Introduction to representations of wreath products and foams

Mee Seong Im
United States Naval Academy
Annapolis, MD
Knots in Washington 49.5
Department of Mathematics
George Washington University
Washington, D.C.

Joint with Mikhail Khovanov arXiv:2107.07845

A new application of foams!

Focus on foams in the representation theory of wreath products.

Induction and restriction

Ground field \mathbf{k}.

Assume inclusion of finite groups $H \subset G$.
Induction and restriction functors $\operatorname{Ind}{ }_{H}^{G}$ and $\operatorname{Res}_{G}^{H}$ between categories of $\mathbf{k} H$-modules and $\mathrm{k} G$-modules are biadjoint.

Natural transformations between compositions of these functors can be drawn in a plane, i.e., they are depicted by planar diagrams of arcs and circles in the plane, regions labelled by G and H :

Figure: Oriented cups and caps represent natural transformations, for induction and restriction between H - and G-modules.

Biadjointness isotopies

Biadjointness is encoded by four natural transformations: depicted by the four oriented cup and cap diagrams.

Biadjointness is equivalent to the isotopy invariance of diagrams or arcs and circles built from these diagrams, and the four generating isotopy relations:

Figure: Biadjointness isotopy relations on compositions of cups and caps.

Natural transformation

The induction functor $F: \mathbf{k} H-\bmod \longrightarrow \mathbf{k} G-\bmod$ is depicted by a dot on a horizontal line, with intervals to the right and left of the dot labelled by H and G.
The identity natural transformation $\mathrm{id}_{F}: F \Rightarrow F$ is depicted by a vertical line in the plane.
A natural transformation $\alpha: F \Rightarrow F^{\prime}$ is depicted by a dot on a vertical line, with intervals below and above the dot labelled by F and F^{\prime}.

Figure: Functor, id natural transformation, and natural transformation $\alpha: F \Rightarrow F^{\prime}$.

More complicated natural transformations

A trivalent vertex for natural transformation $\alpha: F_{2} F_{1} \Rightarrow F_{3}$, where

$$
F_{1}: \mathcal{A} \rightarrow \mathcal{B}, \quad F_{2}: \mathcal{B} \rightarrow \mathcal{C}, \quad F_{3}: \mathcal{A} \rightarrow \mathcal{C}
$$

are three functors among categories $\mathcal{A}, \mathcal{B}, \mathcal{C}$.

A network of diagrams

More general natural transformations between compositions of functors can be represented by networks and their linear combinations (in additive categories).

Extension to foams for the direct product: $H \cong H_{1} \times H_{2}$

Endofunctor for H_{1}-mod and endofunctor for H_{2}-mod: natural transformations for the two of them can be depicted in two separate parallel planes.

Example: $V_{1} \otimes$ - for a H_{1}-mod and $V_{2} \otimes$ - a H_{2}-mod.
Endofunctors for $H_{1} \times H_{2}$-mod may reduce to the (exterior) product of endofunctors for H_{1}-mod and H_{2}-mod.

Diagrammatically, the H-plane that carries information about natural transformations of endofunctors in the category of $\mathrm{k} H$-modules is converted into two parallel planes, one for each term H_{1}, H_{2} in the direct product.

Extension to foams

$\alpha_{i}: F_{i} \Rightarrow F_{i}^{\prime}$ between endofunctors F_{i}, F_{i}^{\prime} in the category of H_{i}-modules: depicted by a dot on a vertical line in the H_{i}-plane for $i=1,2$. Bottom and top endpoints of the vertical line denote functors F_{i} and F_{i}^{\prime}, respectively.

Figure: Diagrams of α_{1}, α_{2}, and $\alpha_{1} \boxtimes \alpha_{2}: F_{1} \boxtimes F_{2} \Rightarrow F_{1}^{\prime} \boxtimes F_{2}^{\prime}$.

Extension to foams

Given inclusion of groups $H_{1} \times H_{2} \subset G$, denote $\operatorname{Ind}_{H_{1} \times H_{2}}^{G}$ from $H_{1} \times H_{2}$-modules to G-modules by a vertex with H_{1}, H_{2} lines flowing in and G line flowing out.

The restriction functor: depicted by having a G-line split into H_{1} and H_{2} lines.
\Rightarrow build diagrams for compositions of these functors.
Graphs come with projections onto \mathbb{R} to keep track of the order of composition of functors.

Res

A composition of one restriction, one permutation, \& one induction functor, going from $G \times H_{2}$-mod to $H_{2} \times G$-mod.

H_{1}, H_{2}, G-lines and planes

Labels on H_{1}, H_{2} and G lines denote endofunctors in corresponding categories. Dotted trivalent vertex below is a composition of endofunctors in H_{1} and H_{2}-mod with the induction functor, with endofunctors in G-mod. An endofunctor in H_{i}-mod induces an endofunctor on $H_{1} \times H_{2}$-mod.

Foams

Natural transformations between these compositions are depicted by foams that extend between such diagrams.

Identity natural transformation from the induction functor to itself (respectively, from the restriction functor to itself) is depicted by the direct product foam, the graph depicting this functor times the unit interval $[0,1]$:

Figure: Identity natural transformations on $\operatorname{Ind}_{H_{1} \times H_{2}}^{G}$ and $\operatorname{Res}_{G}^{H_{1} \times H_{2}}$.

Foams

Seam lines: singular lines in the foams.
A natural transformation $a:$ Ind \Rightarrow Ind is denoted by a dot on a seam line, labelled a, and likewise for an endomorphism of the restriction functor.

A central element $c \in Z(\mathbf{k} G)$ of the group algebra $\mathbf{k} G$ is denoted by a dot floating in a facet G labelled c.

$$
\begin{aligned}
& \mathrm{Id}_{G-\bmod } \Rightarrow \mathrm{Id}_{G-\bmod } \\
& M \rightarrow M \\
& m \mapsto c m
\end{aligned}
$$

Figure: Natural transformation $a \in \operatorname{End}(\mathrm{Ind})$ and central element c of $\mathbf{k} G$.

Foams

The functor $V \otimes$ - of the tensor product with a representation V of G is denoted by a dot on a line, with label V and the regions to the both sides of the dot labelled G.

Identity natural trans. $V \otimes-\Rightarrow V \otimes$ - is depicted by a vertical line (defect or seam line) labelled V.

A homom. $\gamma: V_{1} \longrightarrow V_{2}$ of G-mod induces a natural transf. $\gamma: V_{1} \otimes-\Rightarrow V_{2} \otimes-$ of the functors $V_{1} \otimes$ - and $V_{2} \otimes-$. It is depicted by a dot on a defect line for V, with the defect line label changing from V_{1} to V_{2}.

For more general nat'l transf: use networks.

Iterated wreath product of S_{2}

G_{n} : the symmetry group of the full binary tree T_{n} of depth n, the n-th iterated wreath product of the symmetric group S_{2}.

This binary tree has a root, 2^{n} leaf vertices (children), and all paths from the root to leaf vertices have length n.

Tree T_{n} has $2^{n+1}-1$ vertices. Children are labelled from 1 to 2^{n} inductively on n so that the vertices of the left branch are labelled by 1 through 2^{n-1} and those of the right branch are labelled by $2^{n-1}+1$ through 2^{n}.

G_{n} for small values of n

For small values of n,

- $G_{0}=\{1\}$ is the trivial group,
- $G_{1}=S_{2}$ is the symmetric group of order two,
- $G_{2}=S_{2} \backslash S_{2}=\left(S_{2} \times S_{2}\right) \rtimes S_{2}$ has order 8 and is isomorphic to the dihedral group D_{4}.

For any n, G_{n} has order $2^{2^{n}-1}$.

Wreath product

G_{n} has an index two subgroup naturally isomorphic to $G_{n-1} \times G_{n-1}$:

$$
\begin{equation*}
G_{n-1}^{(1)}:=G_{n-1} \times G_{n-1} \xrightarrow{\iota_{n-1}} G_{n} . \tag{1}
\end{equation*}
$$

The embedding consists of symmetries that fix the two branches of the tree, one to the left and the other to the right, of the root. There is a coset decomposition

$$
\begin{equation*}
G_{n}=G_{n-1}^{(1)} \sqcup G_{n-1}^{(1)} \beta_{n}=G_{n-1}^{(1)} \sqcup \beta_{n} G_{n-1}^{(1)}, \tag{2}
\end{equation*}
$$

where β_{n} is the involution that transposes the left and right branches of T_{n}, with the coincidence of left and right cosets
$\left(G_{n-1} \times G_{n-1}\right) \beta_{n}=\beta_{n}\left(G_{n-1} \times G_{n-1}\right)$ (the left and right cosets are also double cosets).
For $g_{1}, g_{2} \in G_{n-1},\left(g_{1}, g_{2}\right) \beta_{n}=\beta_{n}\left(g_{2}, g_{1}\right)$. Moving through β_{n} switches the order of the two terms in the product $G_{n-1} \times G_{n-1}$.

Wreath product G_{4}. Any symmetry fixes the root $\Rightarrow \beta_{4}$ is an involution.

Wreath product: labeling the leaves

Identify G_{n} with a subgroup of the symmetric group $S_{2^{n}}$ using induction on n.
When $n=0$, both G_{0} and $S_{2^{0}}=S_{1}$ are the trivial group.
For the induction step, given an inclusion $j_{n-1}: G_{n-1} \hookrightarrow S_{2^{n-1}}$, realize $G_{n} \subset S_{2^{n}}$ as the subgroup generated by:

- permutations of $\left\{1, \ldots, 2^{n-1}\right\}$ in G_{n-1},
- permutations of $\left\{2^{n-1}+1, \ldots, 2^{n}\right\}$ in G_{n-1} (obtained by shifting all indices by 2^{n-1}),
- permutation $\beta_{n}=\left(1,2^{n-1}+1\right)\left(2,2^{n-1}+2\right) \cdots\left(2^{n-1}, 2^{n}\right)$.

Identify $\beta_{n} \in G_{n}$ with its image in $S_{2^{n}}$. The subgroup $G_{n-1}^{(1)}$ is given by products of permutations of the first and the second type on the above list; it's a normal subgroup of index 2 , with $\left\{1, \beta_{n}\right\}$ as a set of coset representatives.

Center of wreath product

The center of G_{n} is an order two subgroup,

$$
\begin{equation*}
Z\left(G_{n}\right)=\left\{1, c_{n}\right\}, \quad c_{n}:=(1,2)(3,4) \cdots\left(2^{n}-1,2^{n}\right), \tag{3}
\end{equation*}
$$

see [I.-Oğuz, Lemma 3.6]. c_{n} moves nearby elements (permutes adjacent vertices).
Informally, β_{n} is a global symmetry while c_{n} is a local symmetry.
Define $G_{n-k}^{(k)}:=\left(G_{n-k}\right)^{2^{k}} \subset G_{n}$ given by permutations that fix all nodes of the full binary tree at distance at most $k-1$ from the root.

Wreath product

There is a chain of inclusions

$$
\begin{equation*}
\{1\}=G_{0}^{(n)} \subset G_{1}^{(n-1)} \subset \ldots \subset G_{n-2}^{(2)} \subset G_{n-1}^{(1)} \subset G_{n}^{(0)}=G_{n} \tag{4}
\end{equation*}
$$

Each inclusion

$$
\begin{equation*}
G_{n-k-1}^{(k+1)} \subset G_{n-k}^{(k)} \tag{5}
\end{equation*}
$$

is of an index $2^{2^{k}}$ normal subgroup, with the quotient isomorphic $S_{2}^{2^{k}}$.
Example:

$$
\left[G_{n}: G_{n-1}^{(1)}\right]=2, \quad\left[G_{n-1}^{(1)}: G_{n-2}^{(2)}\right]=4, \quad\left[G_{n-2}^{(2)}: G_{n-3}^{(3)}\right]=8
$$

Ind and Res bimodules: explicit expressions for diagrammatics

Denote $\mathbf{k} G_{n}$, viewed as a bimodule over itself, by (n). Denote $\mathbf{k} G_{n-1}^{(1)}:=\mathbf{k}\left(G_{n-1} \times G_{n-1}\right)$ by $(n-1)^{(1)}$, and extend these notations to tensor products of bimodules:

$$
(n)_{(n-1)^{(1)}}(n):=\mathbf{k} G_{n} \otimes_{\mathbf{k} G_{n-1}^{(1)}} \mathbf{k} G_{n}, \quad \mathbf{k} G_{n} \text {-bimodule. }
$$

R and I are biadjoint so the biadjointness maps are:
(1) $\alpha_{n-1}^{n}:(n)_{(n-1)^{(1)}}(n) \longrightarrow(n)$, where $x \otimes y \mapsto x y, x, y \in(n)=\mathbf{k} G_{n}$,
(2) $\gamma_{n-1}^{n}:(n-1)^{(1)} \longrightarrow{ }_{(n-1)^{(1)}}(n)_{n}(n)_{(n-1)^{(1)}}$, where $x \mapsto x \otimes 1=1 \otimes x, x \in(n-1)^{(1)}$,
(3) $\alpha_{n}^{n-1}:_{(n-1)^{(1)}}(n)_{n}(n)_{(n-1)^{(1)}} \cong{ }_{(n-1)^{(1)}}(n)_{(n-1)^{(1)}} \longrightarrow(n-1)^{(1)}$ takes $g \in(n)$ to

$$
p_{n-1}(g) \in(n-1)^{(1)} \text { by } p_{n-1}(g)= \begin{cases}g & \text { if } g \in(n-1)^{(1)} \\ 0 & \text { otherwise }\end{cases}
$$

(4) $\gamma_{n}^{n-1}:(n) \longrightarrow(n)_{(n-1)^{(1)}}(n)$, where $x \mapsto 1 \otimes x+\beta_{n} \otimes \beta_{n} x$, and $x \in(n)$.

The four bimodule maps diagrammatically

Left and right adjoint maps:

$$
R=\text { restriction functor, } \quad I=\text { induction functor. }
$$

Figure: Diagrams for natural biadjointness transformations.
\Rightarrow These four natural transformations turn I_{n-1}^{n} and R_{n}^{n-1} into a biadjoint pair.

Simple relations in diagrams

Figure: Central elements. The 2 on the RHS is the index. Would like more interesting elements of the center.

Planar diagrams to foams: reminder

Refine these planar diagrams to a foam description for these and related intertwiners between compositions of I_{n-1}^{n} and R_{n}^{n-1}. Denote the induction and restriction functors by trivalent vertices in graphs as shown below.

I_{n}^{n+1}

R_{n+1}^{n}

Figure: Ind and Res functors I_{n}^{n+1}, R_{n+1}^{n} and identity natural transf. on them.

Biadjointness transformations

Biadjointness relations translate into foam isotopies.
(1)

(2)

$$
n-1
$$

$$
\begin{gathered}
R_{n}^{n-1} I_{n-1}^{n} \\
\prod_{n-1}^{n} \gamma_{n-1}^{n} \\
\mathrm{Id}_{n-1, n-1}
\end{gathered}
$$

(3)

$$
I_{n-1}^{n} R_{n}^{n-1}
$$

(4)

$$
\Uparrow \gamma_{n}^{n-1}
$$

$$
\mathrm{Id}_{n}
$$

Figure: The four biadjointness transformations for I_{n-1}^{n}, R_{n}^{n-1}.

Decomposition of functors

Proposition. There is a canonical decomposition of functors

$$
\begin{equation*}
R_{n}^{n-1} \circ I_{n-1}^{n} \cong \mathrm{Id} \oplus T_{12} \tag{6}
\end{equation*}
$$

The composition $R_{n}^{n-1} \circ I_{n-1}^{n}$ is given by tensoring with the $G_{n-1}^{(1)}$-bimodule G_{n}.
Using Mackey induction-restriction formula, properties of the wreath product and β_{n}, we obtain diagrams for the three functors in this isomorphism:

Figure: Diagrams for the three functors in (6).

Canonical decomposition of functors

Double coset decomposition

$$
G_{n}=G_{n-1}^{(1)} \sqcup G_{n-1}^{(1)} \beta_{n}=G_{n-1}^{(1)} \sqcup \beta_{n} G_{n-1}^{(1)}
$$

induces a direct sum decomposition of the induction-restriction functor, isomorphic to tensoring with $\mathbf{k}\left[G_{n}\right]$, viewed as a bimodule over $\mathbf{k}\left[G_{n-1}^{(1)}\right]$.

First coset corresponds to the identity summand, second coset to the permutation summand, since

$$
\left(g_{1}, g_{2}\right) \beta_{n}=\beta_{n}\left(g_{2}, g_{1}\right), \quad g_{1}, g_{2} \in G_{n-1}
$$

Direct sum decomposition via foams

Top row maps come from biadjointness. Bottom row maps require overlapping facets.

Figure: Maps (foams) describing the direct sum decomposition. Red lines depict facet intersections.

Foams: obtain relations.

The direct sum decomposition property translates into the following relations:

$$
x_{2} y_{1}=0 .
$$

Foam equivalents of these relations are:

$$
x_{2} y_{1}=0
$$

$+$

$\mathrm{id}_{R I}=y_{1} x_{1}+y_{2} x_{2}$

Observations of the relations

Even (possibly 0) number of red lines entering a disk can be simplified, via disk removal. Single line or odd number of red lines entering a disk results in diagram evaluating to 0 .

Foams (isomorphisms), conjugation by β_{n}

Figure: Intersection seams giving mutually-inverse functor isomorphisms $T_{12} R_{n}^{n-1} \cong R_{n}^{n-1}$.

Foams

Figure: Relation $\ell\left(\beta_{n}\right)^{\prime} \ell\left(\beta_{n}\right)=$ id (since $\beta_{n}^{2}=1$) allows to undo an immersion seam that goes out and back into an $(n, n-1)$-seam.

Foams

Figure: Relation $\ell\left(\beta_{n}\right) \ell\left(\beta_{n}\right)^{\prime}=$ id cancels two adjacent immersion points on an $(n, n-1)$-seam.

Foams: relation follows from a computation of bimodule maps

Figure: Deforming an immersion seam and moving its endpoint.

Foams

Figure: An isotopy of immersed surfaces in \mathbb{R}^{3}. Intersection lines are shown in red.

Central elements and bubbles

$Z\left(G_{n}\right) \cong S_{2}$
Central element: $c_{n}=(1,2)(3,4) \cdots\left(2^{n}-1,2^{n}\right)$
Via the inclusion ι_{n-1} this element can be defined inductively as $c_{n}=\iota_{n-1}\left(c_{n-1} \times c_{n-1}\right)$. Denote c_{n} by a dot on a facet labelled n.

Figure: Central element c_{n} and a relation on it: the square of the dot is the identity.

Central elements: $c_{n-1} \times 1+1 \times c_{n-1}$

We can build more complicated elements of the group algebra $\mathbf{k}\left[G_{n}\right]$, as bubbles and iterated bubbles with dots. Any such bubble on n-facet is a natural endotransformation of the identity functor, thus an element of the center $Z\left(\mathbf{k}\left[G_{n}\right]\right)$.
Bubbles pass next to each other, which corresponds to the center being commutative. We don't know if all central elements come from bubbles.

Figure: The simplest relations on c-bubbles.

Central elements

The simplest bubble with a dot is a composition of 3 natural transformations: local minimum, composed with a dot on a facet, composed with a local maximum. Computing the composition yields central element $c_{n-1} \times 1+1 \times c_{n-1}$ (averaging out $c_{n-1} \in G_{n-1}$ over the two cosets $\left.G_{n} / G_{n-1}^{(1)}\right)$.

Figure: An example of the composition $\mathbf{k} G_{n} \rightarrow \mathbf{k} G_{n} \otimes_{\mathbf{k} G_{n-1}^{(1)}} \mathbf{k} G_{n} \rightarrow \mathbf{k} G_{n}$.

Iterating the bubble construction by splitting the bubble facets

The central element shown below is: $c_{n-2}^{(1)}+c_{n-2}^{(2)}+c_{n-2}^{(3)}+c_{n-2}^{(4)}$, where $c_{n-2}^{(i)}=$ the i-th copy of c_{n-2} in the direct product $G_{n-2}^{\times 4} \subset G_{n}$.

Figure: A more complicated bubble describing a central element. The middle cross-section of this bubble is shown on the right.

Tensoring with induced representations

$H \subseteq G$ is a subgroup and M is a G-module. There is an isomorphism

$$
\operatorname{Ind}_{H}^{G} \circ \operatorname{Res}_{G}^{H}(M) \xrightarrow{\sim} \operatorname{Ind}_{H}^{G}(\underline{\mathbf{k}}) \otimes M
$$

So

$$
\begin{equation*}
\operatorname{lnd}_{H}^{G} \circ \operatorname{Res}_{G}^{H} \simeq \mathbf{V}_{H}^{G} \otimes- \tag{7}
\end{equation*}
$$

is an isomorphism of functors, where $\mathbf{V}_{H}^{G}:=\operatorname{Ind}_{H}^{G}(\underline{\mathbf{k}})$ is the induced representation of G and $\underline{\mathbf{k}}$ is the trivial representation of H.

Tensoring with induced representations

Figure: Left: diagrammatic notations for the two functors. Right: a vertex to denote their isomorphism. The inverse isomorphism is represented by a reflected diagram.

Tensoring with induced representations

$\operatorname{char}(\mathbf{k})=0 \Rightarrow$ representations of finite groups over \mathbf{k} are completely reducible.
Given a subrepresentation $V \subseteq \mathbf{V}_{H}^{G}$, choose an idempotent endomorphism
$e_{V} \in \operatorname{End}\left(\mathbf{V}_{H}^{G}\right)$ of projection on V. It can be described by a box labelled e_{V} on the vertical line depicting the identity natural transformation of the functor $\mathbf{V}_{H}^{G} \otimes-$.

Figure: Idempotent e_{V} on the endomorphism of \mathbf{V}_{H}^{G}.

Tensoring with induced representations

The quotient group $G_{n} / G_{n-1}^{(1)}$ is S_{2}, and its two-dimensional regular representation, viewed as a representation of G_{n}, is denoted V_{1}.
The latter representation is the induced rep from the trivial rep of $G_{n-1}^{(1)}$,

$$
V_{1} \cong \operatorname{Ind}_{G_{n-1}^{(1)}}^{G_{n}}(\underline{\mathbf{k}}) .
$$

Figure: Functor isomorphism.

Tensoring with the induced representation

Under the quotient map, $\beta_{n} \in G_{n}$ is the nontrivial element of S_{2}, which is denoted by $\underline{\beta}_{n}$.
Multiplication by β_{n} is an involutive endomorphism of V_{1}.
The foam on the right: represents the corresponding endomorphism of Ind \circ Res, under its isom with the tensor product functor. The foam consists of a flip between two ($n-1$) facets. The intersection interval is shown in red.

Figure: Foam rep of the endomorphism of the functor $V_{1} \otimes-\cong$ Ind \circ Res given by multn by β_{n}.

Tensoring with the induced representation

Figure: $\beta_{n}^{2}=1$, and endomorphism of V_{1} it induces squares to identity.

Foams for idempotents

Idempotents $e_{+}=\frac{1+\beta_{n}}{2}$ and $e_{-}=\frac{1-\beta_{n}}{2}$ in the group algebra $\mathbf{k} G_{n}$ give corresponding idempotents, also denoted e_{+}, e_{-}, in the quotient algebra $\mathbf{k} S_{2} \cong \operatorname{End}_{G_{n}}\left(V_{1}\right)$.
These idempotents produce direct summands of representation V_{1}, the trivial V_{+}and the sign V_{-}representations so that

$$
V_{1} \cong V_{+} \oplus V_{-}
$$

$V_{+} \cong \underline{\mathbf{k}}$, our two notations for the trivial representation.
Under functor isomorphism $V_{1} \otimes \bullet \cong$ Ind \circ Res, these idempotents become idempotents in the endomorphism algebra of the latter functor, also denoted e_{+}and e_{-}.

In the foam notation, we represent these idempotents in End(Ind \circ Res) by disks, green and blue, respectively, that intersect two opposite seam lines, with labels + and - .

Foams for idempotents

Foam description of symmetrizer idempotent e_{+}.

Figure: Idempotent $e_{+}=\frac{1+\beta_{n}}{2}$.

Foams for idempotents

Foam description of antisymmetrizer idempotent e_{-}.

Figure: Idempotent $e_{-}=\frac{1-\beta_{n}}{2}$.

Foams for idempotents

e_{+}, e_{-}are mutually orthogonal idempotents. Relations:

$$
1=e_{+}+e_{-}, \quad e_{+} e_{-}=e_{-} e_{+}=0, \quad e_{+}^{2}=e_{+}, \quad e_{-}^{2}=e_{-}
$$

Figure: The sum of two idempotents e_{+}and e_{-}gives the identity foam.

Foams for idempotents

Figure: Left: idempotency relation $e_{-}^{2}=e_{-}$via foams. Right: orthogonality relation $e_{+} e_{-}=0$ via foams.

Foams for idempotents

Blue dot labelled - denotes tensor product with the sign representation of S_{2} :

Figure: Converting from the planar to the foam presentation of the identity endomorphism of V_{-}.

Foams for idempotents

Figure: Left equality: symmetrizer e_{+}is the projection onto the trivial representation; the foam interpretation is shown. Middle cross-section of the foam in the center describes the identity functor (tensoring with the trivial representation). In the second equality, absence of homs between the trivial and the sign representations implies this relation.

Foams for idempotents

Figure: The only hom between irreducible representations $V_{-} \otimes V_{-} \cong V_{+}$and V_{-}is 0 . This equality can also be checked by expanding three blue disks and canceling the terms.

Foams for idempotents

Figure: This relation follows by expanding the "neck" on top left.

Foams for idempotents

Figure: Converting into the language of tensoring with representations, functor isomorphisms between tensoring with $V_{-} \otimes V_{-}$and V_{+}given by the two tubes at the top and bottom halves are mutually-inverse on one side.

Foams for idempotents

Figure: Horizontal circles indicate that the two $(n-1)$-facets on the left picture constitute a 2-torus inside the foam.

$G_{2}=S_{2} \backslash S_{2}(n=2)$

Consider the two diagrams below. Each describes a summand of a composition of restriction and induction functors. In the diagram on the left, restrict from G_{n} to $G_{n-1} \times G_{n-1}$, then further restrict to $G_{n-2} \times G_{n-2} \times G_{n-1}$. After that, induce back to G_{n}. The "minus" idempotent is applied for the composition of restriction and induction between G_{n-1} and $G_{n-2} \times G_{n-2}$. In the diagram on the right, a similar functor is described, but the inner induction and restriction is for the other factor of the product $G_{n-1} \times G_{n-1}$.

Figure: A functor isomorphism. Denote the functor on the left by \mathcal{V}.

Figure: Foam for the functor isomorphism from previous slide. The blue line depicts the identity endomorphism of the "blue point" functor (direct summand of the induction-restriction functor isomorphic to the tensoring $V_{-} \otimes-$). The black line on the other thin facet is drawn to help see the facet. The two thin facets intersect along the red interval.

The table below lists the characters of the five irreducible representations of D_{4} and of representation $\mathbf{k}\left[D_{4} / H\right]$.

	1	(12)	$(12)(34)$	(1324)	$(13)(24)$
V	2	0	-2	0	0
V_{+}	1	1	1	1	1
V_{-}	1	1	1	-1	-1
V_{-+}	1	-1	1	-1	1
V_{--}	1	-1	1	1	-1
$\mathbf{k}\left[D_{4} / H\right]$	4	2	0	0	0

Figure: Direct sum decomposition of Res o Ind into the identity and the transposition functors.

Figure: Left: tensor square of the sign rep V_{-}is the trivial rep, $V_{-}^{\otimes 2} \cong V_{+}$. Right: functor isomorphism Ind $\circ T_{12} \simeq \operatorname{Ind}$, where T_{12} is the transposition, given by foams reflected in the vertical plane.

Figure: Use above relations to decompose the square of the functor \mathcal{V}, giving us the triv, sign, and two 1-dim'l reps. Each of the two terms decomposes as the sum of two 1-dim reps, $V_{+} \oplus V_{-}$, resp $V_{+-} \oplus V_{-+}$.

Future directions

This is an example of foams very different from the ones we encounter in link homology ($G L(N)$ and $S L(N)$ foams appear in the latter).

We expect that further developing this type of foams will give a full description of representation theory of iterated wreath products G_{n} and functors between these representation categories as well as a low-dimensional topological interpretation of that theory.

It's interesting to develop foam interpretation of natural transformations between functors in categories of finite group representations (work in progress) and even Lie (super)groups.

Another problem is to find more examples of foams in mathematical nature.

Thank you! Questions?

