$. Verify that $\mathrm{V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {in }}$ for all frequencies using Excel.
Hint: Review the Excel help files for the commands COMPLEX, IMDIV, IMPRODUCT, IMREAL, IMAGINARY, IMABS, IMTAN2, and PI.

- $V_{\text {in }}=1 \angle 0^{\circ} \mathrm{V}$
- $C=820 \mathrm{pF}$
- $R=3.3 \mathrm{k} \Omega$

4. Plot a graph of amplitudes versus frequency in Excel (use a legend to identify the different curves). Find the -3 dB frequency for the R curve ($\mathrm{V}_{\text {out }}$).
5. Plot a graph of phase differences versus frequency in Excel (include a legend).

Part II - Series RL Circuit

Figure P. 2 - Series RL Circuit

1. Compute the equivalent impedance $\mathbf{Z}_{\mathbf{T H}}$ for the circuit in Figure P.1.
2. Establish the general equations for the phasor voltages V_{L} and $V_{\mathbf{R}}$ associated with L and R (leave in rectangular form).
3. Use Excel to calculate the amplitudes and phase differences of the phasor voltages ($\mathbf{V}_{\mathrm{L}}, \mathbf{V}_{\mathrm{R}}$) for frequencies from 1 kHz to 10 MHz . Use the following increments as shown in the sample Excel sheet: $1 \mathrm{kHz}, 2 \mathrm{kHz}, \ldots, 9 \mathrm{kHz}, 10 \mathrm{kHz}, 20 \mathrm{kHz}, \ldots, 90 \mathrm{kHz}, 100 \mathrm{kHz}, 200 \mathrm{kHz}, \ldots, 900 \mathrm{kHz}, 1 \mathrm{MHz}$, $2 \mathrm{MHz}, \ldots, 10 \mathrm{MHz}$. Verify that $\mathrm{V}_{\mathrm{L}}+\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {in }}$ for all frequencies using Excel.
Hint: Review the Excel help files for the commands COMPLEX, IMDIV, IMPRODUCT, IMREAL, IMAGINARY, IMABS, IMTAN2, and PI.

- $V_{\text {in }}=1 \angle 0^{\circ} \mathrm{V}$
- $\mathrm{L}=4.7 \mathrm{mH}$
- $R=3.3 \mathrm{k} \Omega$

4. Plot a graph of amplitudes versus frequency in Excel (use a legend to identify the different curves). Find the $-3 d B$ frequency for the R curve ($V_{\text {out }}$).
5. Plot a graph of phase differences versus frequency in Excel (include a legend).

Part III - Series Resonant Circuit

Figure P. 3 - Series Resonant Circuit

1. Compute the equivalent impedance $\mathbf{Z}_{\mathbf{T H}}$ for the circuit in Figure P.1.
2. Establish the general equations for the phasor voltages $\mathbf{V}_{\mathbf{L}}, \mathbf{V}_{\mathbf{C}}$, and $\mathbf{V}_{\mathbf{R}}$ associated with L, C, and R (leave in rectangular form).
3. Use Excel to calculate the amplitudes and phase differences of the phasor voltages ($\mathbf{V}_{\mathbf{L}}, \mathbf{V}_{\mathbf{c}}$, and $\mathbf{V}_{\mathbf{R}}$) for frequencies from 1 kHz to 10 MHz . Use the following increments as shown in the sample Excel sheet: $1 \mathrm{kHz}, 2 \mathrm{kHz}, \ldots, 9 \mathrm{kHz}, 10 \mathrm{kHz}, 20 \mathrm{kHz}, \ldots, 90 \mathrm{kHz}, 100 \mathrm{kHz}, 200 \mathrm{kHz}, \ldots$, $900 \mathrm{kHz}, 1 \mathrm{MHz}, 2 \mathrm{MHz}, \ldots, 10 \mathrm{MHz}$. Verify that $\mathrm{V}_{\mathrm{L}}+\mathrm{V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {in }}$ for all frequencies using Excel. Hint: Review the Excel help files for the commands COMPLEX, IMDIV, IMPRODUCT, IMREAL, IMAGINARY, IMABS, IMTAN2, and PI.

- $\mathrm{V}_{\text {in }}=1 \angle 0^{\circ} \mathrm{V}$
- $\mathrm{L}=4.7 \mathrm{mH}$
- $\mathrm{C}=820 \mathrm{pF}$
- $R=3.3 \mathrm{k} \Omega$

4. Plot a graph of amplitudes versus frequency in Excel (use a legend to identify the different curves). Find the -3dB frequency for the R curve ($\mathrm{V}_{\text {out }}$).
5. Plot a graph of phase differences versus frequency in Excel (include a legend).

Part IV - Parallel Resonant Circuit

Figure P. 4 - Parallel Resonant Circuit

1. Compute the equivalent impedance $\mathbf{Z}_{T H}$ for the circuit in Figure P.1.
2. Establish the general equations for the phasor voltages $\mathbf{V}_{\mathbf{L}}, \mathbf{V}_{\mathbf{c}}$, and $\mathbf{V}_{\mathbf{R}}$ associated with L, C, and R (leave in rectangular form).
3. Use Excel to calculate the amplitudes and phase differences of the phasor voltages ($\mathbf{V}_{\mathbf{L}}, \mathbf{V}_{\mathbf{c}}$, and $\mathbf{V}_{\mathbf{R}}$) for frequencies from 1 kHz to 10 MHz . Use the following increments as shown in the sample Excel sheet: $1 \mathrm{kHz}, 2 \mathrm{kHz}, \ldots, 9 \mathrm{kHz}, 10 \mathrm{kHz}, 20 \mathrm{kHz}, \ldots, 90 \mathrm{kHz}, 100 \mathrm{kHz}, 200 \mathrm{kHz}, \ldots$, $900 \mathrm{kHz}, 1 \mathrm{MHz}, 2 \mathrm{MHz}, \ldots, 10 \mathrm{MHz}$. Verify that (V_{L} or $\left.\mathrm{V}_{\mathrm{C}}\right)+\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {in }}$ for all frequencies using Excel. Hint: Review the Excel help files for the commands COMPLEX, IMDIV, IMPRODUCT, IMREAL, IMAGINARY, IMABS, IMTAN2, and PI.

- $\mathrm{V}_{\text {in }}=1 \angle 0^{\circ} \mathrm{V}$
- $\mathrm{L}=4.7 \mathrm{mH}$
- $C=820 \mathrm{pF} \cdot \mathrm{R}=510 \Omega$

4. Plot a graph of amplitudes versus frequency in Excel (use a legend to identify the different curves). Find the $-3 d B$ frequency for the R curve ($V_{\text {out }}$).
5. Plot a graph of phase differences versus frequency in Excel (include a legend).

LAB

Part I - Series RC Circuit Measurement

Figure 1.1 - Series RC Circuit

1. Build the circuit in Figure 1.1 on a breadboard using the following components:

- $V_{\text {in }}=1 \mathrm{~V}_{\mathrm{pk}}$
- $C=820 \mathrm{pF}$
- $R=3.3 \mathrm{k} \Omega$

2. Measure $\mathrm{V}_{\text {out }}$ (magnitude and phase) for different frequencies from 1 kHz to 10 MHz .
3. Plot magnitude versus frequency in Excel using your collected data. Find the -3 dB frequency.
4. Plot the phase difference versus frequency in Excel using your collected data.

Frequency	Magnitude	Phase
1 kHz		
10 kHz		
20 kHz		
30 kHz		
40 kHz		
50 kHz		
60 kHz		
70 kHz		
80 kHz		
90 kHz		
100 kHz		
300 kHz		
1 MHz		
5 MHz		
10 MHz		
Tabl		

Table 1.1 - Series RC Circuit Data

Part II - Series RL Circuit Measurement

Figure 2.1 - Series RL Circuit

1. Build the circuit in Figure 2.1 on a breadboard using the following components:

- $\mathrm{V}_{\mathrm{in}}=1 \mathrm{~V}_{\mathrm{pk}}$
- $\mathrm{L}=4.7 \mathrm{mH}$
- $R=3.3 \mathrm{k} \Omega$

2. Measure $\mathrm{V}_{\text {out }}$ (magnitude and phase) for different frequencies from 1 kHz to 10 MHz .
3. Plot magnitude versus frequency in Excel using your collected data. Find the -3dB frequency. 4. Plot the phase difference versus frequency in Excel using your collected data.

Frequency	Magnitude	Phase
1 kHz		
10 kHz		
20 kHz		
40 kHz		
60 kHz		
80 kHz		
100 kHz		
200 kHz		
300 kHz		
500 kHz		
600 kHz		
800 kHz		
1 MHz		
5 MHz		
10 MHz		
Table		

Table 2.1-Series RL Circuit Data

Part III - Series Resonant Circuit Measurement

Figure 3.1 - Series Resonant Circuit

1. Build the circuit in Figure 3.1 on a breadboard using the following components:

- $V_{\text {in }}=1 \mathrm{~V}_{\mathrm{pk}}$
- $\mathrm{L}=4.7 \mathrm{mH}$
- $\mathrm{C}=820 \mathrm{pF}$
- $R=3.3 \mathrm{k} \Omega$

2. Measure $\mathrm{V}_{\text {out }}$ (magnitude and phase) for different frequencies from 1 kHz to 10 MHz .
3. Plot magnitude versus frequency in Excel using your collected data. Find the -3dB frequency.
4. Plot the phase difference versus frequency in Excel using your collected data.
5. Find the cutoff frequencies ($\boldsymbol{\omega}_{\mathrm{C} 1}$ and $\boldsymbol{\omega}_{\mathrm{C} 2}$), Bandwidth (B), center frequency ($\boldsymbol{\omega}_{0}$) and Quality factor (\mathbf{Q}).

Frequency	Magnitude	Phase
$\mathbf{1 k H z}$		
5 kHz		
10 kHz		
$\mathbf{2 0 k H z}$		
40 kHz		
70 kHz		
80 kHz		
90 kHz		
$\mathbf{1 0 0 k H z}$		
$\mathbf{2 0 0 k H z}$		
400 kHz		
500 kHz		
$\mathbf{1 M H z}$		
5 MHz		
$\mathbf{1 0 M H z}$		
Table 3.1-Series Resonant Circuit Data		

Part IV - Series Parallel Circuit Measurement

Figure 4.1 - Parallel Resonant Circuit

1. Build the circuit in Figure 4.1 on a breadboard using the following components:

- $V_{\text {in }}=1 \mathrm{~V}_{\mathrm{pk}}$
- $\mathrm{L}=4.7 \mathrm{mH}$
- C=820pF
- $R=510 \Omega$

2. Measure $\mathrm{V}_{\text {out }}$ (magnitude and phase) for different frequencies from 1 kHz to 10 MHz .
3. Plot magnitude versus frequency in Excel using your collected data. Find the -3dB frequency.
4. Plot the phase difference versus frequency in Excel using your collected data.
5. Find the cutoff frequencies ($\boldsymbol{\omega}_{\mathrm{C} 1}$ and $\omega_{\mathrm{C} 2}$), Bandwidth (B), center frequency ($\boldsymbol{\omega}_{0}$) and Quality factor (\mathbf{Q}).

Frequency	Magnitude	Phase
1 kHz		
5 kHz		
10 kHz		
30 kHz		
40 kHz		
60 kHz		
80 kHz		
90 kHz		
100 kHz		
200 kHz		
100 kHz		
500 kHz		
1 MHz		
5 MHz		
10 MHz		

Table 4.1 - Series Parallel Circuit Data

Part V - Low-Pass Filter Design

1. Use Multisim to design and simulate a high-pass filter that meets the following specifications: Show all steps of your design.

- Applied Voltage: $1 \mathrm{~V}_{\text {rms }}$
- -3dB Frequency: 500 Hz
- Tolerances: 5%

2. Build, test, and demonstrate this circuit to the GTA.

Part VI - High-Pass Filter Design

1. Use Multisim to design and simulate a high-pass filter that meets the following specifications: Show all steps of your design.

- Applied Voltage: 1Vrms
- -3dB Frequency: 20kHz
- Tolerances: 5\%

2. Build, test, and demonstrate this circuit to the GTA.

Part VII - Band-Pass Filter Design

1. Use Multisim to design and simulate a band-pass filter that meets the following specifications: Show all steps of your design.

- Applied Voltage: 1 $\mathrm{V}_{\text {rms }}$
- Quality Factor: 1
- Bandwidth: 15 kHz
- Tolerances: 5\%

2. Build, test, and demonstrate this circuit to the GTA.

Post-Lab Analysis

1. Compare the calculated results to the measured results and explain any and all differences.
2. Describe the motivation behind defining the cutoff frequency at the point where the gain is -3 dB as opposed to -4 dB or -5 dB .
3. What type of filter would you want to implement if you observed high frequency noise in your voltage signal?
4. Describe a situation where a band-pass filter would be desired.
5. Does it make sense to define the bandwidth of a high-pass filter? Explain.
6. Describe the relationship between ω_{c} and $f c$. Be sure to include the mathematical relationship.
7. Hum noise is a common phenomenon in electronic devices especially hi-fi equipment. The noise comes from the line ($110 \mathrm{Vacrms} @ 60 \mathrm{~Hz}$). Using the information you have learned so far, how could you eliminate this noise?
8. Describe how the quality factor (Q) is used to distinguish between narrow-band and wide-band filters.

REFERENCES

[1] Thomas, Roland E., Albert J. Rosa, and Gregory J. Toussaint. The Analysis and Design of Linear Circuits. $7^{\text {th }}$ ed. Hoboken, NJ: Wiley, 2012.

