
1

© 2002 D.Miller, KIPR 1

KISS Institute for Practical
Robotics

Botball Kit Documentation

This documentation was written by David Miller,
Randy Sargent, Charles Winton, Holly Yanco,

Illah Nourbash, JJ Maybury & Terry Grant
© 2002 KISS Institute

© 2002 D.Miller, KIPR 2

Caveats & Warnings

• This is general purpose documentation
• Your robot kit may not contain all of the

parts mentioned in the documentation
• This documentation refers to the Handy

Boards distributed by KISS Institute in
2001 and 2002. Other boards may have
different port assignments

2

© 2002 D.Miller, KIPR 3

Overview of Documentation

• Download and install IC
• Overview of basic IC programming
• Overview of Handy Board

– Handy Board sensors
• Overview of Motors
• Overview of RCX and sensors
• Example LEGO robot building instructions

© 2002 D.Miller, KIPR 4

Interactive C
New & Improved for 2002

• Interactive C 4.0 is a C compiler/interpreter
• Implements most of the ANSI C language
• Runs on Handy Board and LEGO RCX
• Loads firmware (“pcode” interpreter) onto

board
• Provides an editor and documentation
• Provides an interactive environment for

testing and debugging

3

© 2002 D.Miller, KIPR 5

Getting IC 4

• The software is donation ware:
– It is free and can be freely distributed and used

for personal and educational purposes
– If you like it and are looking for a tax

deduction, please consider KISS Institute
– If you would like to use IC 4 in a commercial

product, contact KISS Institute about licensing
• The latest version of IC may be downloaded

from: www.kipr.org/ic

© 2002 D.Miller, KIPR 6

Setting Up

• IC runs partly on the PC and partly on the robot
board

• For IC to fully operate, a Handy Board or RCX
needs to be connected
– The robot board needs to have the firmware (pcode

interpreter) loaded in order to be able to talk to IC
• The IC editor can be used without an attached

robot board

4

© 2002 D.Miller, KIPR 7

To Install IC
• On a Mac OSX

– Double click on IC4.tgz file
• Note: keep the app and the library folders in the same folder

• On a Mac OS 8 & 9
– Double click on IC4.sit file

• Note: keep the app and the library folders in the same folder
• On Windows

– Double click on IC4-install.exe
• IC4 will be added to your program menu
• Be sure to uninstall earlier versions before installing new one

• On Linux
– Extract from tar archive on CD to your directory

• Note: keep the app and the library directories in the same directory

© 2002 D.Miller, KIPR 8

Get Started with IC Environment
• Start the IC application
• Click on the picture of the Handy Board
• Click on the Connect Later button
• Click on the New button (upper left corner)
• Type in the program that prints out a text string
• Save the file using the Save button (name it

whatever you want -- just remember where you put
it).

5

© 2002 D.Miller, KIPR 9

Download the Firmware
• Make sure your Handy Board is connected to your

personal computer via serial port cable, serial interface box
and 4-pin modular cable

• Select Download Firmware from the Settings
menu

• Select the appropriate serial port
• Click on Download Firmware button
• Follow the onscreen directions

© 2002 D.Miller, KIPR 10

Interacting with IC

• Click on the Interaction tab
• Just type into area at bottom of IC window
• Simple expressions

2+2;

• Making noise
beep();

• Printing to the LCD screen
printf(“I’m printing!!\n”);

6

© 2002 D.Miller, KIPR 11

Download a Program

• Select the tab with your program’s name
and click download

• To run your program (main function), turn
the Handy Board off and then turn it back
on

• To turn your HB on without running your
program, hold down the start button while
sliding the switch

© 2002 D.Miller, KIPR 12

Data Types

• int (16 bit integer number in IC)
 +/-32,767

• long (32 bit long integer number)
 +/-2,147,483,647

• float (32 bit floating point number)
 e.g. 3.1416

• and others (see IC documentation)

7

© 2002 D.Miller, KIPR 13

Integer Arithmetic
• + addition

X + Y means X plus Y
• - subtraction

X - Y means X minus Y
• * multiplication

X * Y means X multiplied by Y
• / division

X / Y means X divided by Y with the decimal truncated
• % modulus (remainder)

X % Y means the remainder of X divided by Y

© 2002 D.Miller, KIPR 14

Floating Point Arithmetic

• +,-,* operate the same as with integers
• / yields a floating point number
• % is not defined with floating point

numbers

8

© 2002 D.Miller, KIPR 15

IC Interaction Environment

• You can type C statements (and C blocks)
in the interaction window

• Pressing return will send that code to the IC
interpreter which executes the code on the
Handy Board

• This is a quick way to test things
• Try it!

© 2002 D.Miller, KIPR 16

Useful Function:
sleep(seconds);

• sleep() delays the function’s execution
for an amount of time equal to the number
of seconds (expressed as a float) given as an
argument

9

© 2002 D.Miller, KIPR 17

C Function: printf();

• Takes a quoted string and prints it out
– %d is used for an integer
– %f is used for a float
– \n starts next character back at upper left corner

(or new line on terminal)
– commas separate all arguments after the quoted

string

© 2002 D.Miller, KIPR 18

More IC Library Functions

• start_button();
• stop_button();
• knob();
• beep();

10

© 2002 D.Miller, KIPR 19

New Features of IC 4.0

• Tools menu
– List functions
– List global variables (e.g., servo0)
– List loaded files

• Settings
– Huge font
– Download firmware

© 2002 D.Miller, KIPR 20

Recap: Data Types

• int (16 bit integer number in IC)
e.g. +/-32,767

• float (32 bit floating point number)
e.g. 3.1416

• and others (see IC documentation)

11

© 2002 D.Miller, KIPR 21

Variables
• Retain data for later use
• Use in constructions such as arithmetic expressions
• Must be declared before use at start of function (local

variables) or outside any function (global variables)
– Syntax: <data-type> <variable-name>
– int i; [integer variable]
– float x; [floating point variable]

• To put a value in a variable:
– Syntax: <variable-name> = <expression>
– i = 2;
– x = 2.0 * 1.5;
– x = 3.2 * (float)i;

© 2002 D.Miller, KIPR 22

Program Flow
• When a program is run, the control moves from

one statement to the next
• Be careful of 1 vs l (one vs ell)
• Calculate j2 + 1 when j = 3

void main()
{

 int r,j; /* declare r and j */
 j = 3; /* assign a value to j */
 r = j*j + 1; /* calculate and assign */
 printf(“result is %d\n”,r);
}

12

© 2002 D.Miller, KIPR 23

Repeating Execution: Loops

• Loops are used when you want to do the
same thing multiple times

• E.g., beep 20 times
• You could type beep(); 20 times, but

there is a better way: a loop

© 2002 D.Miller, KIPR 24

Repetition Using while
• Syntax: while (<test>) {statements}
• Beep 20 times

void main()
{

 int num; /* declare counter */
 num = 1; /* initialize counter */
 while (num <= 20) /* loop while num is <=20*/

 {
 beep(); /* beep once */
 num = num + 1; /* add one to the counter */
 }
}

13

© 2002 D.Miller, KIPR 25

IC: while (<sensor-test>)
• Syntax recap: while (<test>) {statements}

void main()
{

 int j=0; /* to tell how many times around the loop */
while(stop_button()==0)
{
 j=j+1; /* next time around */
 printf(“loop %d - press stop to stop\n”,j);
 fd(0); /* turn on motor 0*/
 fd(2); /* turn on motor 2 */
 sleep(1.0); /* wait for 1 second */
 bk(0); bk(2); /* reverse both motors */
 sleep(1.0); /* wait for 1 second */

}
ao(); /* turn off all the motors */

}

© 2002 D.Miller, KIPR 26

Boolean Expressions
• Boolean expressions result in either 1 (true) or 0

(false)
• Boolean operators:

== (two equals signs together, not one)
<, <=, >, >=
!= (not equal)
|| (or), && (and)
! not

• Already seen a boolean expression in while:
– while (<boolean expression>)

14

© 2002 D.Miller, KIPR 27

Making a Decision with if

• Syntax if (<test>) {statements}
• The statements are skipped if the test is

false
void main()
{
 int j=-2;

 if (j < 0) /* skip if >= 0 */
 {

 j = -j; /* change sign of x */
 }

printf(“magnitude is %d\n”,j);
}

© 2002 D.Miller, KIPR 28

Either/Or Selection: if-else
• Syntax if (<test>) {statements for true case} else {statements for false case}
• If the test is true {statements for true case} are selected
• If the test is false {statements for false case} are selected

void main()
{

 int j=-2;
 if (j < 0) /* select less than 0 case */
 {
 printf(“%d is negative\n”,j);
 }
 else /* select greater than or equal to 0 case */
 {

 printf(“%d is non-negative\n”,j);
 }
}

15

© 2002 D.Miller, KIPR 29

IC: if (<sensor-test>) … else
• Syntax recap: if (<test>) { …} else { …}
void main()
{
 if(digital(15)==1) /* select “forward” case */
 {
 motor(3,50);
 printf(“Forward\n”);
 }
 else /* select “reverse” case */
 {
 motor(3,-75);
 printf(“Reverse\n”);
 }
 sleep(2.0); /* let motor run 2 secs */
 off(3); /* stop motor */
}

© 2002 D.Miller, KIPR 30

IC: Selection Nested in Loop
void main()
{
 while (stop_button()==0) /* loop until stop */
 {
 if(digital(15)==1) /* select “forward” case */
 {
 motor(3,50);
 printf(“Forward\n”);
 }
 else /* select “reverse” case */
 {
 motor(3,-75);
 printf(“Reverse\n”);
 }
 sleep(2.0); /* let motor run for 2 secs */
 }
 off(3); /* turn off motor */
}

Teaser: what happens if you press and release stop while it is sleeping?

16

© 2002 D.Miller, KIPR 31

IC: Functions & Processes
• Functions are called sequentially
• Processes can be run simultaneously

start_process(function-call);
– processes halt when function exits or parent process

exits
– processes can be halted by using
kill_process(process_id);

• hog_processor(); locks process in CPU
until it finishes or defers

• defer(); causes process to give up the rest of
its time slice until next time.

© 2002 D.Miller, KIPR 32

Example of Processes
void main()
{
 int pid;
 /* run my waa function */
 /* as a parallel process */
 pid=start_process(waa());
 sleep(5.0);
 /* if waa is still going */
 /* turn waa off */
 kill_process(pid);
 /* if tone got killed */
 /* finish it off */
 beeper_off();
}

void waa()
{
 float p;
 while(!stop_button())
 { /* run tone up */
 /* over & over */
 p=200.0;
 while(p<5000.0)
 {
 tone(p,0.05);
 p=p+200.0;
 }
 }
}

17

© 2002 D.Miller, KIPR 33

Example of Processes (2)
void main()
{
 int pid;
 // run s_waa function
 // as a parallel process
 pid=start_process(s_waa());
 sleep(10.0);
 /* if s_waa is still going
 turn s_waa off */
 kill_process(pid);
 /* if s_waa timed out, turn
 off sound & servo*/
 beeper_off();
 init_expbd_servos(0);
}

void s_waa()
{
 float p;
 int s3; // servo value
 init_expbd_servos(1);
 while(!stop_button())
 {// run tone and servo up
 p=200.0; s3=200;
 while(p<3800.0)
 {
 servo3=s3;
 tone(p,0.1);
 p=p+200.0;
 s3=(int) p;
 }
 }
 init_expbd_servos(0);
}

© 2002 D.Miller, KIPR 34

Loading Multiple Files

• #use “filename.ic”
– The text above, if at the beginning of your file will

download the file filename as well when your file is
downloaded.

– You can have multiple #use lines in your file
– The files you #use can #use files of their own
– #use will automatically not get caught in loops
– The files you #use must either be in the same directory

as the original file or in the library folder

18

© 2002 D.Miller, KIPR 35

IC Programming

• The previous slides were just hilights
– IC handles most of ANSI C language including

multi dimensional arrays, structs, #define, for,
etc.

– See a C text for more details of the C language
– Use the Tools menu to see a list of all of the C

functions in the library

© 2002 D.Miller, KIPR 36

Handy Board Checklist

• Handy Board
– Display
– Expansion Board
– Main Board
– Battery Box

• HB to Interface cable (phone cord)
• Interface Board
• Computer to Interface cable (25 pin to 9 pin)
• AC Adapter (note: ground center, +12 outside)

19

© 2002 D.Miller, KIPR 37

Handy Board Setup

© 2002 D.Miller, KIPR 38

The Handy Board

Motor Ports (3 pins ea)

Power switch
off

on

Servo ports
B|R|Y wires

knob (under
exp board)

Charge port
(under exp board)

analog
ports
2-6

digital
ports
7-15

lo-batt
led

IR receiver

power led
off in download mode

floating analog
ports 16-19

analog
ports
20-23

download connector

start and stop buttons

sonar red port

20

© 2002 D.Miller, KIPR 39

Sensor Types

• Digital:
– Return a 0 or a 1
– Switches or bumpers are an example
 (open: 0, or closed: 1)

• Analog:
– Sensor returns a continuum of values
– Processor digitizes results (8 bits give values of 0-255)
– e.g. light sensors

© 2002 D.Miller, KIPR 40

Handy Board Sensors
• Knob
• Start and Stop Buttons
• light sensors: analog
• IR reflectance sensors: analog
• Optical rangefinder: floating analog
• assorted touch sensors: digital
• Slotted encoder sensors: digital
• Sonar rangefinder: (special ports)
• All detachable Handy Board sensors

have keyed connector

21

© 2002 D.Miller, KIPR 41

Built-in Sensors: Knob

• Knob: the knob is a potentiometer which is
treated like an analog sensor
– The access function knob() returns 0-255
– Can be used for adjusting values during runtime

© 2002 D.Miller, KIPR 42

Built-in Sensors: Start

• Start Button:
– Access function start_button()returns 1

while pressed, 0 otherwise
– Holding down Start while powering the board

will bypass executing main (e.g., if your
program immediately causes the robot to move,
and you want to download new code, this is
very useful)

22

© 2002 D.Miller, KIPR 43

Built-in Sensors: Stop

• Stop Button:
– Access function stop_button()returns 1

while pressed, 0 otherwise
– Holding down Stop while powering the board

will put the board in download mode. This is
necessary for loading the firmware.

© 2002 D.Miller, KIPR 44

Light Sensors
• Analog sensor
• Connect to ports 2-6 or 20-23
• Access with function analog(port#)
• Low values indicate bright light
• High values indicate low light
• Sensor is somewhat directional and can be made

more so using black paper or tape or an opaque
straw or lego to shade extraneous light. Sensor
can be attenuated by placing paper in front.

23

© 2002 D.Miller, KIPR 45

IR Reflectance Sensor “Top Hat”
• Analog sensor
• Connect to ports 2-6 or 20-23
• Access with function analog(port#)
• Low values indicate bright light, light

color, or close proximity
• High values indicate low light, dark

color, or distance of several inches
• Sensor has a reflectance range of about 3

inches

© 2002 D.Miller, KIPR 46

IR Reflectance Sensors

24

© 2002 D.Miller, KIPR 47

Optical Rangefinder “ET”
• Floating analog sensor
• Connect to ports 16-19
• Access with function
analog(port#)

• Low values indicate large distance
• High values indicate distance

approaching ~4 inches
• Range is 4-30 inches. Result is

approx 1/d2. Objects closer than 4
inches will appear to be far away.

© 2002 D.Miller, KIPR 48

Optical Rangefinder

Laser Beam

Lens

Position Sensing Device (PSD)

25

© 2002 D.Miller, KIPR 49

• Timed analog sensor
• Connect red to Expansion board

– (upper deck) port #0
• Connect gray to Digital #7
• Access with function sonar()
• Returned value is distance in mm to closest object in field

of view
• Range is approximately 30-2000mm
• No return (because objects are too close or too far) gives

value of 32767
• Wait at least .03 seconds between sonar()calls

Ultrasonic Rangefinder (Sonar)

© 2002 D.Miller, KIPR 50

Ultrasonic Sensors
• Puts out a short burst of

high frequency sound
• Listens for the echo
• Speed of sound is

~300mm/ms
• sonar() times the echo,

divides by two and
multiplies by speed of
sound

• The sonar field of view is
a 30o teardrop

sonar

Area of coverage

26

© 2002 D.Miller, KIPR 51

Touch Sensors
• Digital sensor
• Connect to ports 7-15
• Access with function
digital(port#)

• 1 indicates switch is closed
• 0 indicates switch is open
• These make good bumpers

and can be used for limit
switches on an actuator

© 2002 D.Miller, KIPR 52

Slot Sensors
• Digital sensor
• Connect to ports 7-15
• Access with function
digital(port#)

• 1 indicates slot is empty
• 0 indicates slot is blocked
• These can be used much like

touch sensors (if the object being
touched fits in the slot)

• Special abilities when used as
encoders

27

© 2002 D.Miller, KIPR 53

Using Encoders
• Use the slot sensor (Handy Board only)
• Connect to ports 7,8,12,13 (encoder# is

0,1,2,3)
enable_encoder(encoder#);
– Only enable an encoder once...unless you disable it.
disable_encoder(encoder#);
read_encoder(encoder#);
– returns the number of transitions
reset_encoder(encoder#);
– sets that encoder to 0

• Reflectance and slot sensors work best for
encoders

© 2002 D.Miller, KIPR 54

Mounting a slot sensor encoder

Carefully align
sensor with
encoder wheel

28

© 2002 D.Miller, KIPR 55

Simple Encoder Program
void main(){
 int enc1, enc0;
 enable_encoder(0); /* turn on the encoders */
 enable_encoder(1);
 while(!stop_button())
 {
 enc0=read_encoder(0); /* read each encoder */
 enc1=read_encoder(1); /* and show values */
 printf(“Enc0=%d Enc1=%d\n”,enc0, enc1);
 sleep(0.1); /* wait a bit and do it again */
 }
}

© 2002 D.Miller, KIPR 56

Handy Board DC Motors
• All motors are connected to HB

using motor wire
• Micro-motor slow gear motor
• High-power gear motor

(modified servo)

• High speed gear motors

29

© 2002 D.Miller, KIPR 57

Handy Board Servo Motors
• When plugged in, black wire is on left,

yellow on right
• Enable Servos:

init_expbd_servos(1);
• Disable Servos:

init_expbd_servos(0);
• To change servo positions, change values of:

servo0, servo1,…,servo5
(these are examples of global variables)

• Values should range between 100 and 3900
• Note: Servos acting weird or not working is

the first sign of low battery

© 2002 D.Miller, KIPR 58

Recharging Kit Batteries
• Handy Boards should be charged through the

interface board
– Interface board charging can be done in normal or Zap

mode.
• Normal charge lights yellow light on interface board when

working, and does a trickle charge -- you can leave the board
charging in this mode indefinitely. A full charge takes about 12
hours, though you can use the board earlier.

• ZAP fully charges in 2 hours, and will damage batteries
after that. ONLY recommended while working with the
robot with a dead battery or in tournament emergencies,

30

© 2002 D.Miller, KIPR 59

Experimenting With Motors and
Sensors Using the IC Interaction

Window
• Motors

fd(3);
bk(3);
off(3);
motor(3,75); motor(2, -50);

• Sensors
digital(7);
analog(6);
sonar();

© 2002 D.Miller, KIPR 60

Testing Your HB, Sensors &
Motors

• Download hbtest.ic (from the IC folder)
• connect and test motors
• connect and test servos (one at a time)
• connect and test digital sensors
• connect and test analog sensors (be sure you have

the right type of sensors in the right ports)
• connect and test sonar sensor

31

© 2002 D.Miller, KIPR 61

Lego RCX
• Simple controller

– Similar memory and processor to Handy Board
• Three sensor inputs
• Three motor ports

– Communicates to your computer via the IR tower
– RCX powered by 6 alkaline AA batteries
– IR tower powered by 9v alkaline battery
– Gray DB9 to DB9 cable connects tower to serial port
– Mac Serial port users, use HB cable, the 25-9 pin

connector and then the gray DB9-DB9 cable

© 2002 D.Miller, KIPR 62

The RCX Controller

• Your kit may also include a LEGO RCX
controller

• Use the “switch controller” menu item from the IC
settings menu to bring up the picture of the RCX
and select it

• If your RCX does not say IC 4 when you turn it
on, then you will need to download the firmware

32

© 2002 D.Miller, KIPR 63

RCX Setup

To your serial port

© 2002 D.Miller, KIPR 64

RCX Ports

• Ports 1, 2, & 3 are the
sensor ports

• Ports A, B & C are the
motor ports (referred
to in code as A, B & C
(1, 2, & 3 also work)
e.g., fd(A); or
fd(1); turns on the
motor on port A)

33

© 2002 D.Miller, KIPR 65

RCX Buttons
• Power button turns RCX On and Off
• Run Button runs the main function

(“crash appears on screen if no main
is loaded”)

• View button displays sensors port
values if program is NOT running

• view_button() and
prgm_button() --access from
your program (like start & stop)

© 2002 D.Miller, KIPR 66

IR Tower Battery

• Be sure to insert the battery
all the way

• Connectors fit into the left
wall

• If your communication does
not work, check battery

Exposed connector means Bad

Good

34

© 2002 D.Miller, KIPR 67

RCX Cool Functions in IC
• battery_volts() returns the level of the RCX

batteries
• brake(n) stops motor n (e.g., 1, 2 or 3) quickly (more

quickly than off(n))
• allbrake() same as above
• light(p) returns value of light sensor, with emitter on,

connected to port p
• light_passive(p) returns value of light sensor

connected to port p
• poweroff() turns off the RCX

© 2002 D.Miller, KIPR 68

RCX functions in IC
• RCX does not support…

– analog(p)
– math functions other than + - / *
– sonar
– servo functions, encoder functions

• RCX supports very limited printf capabilities (%d
works; no %f; no \n ever needed in RCX; characters do not
look very good)

35

© 2002 D.Miller, KIPR 69

RCX Sensors

• The RCX can only use LEGO Mindstorms
sensors
– Touch sensor use digital(port#)
– Light sensor use light(port#)to get

areflectance reading or
light_passive(port#)to get a passive
light reading

© 2002 D.Miller, KIPR 70

A Simple LEGO Robot

• The next several slides give step by step
assembly instructions for a simple robot
chassis

• This robot may be used with either the RCX
or Handy Board controller (a few extra
blocks will be needed to secure the HB to
the chassis)

• The colors of your parts may vary

36

© 2002 D.Miller, KIPR 71

© 2002 D.Miller, KIPR 72

37

© 2002 D.Miller, KIPR 73

© 2002 D.Miller, KIPR 74

38

© 2002 D.Miller, KIPR 75

© 2002 D.Miller, KIPR 76

39

© 2002 D.Miller, KIPR 77

© 2002 D.Miller, KIPR 78

40

© 2002 D.Miller, KIPR 79

© 2002 D.Miller, KIPR 80

41

© 2002 D.Miller, KIPR 81

© 2002 D.Miller, KIPR 82

42

© 2002 D.Miller, KIPR 83

© 2002 D.Miller, KIPR 84

43

© 2002 D.Miller, KIPR 85

© 2002 D.Miller, KIPR 86

44

© 2002 D.Miller, KIPR 87

© 2002 D.Miller, KIPR 88

45

© 2002 D.Miller, KIPR 89

A Simple Bumper

