THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2110: CIRCUIT THEORY LABORATORY

Experiment #8: Operational Amplifiers and Applications

EQUIPMENT

Lab Equipment	Equipment Description
(1) DC Power Supply	Keysight E36311A Triple Output DC Power Supply
(1) Digital Multimeter (DMM)	Agilent 34460A (DMM)
(1) Breadboard	Prototype Breadboard
(3) Test Leads	Banana to Alligator Lead Set

Table 1 – Equipment List

COMPONENTS

Туре	Value	Symbol Name	Multisim Part	Description
Resistor	Ω	R	Basic/Resistor	
Op-Amp	LM741	LM741	Basic/Analog/OpAmp/741	
		Tabla	2 Component List	

Table 2 – Component List

OBJECTIVES

- Verify Ideal Model Op-Amp Characteristics
- Design, build, and test a DC Inverting Amplifier
- Design, build, and test a DC Non-Inverting Amplifier
- Design, build, and test a DC Summing Amplifier
- Design, build, and test a DC Difference Amplifier
- Design, build, and test a Buffer (Current Amplifier)
- Design, build, and test a Comparator

INTRODUCTION

Operational Amplifiers or "**Op-Amps**" are important building blocks for a wide range of electronic circuits. They are among the most widely used electronic devices today with usage in a vast array of consumer, industrial, and scientific devices. The term 'operational' is used because they can perform all the basic arithmetic operations (addition – summing, subtraction – difference, multiplication, and division). In this lab, we will examine the characteristics of an ideal Op-Amp, build fundamental DC Operational Amplifier Feedback Circuits and see the effects of the Op-Amps on the output of those circuits.

General Operational Amplifier Physical Details

The circuit symbol for an Op-Amp is shown on the right in **Figure 1** where:

- **VP**: Non-Inverting Input
- VN: Inverting Input
- Vout: Output Voltage
- Vcc+: Positive Power Supply Vcc-: Negative Power Supply

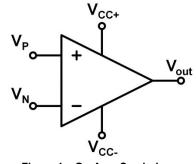


Figure 1 – Op-Amp Symbol

LM741 Operational Amplifier

For this lab, you will use the **LM741 Op-Amp**, which is included in your ECE 2110 toolkit. LM741 series are general purpose Op-Amps intended for a wide range of applications and provide superior performance in general feedback circuits. A picture of the LM741 and its internal connection diagram are shown in **Figure 2** and **Figure 3**, respectively.

Figure 2 – Picture of the LM741 Op-Amp

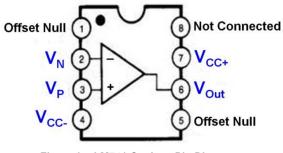
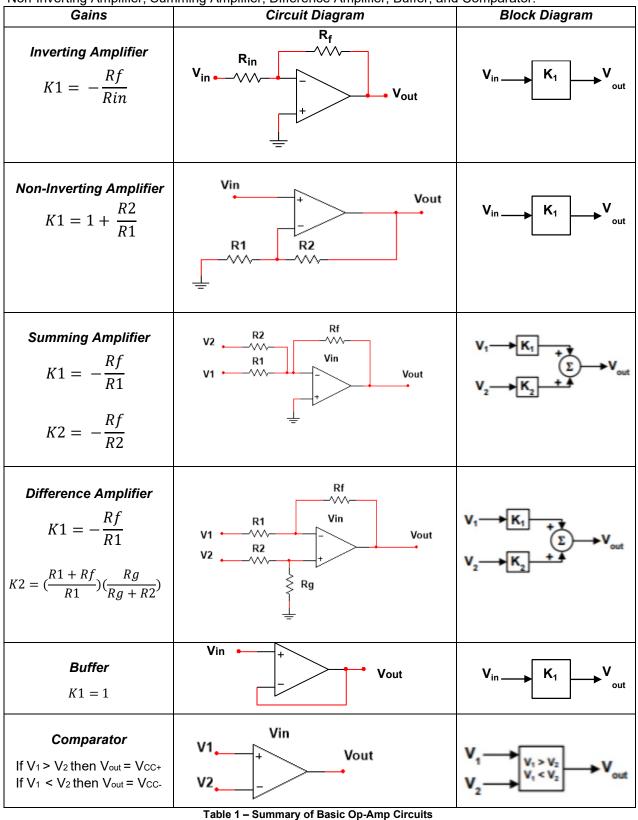
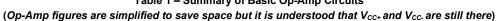


Figure 3 – LM741 Op-Amp Pin Diagram (The pins used in this lab are shaded in blue)


If you examine your LM741 Op-Amp, you will find a notch/dot in one of the corners. The notch/dot is located right next to **Pin 1**, thus it is used as a marking to identify the orientation of the Op-Amp. There are a total of eight pins within the LM741.



Basic Operational Amplifier Circuits

Table 1 shows several fundamental feedback Op-Amp circuits including the DC Inverting Amplifier, DCNon-Inverting Amplifier, Summing Amplifier, Difference Amplifier, Buffer, and Comparator.

Operational Amplifier Multisim Tips

Op-Amp Circuits can be simulated using Multisim. Once you have created a new design and have access to the schematic page, you can click on the "Place Analog" icon located near the upper left corner of the window. Once the component window pops up, select the OPAMP family, then type in and search for "741." Although there are several types of LM741 available in the Multisim Part Database, we will use the simple 741 model. This is the actual part included in your ECE 2110 parts kit. **Table 2** shows Multisim Part Information for the LM741 Op-Amp.

Component Name	Multisim Part Name	Instructions	Symbol
LM741 Operational Amplifier	Group: Analog Family: OPAMP Component: 741	 Click "Place Analog" Click on OPAMP Family Search for 741 Select and use the 741 	3 LM741 4

Table 2 – Multisim Part Information

The pin definition of the LM741 in Multisim is identical to the pin definition given in **Figure 3**. Op-Amp Circuits can be constructed by connecting components to the different pins. **Figure 4** shows the final Multisim schematic for a Non-Inverting Amplifier with $V_{in} = 200 \text{mV}$ and K = 2. Keep in mind that for V_{CC-}, the negative terminal of the power supply goes into pin 4. For V_{CC+}, the positive terminal of the power supply goes into pin 7.

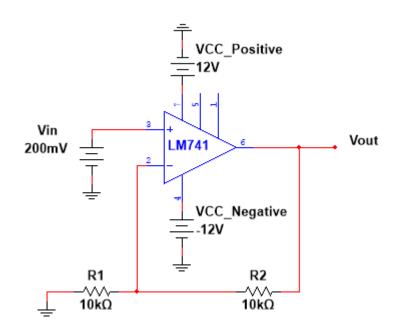


Figure 4 – Non-Inverting Amplifier with V_{in} = 200mV and K = 2

Multisim DC Simulation

The output voltage of an Op-Amp Circuit using only DC input voltages can be simulated quickly and easily. Once your circuit is complete, click the green arrow to run the simulation. Once the simulation is running, click on the Voltage probe button (1) and place a probe at Vout, or any other location on the circuit where you would like to make a measurement. Initially, the probe will show much more information than is currently necessary. Double-click the probe information to bring up the window shown in Figure 6. Notice that under the Show column, almost every property starts with a Yes. Deselect all properties by clicking the checkbox at the top of the Show column, then proceed to select the desired properties. In this case, we will only need the top voltage property V. We can also change the **Precision** to show **six** significant figures.

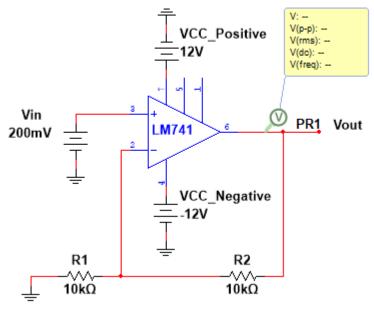
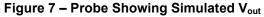




Figure 6 – Probe Properties Window

PRELAB

Part I – Inverting Amplifier

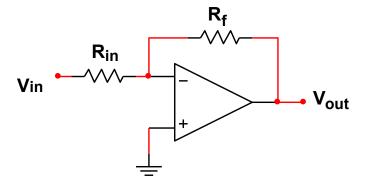


Figure P.1 – Inverting Amplifier

- 1. Using **Table 1** and **Figure P.1**, **design** an **DC Inverting Amplifier** that has the following specifications:
 - V_{CC+} = +12V
 - V_{cc}.= -12V
 - V_{in} = 200mV
 - Closed Loop Voltage Gain (K) = -10
 - Assume $R_{in} = 10k\Omega$ (see the textbook to better understand this choice)
- 2. Show all general equations and design steps.
- 3. Simulate your design in Multisim as described in the Introduction.

Part II – Non-Inverting Amplifier

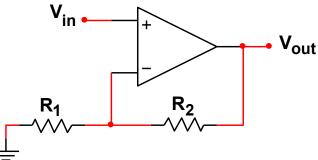


Figure P.2 – Non-Inverting Amplifier

- 1. Using **Table 1** and **Figure P.2**, **design** a **DC Non-Inverting Amplifier** that has the following specifications:
 - V_{CC+} = +12V
 - V_{cc}.= -12V
 - V_{in} = 200mV
 - Closed Loop Voltage Gain (K) = 10
 - Assume $R_1 = 10k\Omega$
- 2. Show *all* general equations and design steps.
- 3. Simulate your design in Multisim as described in the Introduction.

Part III – Summing Amplifier

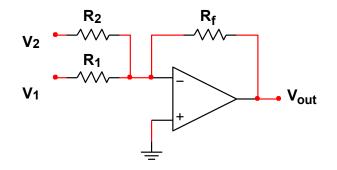


Figure P.3 – Summing Amplifier

- 1. Using **Table 1** and **Figure P.3**, **design** a **DC Summing Amplifier** that has the following specifications:
 - V_{cc+} = +12V
 - V_{cc}.= -12V
 - V₁ = 500mV
 - V₂ = 500mV
 - Closed Loop Voltage Gain (K) = K₁ = K₂ = -2
 - Assume R_f = 10kΩ
- 2. Show all general equations and design steps.
- 3. Simulate your design in Multisim as described in the Introduction.

Part IV – Difference Amplifier

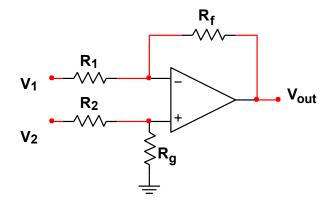
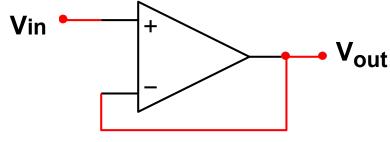



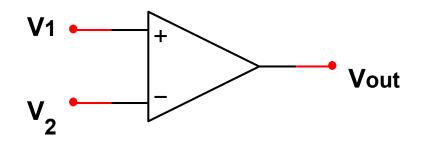
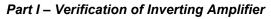
Figure P.4 – Difference Amplifier

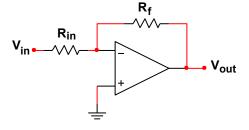
- 1. Using **Table 1** and **Figure P.4**, **design** a **DC Difference Amplifier** that has the following specifications:
 - V_{CC+} = +12V
 - V_{cc}.= -12V
 - V₁ = 400mV
 - V₂ = 900mV
 - Closed Loop Voltage Gain (K) = K₁ = K₂ = 2
 - Assume $R_1 = R_2 = 10k\Omega$
- 2. Show all general equations and design steps.
- 3. Simulate your design in Multisim as described in the Introduction.

Part V – Buffer

- 1. Using Table 1 and Figure P.5, design a Buffer that has the following specifications:
 - V_{cc+} = +12V
 - V_{cc}.= -12V
 - V_{in} = 500mV
 - Closed Loop Voltage Gain (K) = 1
- 2. Show all general equations and design steps.
- 3. Simulate your design in Multisim as described in the Introduction.

Part VI – Comparator


Figure P.6 – Buffer

- 1. Using Table 1 and Figure P.6, design a Comparator that has the following specifications:
 - V_{cc+} = +12V
 - V_{cc}.= -12V
 - V₁ = 1V
 - V₂ = 500mV
 - If V₁ > V₂, then V_{out} = 12V
 - If $V_1 < V_2$, then $V_{out} = -12V$
- 2. Show all general equations and design steps.
- 3. Simulate your design in Multisim as described in the Introduction.

Lab



Figure 1.1 – Inverting Amplifier

Figure 1.2 – Op-Amp Positioning on Breadboard

1. Build the Inverting Amplifier according to your prelab design and Figure 1.1.

Note: The Op-Amp must be positioned as shown in Figure 1.2 so that the pins do not short.

- 2. Set the KEYSIGHT Power Supply +25V terminals to 12V and the -25V terminals to -12V.
 - a. Ensure the output is OFF before attaching the power supply to the LM741.
 - b. Connect V_{CC+} (pin 7) to the + 12V terminal on the power supply.
 - c. Connect Vcc- (pin 4) to the 12V terminal on the power supply.
- 3. Set the KEYSIGHT Power Supply 6V terminals to 200mV.
 - a. **Ensure** the output is OFF before attaching the power supply to the LM741.
 - b. **Connect** the negative terminal to the common green ground terminal on the KEYSIGHT Power Supply, tying all ground nodes together.
 - c. **Connect** the positive terminal to \mathbf{R}_{in} , which is then connected to V_N (pin 2).
 - d. Turn on the power supply once the circuit is fully connected.
- Measure V_P, V_N, and V_{out} of the Op-Amp using the DMM. Verify that the voltage gain (K) is -10.
 a. Record all of your data in Table 1.1.
- 5. Change the original 200mV input to 2V. What is Vout?
 - a. **Record** your answer as V_{out2}. **Discuss** any limitations you find in the analysis section of your lab report.
- 6. **Change** the input back to 200mV and **substitute** the feedback resistor R_f on the inverting amplifier with a resistor of large value.
 - a. **Measure** the output and confirm that the gain corresponds to the nominal gain given by -R_i/R_{in}.
 - b. Progressively **increase** the gain and measure the output. Is there a limit where the output **does not change** regardless of the gain?
- 7. Replace the DC input voltage with a 400mV_{pp} 10kHz sine wave using the function generator.
 a. Measure V_{out} using the oscilloscope. Does the signal invert?

	Calculated	Simulated	Percent Error	Measured	Percent Error
VP					
VN					
Vin					
Vout					
К					
Vout2					
		Table 1 1	– Inverting Amplifier Dat	а	

. Save a screenshot from the oscilloscope showing both Vin and Vout.

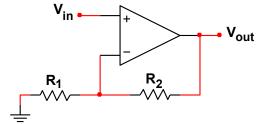


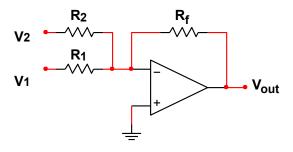
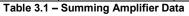
Figure 2.1 – Non-Inverting Amplifier

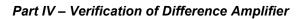
- 1. Build the Non-Inverting Amplifier according to your prelab design and Figure 2.1.
- 2. Connect the power supplies similar to the connection done in Part I.
- Measure V_P, V_N, and V_{out} of the Op-Amp using the DMM. Verify that the voltage gain (K) is 10.
 a. Record all of your data in Table 2.1.

	Calculated	Simulated	Percent Error	Measured	Percent Error
VP					
VN					
Vin					
Vout					
K					

Table 2.1 – Non-Inverting Amplifier Data

Part III – Verification of Summing Amplifier


Figure 3.1 – Summing Amplifier

- 1. Build the Summing Amplifier according to your prelab design and Figure 3.1.
- 2. Connect the power supplies similar to the connection done in Part I.
- 3. **Measure V**_P, **V**_N, and **V**_{out} of the Op-Amp using the **DMM**. **Verify** that the voltage gain (K) is -2 and $V_{out} = -2(V_1 + V_2)$.

a. Record all of your data in Table 3.	.1.
--	-----

	Calculated	Simulated	Percent Error	Measured	Percent Error
VP					
VN					
Vin					
Vout					
K					

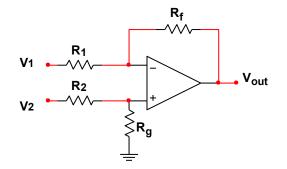


Figure 4.1 – Difference Amplifier

- 1. Build the Summing Amplifier according to your prelab design and Figure 4.1.
- 2. Connect the power supplies similar to the connection done in Part I.
- 3. Measure V_P , V_N , and V_{out} of the Op-Amp using the DMM. Verify that the voltage gain (K) is 2 and $V_{out} = 2(V_2 V_1)$.

	Calculated	Simulated	Percent Error	Measured	Percent Error
VP					
VN					
V 1					
V 2					
Vout					
Κ					

a. Record all of your data in Table 4.1.

Table 4.1 – Difference Amplifier Data

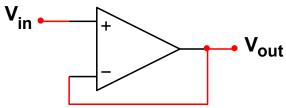
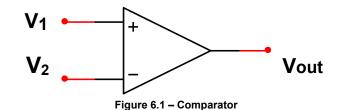


Figure 5.1 – Buffer (Current Amplifier)


- 1. Build the Buffer (Current Amplifier) according to your prelab design and Figure 5.1.
- 2. Connect the power supplies similar to the connection done in Part I.
- Measure V_P, V_N, and V_{out} of the Op-Amp using the DMM. Verify that the voltage gain (K) is 1.
 a. Record all of your data in Table 5.1.

	Calculated	Simulated	Percent Error	Measured	Percent Error
VP					
VN					
Vin					
Vout					
K					

Table 5.1 – Buffer (Current Amplifier) Data

Part VI – Verification of the Op-Amp Comparator

- 1. Build the Comparator according to your prelab design and Figure 6.1.
- 2. Connect the power supplies similar to the connection done in Part I.
- 3. **Measure V**_P, **V**_N, and **V**_{out} of the Op-Amp using the **DMM**. **Verify** that the comparator follows the behavior specified in the prelab.

a. Record all of your data in Table 6.1.

	Calculated	Simulated	Percent Error	Measured	Percent Error
Vcc+					
Vcc-					
V 1					
V 2					
Vout					
K					

Table 6.1 – Comparator Data

POST-LAB ANALYSIS

Compare and contrast the calculated and simulated results from your prelab to the DC measurements made from the experiments.

- 1. Explain the reasons for any differences between prelab design and measurements.
- 2. Explain how each mathematical operation can be performed using the circuits you've built in lab.
- 3. Give one example where a comparator circuit can be used in a practical application.
- 4. Give one example where a current amplifier circuit can be used in a practical application.
- 5. Also, explain why the output reaches a limit and saturates regardless of the gain.

REFERENCES

- [1] "Operational Amplifier," *Wikipedia: The Free Encyclopedia*, <u>http://en.wikipedia.org/wiki/Operational_amplifier</u>.
- [2] "LM741 Operational Amplifier," *Texas Instruments*, <u>http://www.ti.com/lit/ds/symlink/lm741.pdf</u>.