THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

School of Engineering and Applied Science Department of Electrical and Computer Engineering
 ECE 2110: Circuit Theory Laboratory

Experiment \#4:
Voltage Division, Circuit Reduction, Ladders, and Bridges

EQUIPMENT

Lab Equipment	Equipment Description
(1) DC Power Supply	Keysight E36311A Triple Output DC Power Supply
(2) Digital Multimeters (DMM)	Agilent 34460A (DMM)
(1) Breadboard	Prototype Breadboard
(2) Test Leads	Banana to Alligator Lead Set

Table 1 - Equipment List

Components

Type	Value	Symbol Name	Multisim Part	Description
Resistor	470Ω	R_{1}	Basic/Resistor	---
Resistor	560Ω	R_{2}	Basic/Resistor	---
Resistor	680Ω	R_{3}	Basic/Resistor	---
Resistor	750Ω	R_{4}	Basic/Resistor	---
Resistor	820Ω	R_{5}	Basic/Resistor	---
Resistor	910Ω	R_{6}	Basic/Resistor	---
Potentiometer	$10 \mathrm{k} \Omega$	R_{7}	Basic/Resistor	---
LED Bar	Green	LEDs	LED/Bar_LED_Green_Ten	Bar of 10 Green LEDs

ObJECTIVES

- To calculate and measure the total resistance in a series/parallel circuit
- To calculate and measure the total current in a series/parallel circuit for a given applied voltage
- To calculate the expected total power dissipated in a series/parallel circuit from nominal and measured values
- To calculate and measure the voltage drop across and the current through all components of a series/parallel circuit
- To calculate the power dissipated by each component of a series/parallel circuit from measured data
- Design, build and test a voltage ladder
- Use a Wheatstone Bridge circuit as a detector of unknown resistances

INTRODUCTION

Voltage Division

The voltage divider circuit is one of the most important and fundamental circuits that you will encounter in Circuit Theory. There are countless applications for voltage dividers, and you will find that throughout the semester, many calculations become simpler if you see the circuit as a basic voltage divider. A voltage divider is a linear circuit whose output voltage is some fraction of its input voltage. In other words, a voltage divider allows us to turn a large voltage into a smaller one. Voltage division refers to the splitting of a voltage among the components of the voltage divider.

Figure 1 - Voltage Divider

$$
V_{\text {out }}=\frac{R 2}{R 1+R 2} * \operatorname{Vin}
$$

Equation 1 - Voltage Divider Equation

Potentiometer

A potentiometer is a passive device that acts as a variable resistor or voltage divider. Potentiometers have three terminals and some type of rotary component that can be turned clockwise and counterclockwise to adjust the resistance. The resistance between the outer two terminals is constant and always equal to the nominal value of the potentiometer. The middle terminal is connected to the wiper shown in Figure 4 that can be adjusted to change the resistance relationship between the two halves of the device. Figure 2 shows the schematic symbol for a potentiometer, including the third middle terminal. Think of the potentiometer in Figure 4 as two resistors connected in series with each other, R_{1} between terminals A and W, R_{2} between W and B, similar to the voltage divider of Figure 1. When the center dial is turned counterclockwise until it stops, R_{1} would be 0Ω and R_{2} would equal to the nominal value of the potentiometer. As the dial is turned clockwise, R_{1} increases and R_{2} decreases.

Figure 2 - Potentiometer Symbol

Figure 3 - Potentiometer

Figure 4 - Potentiometer Diagram

Voltage Ladder

A voltage ladder is a simple electrical circuit comprised of multiple resistors in series used to create multiple voltage points between OV and the source voltage. Similar to a voltage divider, the source voltage is split across the resistors as determined by the ratio of the individual resistor to the entire equivalent resistance.

Figure 5 - Voltage Ladder

Wheatstone Bridge

A Wheatstone Bridge is an electrical bridge circuit used to determine and unknown resistance. The Wheatstone Bridge circuit consists of four resistances, three of which must be known and one that is unknown. By balancing the two legs of the bridge circuit and deriving the resistive relationship, the unknown resistance can be quickly determined. In Figure 6, $R x$ is the unknown resistance we are trying to find, R_{3} is a variable resistor such as a potentiometer that we can adjust, and R_{1} and R_{2} are known resistances.

Figure 6 - Wheatstone Bridge
\qquad

Prelab

Part I-Simplifying a Parallel Circuit

Figure P. 1 - Parallel Circuit

1. Simplify the circuit in Figure P. 1 in order to find the voltage across, current through, and power dissipated by each resistor.
a. Find the equivalent resistance $\mathbf{R}_{E Q}$ from the perspective of the voltage source V_{s} in Figure P.1. Leave your answer in terms of R_{1}, R_{2}, R_{3}, and R_{4}. Show all work.
b. Calculate the actual equivalent resistance $\mathbf{R}_{E Q}$ using the resistor values given in Table 2.
c. Calculate the total current drawn by \mathbf{R}_{EQ} and the total power dissipated by \mathbf{R}_{EQ} assuming $\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}$.
d. Calculate the voltage drop across each resistor, the current through each resistor, and the power dissipated by each resistor.
e. Record all of your results in Table P.1.
2. Simulate the circuit in Figure P. 1 in Multisim.
a. Find the voltage drop across each resistor, the current through each resistor, and the power dissipated by each resistor.
b. Record all values in Table P.1.
3. Calculate the percent error between your calculated and simulated results.
a. Record the error in Table P.1.

Electrical Quantity		Resistor				
		$R_{\text {EQ }}$	R1	R_{2}	R3	R4
Voltage (V)	Calculated					
	Simulated					
	Percent Error					
Current(mA)	Calculated					
	Simulated					
	Percent Error					
Power (mW)	Calculated					
	Simulated					
	Percent Error					

Table P. 1 - Prelab Data Table 1

Part II - Simplifying a Series Circuit

Figure P. 2 - Series Circuit

1. Simplify the circuit in Figure $\mathbf{P .} \mathbf{2}$ in order to find the voltage across, current through, and power dissipated by each resistor.
a. Find the equivalent resistance $R_{E Q}$ from the perspective of the voltage source V_{s} in Figure P.2. Leave your answer in terms of $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$, and R_{4}. Show all work.
b. Calculate the actual equivalent resistance \mathbf{R}_{EQ} using the resistor values given in Table 2.
c. Calculate the total current drawn by R_{EQ} and the total power dissipated by R_{EQ} assuming Vs $=5 \mathrm{~V}$.
d. Calculate the voltage drop across each resistor, the current through each resistor, and the power dissipated by each resistor.
e. Record all of your results in Table P.2.
2. Simulate the circuit in Figure P. 2 in Multisim.
a. Find the voltage drop across each resistor, the current through each resistor, and the power dissipated by each resistor.
b. Record all values in Table P.2.
3. Calculate the percent error between your calculated and simulated results.
a. Record the error in Table P.2.

Electrical Quantity		Resistor				
		Req	R1	R2	R3	$R 4$
Voltage (V)	Calculated					
	Simulated					
	Percent Error					
$\begin{aligned} & \text { Current } \\ & \text { (mA) } \end{aligned}$	Calculated					
	Simulated					
	Percent Error					
Power (mW)	Calculated					
	Simulated					
	Percent Error					

Table P. 2 - Prelab Data Table 2

Part III - Simplifying a Series-Parallel Circuit

Figure P. 3 - Series-Parallel Circuit

1. Simplify the circuit in Figure P. 3 in order to find the voltage across, current through, and power dissipated by each resistor.
a. Find the equivalent resistance $\mathbf{R}_{E Q}$ from the perspective of the voltage source V_{s} in Figure P.3. Leave your answer in terms of R_{1}, R_{2}, R_{3}, and R_{4}. Show all work.
b. Calculate the actual equivalent resistance $\mathbf{R}_{E Q}$ using the resistor values given in Table 2.
c. Calculate the total current drawn by $R_{E Q}$ and the total power dissipated by $R_{E Q}$ assuming $\mathrm{Vs}=5 \mathrm{~V}$.
d. Calculate the voltage drop across each resistor, the current through each resistor, and the power dissipated by each resistor.
e. Record all of your results in Table P.3.
2. Simulate the circuit in Figure P. 3 in Multisim.
a. Find the voltage drop across each resistor, the current through each resistor, and the power dissipated by each resistor.
b. Record all values in Table P.3.
3. Calculate the percent error between your calculated and simulated results.
a. Record the error in Table P.3.

Electrical Quantity		Resistor						
		$R_{\text {EQ }}$	R1	R_{2}	R3	R4	R_{5}	R6
Voltage (V)	Calculated							
	Simulated							
	Percent Error							
$\begin{gathered} \text { Current } \\ \text { (mA) } \end{gathered}$	Calculated							
	Simulated							
	Percent Error							
Power (mW)	Calculated							
	Simulated							
	Percent Error							

Part IV - Wheatstone Bridge

The circuit below in Figure P. 4 is a Wheatstone Bridge. As discussed in the Introduction to this lab, the purpose of the Wheatstone Bridge is to use three known resistors (R_{1}, R_{2}, and R_{3}) to find an unknown resistance $R x$. We need to generate an algebraic expression for resistor $R x$ in terms of the known resistors. Use the following steps to solve the bridge circuit for Rx:

Figure P. 4 - Wheatstone Bridge Circuit

1. Solve for V_{A} in terms of R_{1}, R_{2}, and V_{s}. (Hint: V_{A} is just the voltage across R_{2})
2. Solve for V_{B} in terms of $\mathrm{R}_{3}, \mathrm{Rx}_{\mathrm{x}}$, and V_{s}. (Hint: V_{B} is just the voltage across R_{X}) Note: The bridge is said to be "balanced" when $V_{A}=V_{B}$.
3. Solve for \mathbf{R}_{X} by setting your equations for V_{A} and V_{B} equal to each other.

Note: V_{s} should drop out of the equation if you have done everything correctly

LAB

Part I - Parallel Circuit Measurements

Figure 1.1 - Parallel Circuit

1. Build the circuit in Figure $\mathbf{1 . 1}$ on a breadboard. Before connecting the power supply to the circuit, use the DMM to measure the equivalent resistance R_{EQ} of the circuit.
2. Connect the power supply $\left(\mathbf{V}_{\mathbf{s}}=\mathbf{5 V}\right)$ to the circuit.
3. Measure the voltage across each resistor and the current through each resistor with the DMM. Note: Remember that it is impossible to measure the current across a resistor. You must use the DMM differently when measuring current. Ask your GTA if you do not remember how to do this.
4. Measure the total current supplied by the power supply. To do this, break the circuit between the positive lead from the power supply and the rest of the circuit, insert the DMM in current mode, and record the reading.
5. Calculate the power dissipated by each resistor using the measured voltage and current.
6. Record all data in the Measured sections of Table 1.1.
7. Compute the percent error between your calculated and measured results and record it below.

Electrical Quantity		Resistor				
		Req	R_{1}	R_{2}	R_{3}	R4
Voltage (V)	Calculated					
	Simulated					
	Measured					
Current (mA)	Calculated					
	Simulated					
	Measured					
Power (mW)	Calculated					
	Simulated					
	Measured					
Percent Error (\%)	Voltage					
	Current					
	Power					

Table 1.1 - Parallel Circuit Data

Part II - Series Circuit Measurements

Figure 2.1 - Series Circuit

1. Build the circuit in Figure 2.1. Before connecting the power supply to the circuit, use the DMM to measure the equivalent resistance R_{EQ} of the circuit.
2. Connect the power supply $\left(\mathbf{V}_{\mathbf{s}}=\mathbf{5 V}\right)$ to the circuit.
3. Measure the voltage across each resistor and the current through each resistor with the DMM.
4. Measure the total current supplied by the power supply.
5. Calculate the power dissipated by each resistor using the measured voltage and current.
6. Record all data in the Measured sections of Table 2.1.
7. Compute the percent error between your calculated and measured results and record it below.

Electrical Quantity	Resistor					
	REQ	R_{1}	R_{2}	R_{3}	R_{4}	
Voltage (V)	Calculated					
	Simulated					
	Measured					
Current (mA)	Calculated		Simulated			
	Calculated	Simulated				
	Measured					
Percent Error (\%)	Voltage	Current				
	Power					

Table 2.1 - Series Circuit Data

Part III - Series-Parallel Circuit Measurements

Figure 3.1 - Series-Parallel Circuit

1. Build the circuit in Figure 3.1. Before connecting the power supply to the circuit, use the DMM to measure the equivalent resistance $\mathbf{R E Q}_{\mathrm{EQ}}$ of the circuit.
2. Connect the power supply $\left(\mathbf{V}_{\mathbf{S}}=\mathbf{5 V}\right)$ to the circuit.
3. Measure the voltage across each resistor and the current through each resistor with the DMM.
4. Measure the total current supplied by the power supply.
5. Calculate the power dissipated by each resistor using the measured voltage and current.
6. Record all data in the Measured sections of Table 3.1.
7. Compute the percent error between your calculated and measured results and record it below.

Electrical Quantity		Resistor						
		Req	R1	R_{2}	R_{3}	R4	R5	R6
Voltage (V)	Calculated							
	Simulated							
	Measured							
Current (mA)	Calculated							
	Simulated							
	Measured							
Power (mW)	Calculated							
	Simulated							
	Measured							
Percent Error (\%)	Voltage							
	Current							
	Power							

Table 3.1 - Series-Parallel Circuit Data

Part IV - Design, Build, and Test a Voltage Ladder

In this part of the lab, you are asked to design a voltage ladder using the concept of Voltage Division.

Design Specifications:

- $\mathbf{P}_{\text {total }}: \leq 86 \mathrm{~mW}$
- \mathbf{V}_{s} : $5 \mathrm{~V} \pm 5 \%$
- $\mathrm{V}_{\mathrm{AB}}: 1.724 \mathrm{~V} \pm 5 \%$
- $\mathbf{V}_{\mathrm{BC}}: 0.345 \mathrm{~V} \pm 5 \%$
- $V_{C D}: 1.724 \mathrm{~V} \pm 5 \%$
- $V_{D E}: 1.207 \mathrm{~V} \pm 5 \%$

Figure 4.1 - Voltage Ladder

1. Using the circuit in Figure 4.1, find the appropriate values for R_{1}, R_{2}, R_{3}, and R_{4} to build a voltage ladder that meets the Design Specifications. (Hint: A good first step would be to examine the relationship between Vs, $P_{\text {total, }}$ and total current.)

Note: R_{1}, R_{2}, R_{3}, and R_{4} are for you to calculate. Do not use the values from Table 2 that were used in earlier parts of this lab.
2. After designing the voltage ladder, build it on a breadboard.
3. Measure the voltage drop across each resistor and compare it to the value in the specifications.
a. Record your results in Table 4.1.
4. Connect the circuit to your green LED bar from points B, C, and D. Wire from nodes B, C, and D to the positive side (anode) of three individual LEDs in the bar (your GTA will assist you if necessary).
5. Connect the negative side (cathode) of the LEDs directly to ground. Vary the supply voltage from 0V to 6V (feel free to experiment).
Question: What happens to the intensity of the LEDs as you vary the supply voltage? Do you notice a pattern?

Quantity	Specified	Measured	Percent Error (\%)
$P_{\text {total }}$			
V_{s}			
$V_{A B}$			
$V_{B C}$			
$V_{C D}$			
$V_{D E}$			

Table 4.1 - Voltage Ladder Data

Part V-Wheatstone Bridge

In this part of the lab, the GTA will give you an unknown resistor Rx. You must build and use a Wheatstone Bridge in order to determine the value of the unknown resistance.

Figure 5.1 - Wheatstone Bridge

1. Build the Wheatstone Bridge in Figure 5.1. You will need the following components:

- $\mathrm{R}_{1}=2 \mathrm{k} \Omega, \mathrm{R}_{3}=5 \mathrm{k} \Omega, \mathrm{R}_{2}=\mathbf{1 0 k} \Omega$ potentiometer
- DMM to measure voltage drop between nodes A and $B\left(V_{A B}\right)$

2. After you have completed the setup, connect a $\mathbf{5 V}$ supply for Vs .
3. Record the initial (unbalanced) value of V_{AB} in Table 5.1.
4. Adjust the potentiometer until the bridge is balanced. (Hint: Refer to Part IV of the Prelab to recall what balanced means for a Wheatstone bridge circuit.)
a. Record V_{AB} once the bridge is balanced in Table 5.1.
5. Remove the potentiometer from the circuit without adjusting it, and use the DMM to measure its actual resistance.
a. Record the value of R_{2} in Table 5.1.
6. Measure the exact resistances of R_{1} and R_{3} with the $D M M$.
7. Use the measured values for $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3} and the expression you derived in Part IV of the Prelab to calculate the resistance of R_{x}. Show your calculations.
8. Remove $\mathbf{R}_{\mathbf{x}}$ from the circuit and use the DMM to measure its exact resistance.
9. Compare your calculated and measured results for the resistance of R_{x} by calculating the percent error.

Quantity	Measured	Calculated	Percent Error (\%)
R_{x}			
$V_{A B}$ (unbalanced)			
$V_{A B}$ (balanced)			
R_{1}		n'a	
R_{2}			
R_{3}			

Table 5.1 - Wheatstone Bridge Data

Post-LAB AnAlysis

For part 1 of the lab: Compare and contrast the calculated results from your prelab, to your Multisim simulations and finally to the DC measurements made in the lab itself. Show the percentage error in each case. Explain the differences between the calculated, measured, and simulated results then include a discussion on the reason for the discrepancies. Also explain the concept of tolerance in all the devices and equipment and how to compensate for the problem of inaccurate measurements.

For part 2 of the lab: Make sure to answer all questions asked in tandem with the lab instructions. Now that you have designed and observed the behavior of a voltage ladder / LED bar combination in detail, can you think of any applications for such a circuit? Name one or two possibilities in your report.

For part 3 of the Lab: Why does the bridge have to be 'balanced' in order to calculate the value of R2? Does your calculated value for R_{2} (from step 3 c) match your measured value of R_{2} (from step 3 d), what is the $\%$ error? Research and explain several uses of the Wheatstone bridge.

