THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 2110: Circuit Theory Laboratory

Experiment \#9:
AC Thévenin Circuits, RCL Meter, AC Multisim

EQUIPMENT

Lab Equipment	Equipment Description
(1) Function Generator	Agilent 33522A Function/Arbitrary Waveform Generator
(1) Digital Multimeter (DMM)	Agilent 34460A (DMM)
(1) Digital Oscilloscope	Keysight DSOX1024G Digital Oscilloscope
(1) RCL Meter	Philips PM6304 Programmable Automatic RCL Meter
(1) Breadboard	Prototype Breadboard
(1) BNC T-Connector	One input to two output BNC connector
(1) Test Leads	Banana to Alligator Lead Set
(1) Test Leads	BNC to Alligator Lead Set
(1) BNC Cable	BNC to BNC Cable

Table 1 - Equipment List
Components

Type	Value	Symbol Name	Multisim Part	Description
Resistor	$3.3 \mathrm{k} \Omega$	Rp	Basic/Resistor	---
Resistor	$6.8 \mathrm{k} \Omega$	Rp	Basic/Resistor	---
Resistor	$15 \mathrm{k} \Omega$	Rp	Basic/Resistor	---
Resistor	$22 \mathrm{k} \Omega$	Rp	Basic/Resistor	---
Resistor	$33 \mathrm{k} \Omega$	Rp	Basic/Resistor	---
Resistor	$47 \mathrm{k} \Omega$	Rp	Basic/Resistor	---
Resistor	$68 \mathrm{k} \Omega$	Rp	Basic/Resistor	---
Resistor	$110 \mathrm{k} \Omega$	Rp	Basic/Resistor	---
Resistor	220k Ω	Rp	Basic/Resistor	---
Resistor	$470 \mathrm{k} \Omega$	Rp	Basic/Resistor	---
Resistor	(2) 270Ω	$\mathrm{R}_{1}, \mathrm{R}_{2}$	Basic/Resistor	---
Capacitor	820pF	C	Basic/Capacitor	Ceramic Disk, 821J
Capacitor	0.01 $\mu \mathrm{F}$	C_{1}	Basic/Capacitor	Ceramic Disk, 103K
Capacitor	1000pF	C_{2}	Basic/Capacitor	Ceramic Disk, 102M
Inductor	1 mH	L1	Basic/Inductor	----
Inductor	10 mH	L2	Basic/Inductor	---

Table 2 - Component List

Objectives

- To use the Oscilloscope to measure the amplitude, frequency and phase of an AC signal
- To use the RCL Meter to measure the impedance of resistors, capacitors, and inductors
- To create and explain a simple AC impedance model
- To determine the Thévenin equivalent of an $A C$ circuit by hand calculation
- To find the Thévenin equivalent of an AC circuit by Multisim Simulation
- To measure the AC Thévenin Voltage, Current, and Impedance

INTRODUCTION

To this point of the semester, we have focused primarily on DC circuits and their applications. In this lab and for the remainder of the semester, we will be looking more closely at AC circuits. Although we are working with a different type of circuit, the laws and theorems discussed in earlier labs that applied to DC circuits can also be applied to AC circuits. Ohm's Law, Kirchoff's Voltage and Current Laws, and Thévenin's and Norton's Theorems are all applicable with AC circuits as well. In this lab, we will examine general AC circuit concepts as well as the application of Thévenin's Theorem in AC circuits.

Phasors (Phase Vectors)

In physics and engineering, a phase vector, or phasor, is a complex number representing a sinusoidal function whose amplitude (A), frequency (ω), and phase (θ) are time-invariant. Phasors separate the dependencies on A, ω, and θ into three independent factors. This can be particularly useful because the frequency factor (which includes the time-dependence of the sinusoid) is often common to all the components of a linear combination of sinusoids. In those situations, phasors allow this common feature to be factored out, leaving just the A and θ features. The result is that trigonometry reduces to algebra, and linear differential equations become algebraic ones. The term phasor therefore often refers to just those two factors [1].

AC Thévenin Circuits

The general concepts of AC Thévenin's and Norton's Theorems are the same as DC Thévenin's and Norton's Theorems. The important difference here is that the signals $\mathrm{V}_{\mathrm{T}}, \mathrm{I}_{\mathrm{N}}, \mathrm{V}$ and I are phasors, Z_{TH} and Z_{L} are complex numbers representing the source and load impedances. Finding the Thévenin equivalent of a phasor circuit involves the same process as for DC resistance circuits, except that we must manipulate complex numbers.

Introduction to the RCL Meter

Figure 1 - Philips PM6304 RCL Meter
The Philips PM6304 Programmable Automatic RCL meter is used for precise measurements of resistance, capacitance, and inductance. The components to be measured can be connected to the instrument via a separate measurement pad or by plugging the component directly into the positive and negative, red and black, terminals directly on the device shown in Figure 2. The measurement results are shown directly on the display on the left. When measuring, we first connect the measurement pad to the connector on the front panel. Also, since the equipment is frequency-driven, we need to set the frequency with the buttons shown in Figure 3.

Figure 2 - RCL Meter Input Terminals

Figure 3 - RCL Meter Frequency Controls

Using Multisim to Find the AC Voltage and Phase Difference

This section will explain how to perform an AC Analysis on a simple AC circuit. These general steps can be used with any AC circuit. The following circuit shown in Figure 4 will be used as the example here.

Figure 4 - AC Circuit

1. Build the circuit in Multisim:

Start with your desired circuit, like the one in Figure 4 above. The voltage source's part name in Multisim is AC_Voltage. \mathbf{V}_{pk} is the amplitude of the signal. When defining the values of your AC voltage source, it is extremely important that you not only set V_{pk} but also the AC analysis magnitude, as shown below in Figure 5.
Note: Multisim treats the AC analysis magnitude and simulation voltage separately, so they must both be changed each time you are setting up a circuit.

Fig re 5 - AC_Voltage Source Parameters

Figure 6 - Net Properties

2. Name voltage nodes (nets):

Once your circuit is constructed, it is also good practice to name the nets or nodes in your circuit, especially those that you will be measuring later on. For instance, you will often be looking at the output voltage, and naming this net will make it easier to choose the signal we want later on. To actually name the net, you simply double click on the wire in Multisim, and the window in Figure 6 will appear. Type in the desired net name and apply your changes. Now, when you simulate the circuit, the voltage signal will have a specific name such as V (out) instead of something arbitrary like $\mathrm{V}(1)$.
3. Set up the AC Analysis:

The next step is to prepare the simulation settings for the AC Analysis. To do this, navigate to the AC Analysis, Simulate » Analyses » Analysis, and the window in Figure 7 will appear. The AC Analysis will perform a frequency sweep to show the behavior of your circuit over a range of frequencies.
Note: Remember that the impedance of capacitors and inductors is dependent on frequency. Changing the frequency of your voltage source will obviously have a significant impact on any AC circuit containing these components.
Frequency Parameters: The exact range will be determined by the start and stop frequencies specified under the Frequency Parameters tab. In this example, the start frequency has been set to $\mathbf{1 0 H z}$ and the stop frequency is set to $\mathbf{1 0 k H z}$. The points per decade determines the number of sample points in each decade, and it has been set to 500 for this example. The higher this number is, the smoother and more accurate your simulation will be.
Output Settings: Under the Output tab, you will select the signals that you want to be displayed on your output graph. In this case, we will just be looking at the output voltage, which as you can see is conveniently named V (out) because we previously named the net. We select the desired signals from what is available in the left column and click Add, to add the signals to the analysis column.

Figure 7 - AC Analysis Frequency Parameters

Figure 8 - AC Analysis Output Settings

4. Run the simulation:

The next step will be to run the simulation. To do this, simply click the Simulate button in the AC Analysis window. The following figure showing magnitude and phase will appear.

Figure 9 - Magnitude and Phase vs. Frequency

5. Measure the values from the simulation:

To easily get exact values from the simulation graph, we can use the cursors provided in Multisim. Add the cursors to the graph by going to Cursor » Show Cursors or by clicking the Show Cursors icon in the toolbar. This will add two individual cursors to the graph as well as a window showing you the values of the signal wherever the cursors are placed. You can also move the cursor to a specific location by right clicking on it and selecting to Set X Value. In the example below, Cursor 1 has been left at the origin showing at $\mathbf{1 0 H z}$, and the output voltage across R_{p} is $\mathbf{1 2 1 . 0 4 1 4 m V}$. Cursor 2 shows that at $\mathbf{1 0 0 H z}$ the output is $\mathbf{1 . 1 7 6 8 V}$. The same can similarly be done for the Phase graph by simply clicking on it to make it the active graph, then adding the cursors again.

Figure 10 - Use of Cursors in AC Analysis

Using Multisim to Find $A C V_{\text {тн }}$, Isc, and $Z_{\text {тн }}$

For the following circuit, we will need to find V_{TH}, $\mathrm{Isc}_{\mathrm{sc}}$ and Z_{TH}.

1. Find V_{TH} :

To find $V_{T H}$, disconnect any load resistance between nodes A and B so we are only looking at the circuit to be analyzed. At this point, we realize that the Thévenin Voltage will be equivalent to the voltage between A and B. Since no current flows through L_{2} or $\mathrm{C}_{2}, \mathrm{~V}_{T H}$ is the voltage drop across the combination of $\mathrm{C}_{1}, \mathrm{~L}_{1}$, and R_{2} in the middle of the circuit. In Multisim, we can easily measure the open-circuit voltage by performing another AC Analysis. In this example, the frequency has been swept between 50.39 kHz to $\mathbf{6 0 k H z}$ with 500 points per decade.

Figure 11 - Circuit for Thévenin Analysis

Figure 12 - AC $\mathbf{V}_{\text {TH }}$ Magnitude and Phase Measurement
From these graphs, $\mathrm{V}_{\text {тн }}$ at 50.39 kHz is found to be $\mathbf{5 . 0 0}<\mathbf{- 0 . 1 1 8}{ }^{\circ} \mathrm{V}$.
Note: The x-axis of the graphs has been adjusted to directly match our desired frequency range of 50.39 kHz to 60 kHz , giving a more detailed view of the specified range. This can be accomplished by right clicking the axis and changing the range within Axis Properties.

2. Find $\mathrm{Isc}_{\mathrm{sc}}$:

To find Isc, disconnect any load resistance between nodes A and B, then short the load terminals with a wire as shown in Figure 13. The Norton Current or Isc will be equivalent to the current flowing through the short. In Multisim, we can easily measure the short-circuit current by rerunning our AC Analysis with the shorted circuit. The frequency sweep parameters remain unchanged from 50.39 kHz to 60 kHz .

Figure 13 - Shorted Terminals A and B for Isc Measurement

Figure 14 - AC $I_{s c}$ Magnitude and Phase Measurement
From these graphs, Isc at 50.39 kHz is found to be $\mathbf{1 8 . 5 1 2 2} \angle \mathbf{1 7 8 . 3 8 ^ { \circ }} \mathrm{mA}$.
3. Find \mathbf{Z}_{TH} :

Finally, we want to find the Thévenin impedance $Z_{\text {th. }}$. In Multisim, we have two separate methods available to find $\mathrm{Z}_{\text {тн }}$. The first method is to simply use Ohm's law and divide the two phasors: V/I. Since Ohm's Law holds for AC circuits, we know that the following must be true as well.

$$
\mathrm{ZTH}=\frac{V T H}{I S C}
$$

Equation 1 - Thévenin Impedance
Using this equation, we can perform the following calculation to find $Z_{\text {TH }}$ from the simulated data for $V_{\text {тн }}$ and Isc:

$$
\begin{gathered}
Z T H=\frac{V T H}{I S C}=\frac{5.00 \angle-0.1180994^{\circ} \mathrm{V}}{18.5122 \angle 178.3803^{\circ} \mathrm{mA}}=\frac{4.999-0.0103 j}{-0.0185+0.00052 j} \\
Z T H=269.999+7.0777 j=270.092 \angle 1.502^{\circ} \Omega \\
Z T H=269.999 \Omega+j w(22.355 u H)
\end{gathered}
$$

The alternative method for finding the equivalent impedance of a circuit is to use the built-in impedance meter in Multisim. This device can be located in Multisim in the following location: Simulate » Instruments » LabVIEW ${ }^{\text {TM }}$ Instruments » Impedance Meter. Similar to when measuring the equivalent resistance of a circuit, we must remember to short any voltage sources and open any current sources.
Note: The built-in impedance meter has an equivalent resistance of -50Ω and must be compensated for to obtain the proper impedance for the circuit. To compensate, we simply add a 50Ω resistor in series with the impedance meter as shown below in Figure 15.

Figure 15 - Measuring Equivalent Impedance

Figure 16 - Impedance Meter Results at $\mathbf{5 0 . 3 9 k H z}$

Prelab

Part I-AC Circuit Analysis

Figure P. 1 - AC Analysis Circuit
Derive a general equation for the magnitude and phase of the voltage of RP, VRP, in terms

1. of Vs, C, and ω. Assume the voltage source $\mathrm{Vs}=\mathbf{A} \angle \mathbf{0}^{\circ}$. Vs is assumed to have a zero phase $\varphi=0$ because it is the reference voltage. A is the amplitude of Vs .
2. Label this equation: Equation P. 1 - Equation for Finding Magnitude and Phase of \mathbf{V}_{RP}
3. Substitute the following resistors in for R_{P} and find the corresponding magnitude and phase of the voltage across each Rp value given:
a. Use $C=820 \mathrm{pF}, \mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}_{\mathrm{pk}} @ 10 \mathrm{kHz}$.
b. $R_{P}=3.3 \mathrm{k} \Omega, 6.8 \mathrm{k} \Omega, 15 \mathrm{k} \Omega, 22 \mathrm{k} \Omega, 33 \mathrm{k} \Omega, 47 \mathrm{k} \Omega, 68 \mathrm{k} \Omega, 110 \mathrm{k} \Omega, 220 \mathrm{k} \Omega$, and $470 \mathrm{k} \Omega$.
4. Repeat Step 3 using Multisim to simulate the magnitude and phase difference of V_{RP}.
5. Record all of your data below in Table P.1.

R_{P}	Magnitude of $V_{R P}$				Phase of $V_{R P}$	
	Calculated	Simulated	Percent Error	Calculated	Simulated	Percent Error
$3.3 \mathrm{k} \Omega$						
$6.8 \mathrm{k} \Omega$						
$15 \mathrm{k} \Omega$						
$22 \mathrm{k} \Omega$						
$33 \mathrm{k} \Omega$						
$47 \mathrm{k} \Omega$						
$68 \mathrm{k} \Omega$						
$110 \mathrm{k} \Omega$						
$220 \mathrm{k} \Omega$						
$470 \mathrm{k} \Omega$						

Part II - AC Thévenin Circuit Analysis

Figure P. 2 - AC Analysis Circuit

1. Derive general equations to find the Thévenin Voltage, $\mathbf{V}_{\mathbf{T H}}$, Thévenin Impedance, $\mathbf{Z}_{\mathbf{T H}}$, and Short Circuit Current, Isc, with respect to terminals A and B in Figure P.2.
Note: Leave the general equations in terms of the component symbol names.
2. Label the three equations:
a. Equation P.2.1 - Equation for Finding Thévenin Voltage V_{TH}
b. Equation P.2.2 - Equation for Finding Thévenin Impedance \mathbf{Z}_{TH}
c. Equation P.2.3-Equation for Finding Short Circuit Current Isc
3. Use the values for $R_{1}, R_{2}, C_{1}, C_{2}, L_{1}$, and L_{2} from the component list in Table $\mathbf{2}$ and your equations to calculate $\mathbf{V}_{\mathbf{T H}}, \mathbf{Z}_{\mathrm{TH}}$, and I_{sc}.
a. Assume $\mathbf{V}_{\mathbf{s}}$ is defined by $\mathbf{V}_{\mathrm{pk}}=5 \mathrm{~V} @ 20 \mathrm{kHz}$.
4. Draw the Thévenin Equivalent circuit for Figure P.2.
a. Label it as Figure P.2a - Thévenin Equivalent of Figure P. 2
5. Simulate the circuit in Multisim to verify your answers. Keep this circuit file so you can use it again later during lab.
6. Calculate the Percent Error between your calculated and simulated results.
a. Record all of your data in Table P. 2 below.

	$V_{T H}$	Isc	$\mathbf{Z}_{T H}$
Calculated			
Simulated			
Percent Error			
Table P.2 - Thévenin Analysis Data			

LAB

Part I-AC Voltage and Phase Measurement

Figure 1.1-AC Analysis Circuit

1. Build the circuit in Figure 1.1 on a breadboard.
2. Configure the function generator to the following specifications:

- Waveform: Sine
- Frequency: 10 kHz
- Amplitude: $5.0 \mathrm{~V}_{\mathrm{pp}}$
- Offset :0V
- Phase: 0°

3. Connect the BNC T-connector to the output of the function generator.
4. Connect a BNC to BNC cable from the BNC T-connector to CH 1 of the digital oscilloscope.
5. Connect a BNC to mini-grabber test lead from the open end of the BNC T-connector and connect the mini-grabber ends as V_{s} of the circuit in Figure 1.1.
6. Use another BNC to mini-grabber test lead to measure the voltage across R_{p} on CH 2 .
7. Set the oscilloscope to display both channels simultaneously.
8. Start with $\mathrm{R}_{\mathrm{P}}=3.3 \mathrm{k} \Omega$ in the circuit.
9. Measure the magnitude of CH 2 (it is the amplitude of R_{P}) and measure the phase difference between the signals on CH 1 and CH 2 .
a. Record your data in Table 1.1.
10. Repeat Step 9 for $R_{P}=6.8 \mathrm{k} \Omega, 15 \mathrm{k} \Omega, \mathbf{2 2 k} \Omega, 33 \mathrm{k} \Omega, 47 \mathrm{k} \Omega, 68 \mathrm{k} \Omega, 110 \mathrm{k} \Omega, \mathbf{2 2 0 k} \Omega$, and $\mathbf{4 7 0 k} \Omega$.
11. Calculate the percent error between your calculated and measured results and record below.

| R_{P} | Magnitude of $V_{R P}$ | | | | Phase of $V_{R P}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Calculated | Simulated | Measured | Error | Calculated | Simulated | Measured | Error |
| $3.3 \mathrm{k} \Omega$ | | | | | | | | |
| $6.8 \mathrm{k} \Omega$ | | | | | | | | |
| $15 \mathrm{k} \Omega$ | | | | | | | | |
| $22 \mathrm{k} \Omega$ | | | | | | | | |
| $33 \mathrm{k} \Omega$ | | | | | | | | |
| $47 \mathrm{k} \Omega$ | | | | | | | | |
| $68 \mathrm{k} \Omega$ | | | | | | | | |
| $110 \mathrm{k} \Omega$ | | | | | | | | |
| $220 \mathrm{k} \Omega$ | | | | | | | | |
| $470 \mathrm{k} \Omega$ | | | | | | | | |

Table 1.1 - Measured Magnitude and Phase Data

Part II - AC Thévenin Analysis with Measured Values

Figure 2.1 - AC Thévenin Analysis Circuit

1. The GTA will give you a short demonstration on how to use the Philips PM6304 RCL Meter.
2. Use the RCL meter to obtain measured values of $R_{1}, R_{2}, C_{1}, C_{2}, L_{1}$, and L_{2}.
a. Record the measured values in Table 2.1.

Note: You must sign out the RCL meter measurement pad from Room 304.
3. Substitute the measured values of your components into the equations you derived in the prelab to recalculate $\mathbf{V}_{\mathbf{T H}}$, $\mathbf{I s c}^{\text {s }}$, and $\mathbf{Z}_{\text {TH }}$.
a. Record your results in Table 2.2.
4. Update your Multisim simulation, replacing the nominal component values with the actual measured values.
a. Find $\mathbf{V}_{\mathbf{T H}}, \mathbf{I}_{\mathbf{S c}}$, and \mathbf{Z}_{TH} of your resimulated circuit and record your results in Table 2.2.
5. Build the circuit in Figure 2.1 on a breadboard.
6. Measure the Thévenin voltage $\mathrm{V}_{\text {TH }}$ (Voltage across terminal A and B with $R\llcorner$ removed).
7. Measure $I_{s c}$ by shorting points A and B.
8. Measure $\mathbf{Z}_{\text {TH }}$ (Thévenin impedance) using the RCL meter.
a. Disconnect the source from your circuit and short the nodes where it used to be
b. Attach the RCL meter between points A and B . Measure the Thévenin impedance.

Note: Be sure to properly set the frequency of the RCL meter before measuring $\mathbf{Z}_{\text {тн }}$.
9. Compare the measured data to the results in Part II by calculating the percent error.

	R_{1}	R_{2}	C_{1}	C_{2}	L_{1}	$\boldsymbol{L}_{\mathbf{2}}$
Nominal						
Measured						
Percent Error						

	Table 2.1 -Measured Component Values		
	$V_{T H}$	Isc	$Z_{T H}$
Calculated			
Simulated			
Percent Error			
Measured			
Percent Error			

Table 2.2 - Thévenin Analysis Data with Measured Values

Post-Lab Analysis

1. Why do the measured values have to be used for R, L and C in the Thévenin analysis?
2. Determine the accuracy of your measurement data in comparison to your calculated data. What are the percentages of error? Analyze the source(s) of the errors.
3. Why can an Oscilloscope not measure voltage directly across a device?

References

[1] "Phasor," Wikipedia: The Free Encyclopedia, http://en.wikipedia.org/wiki/Phasor.

