algebraic concordance and

 almost classical knots
micah chrisman

the ohio state university
knots in washington 49.5-12/5/2021
joint w/ Sujoy Mukherjee (OSU)
[CM] Algebraic concordance and almost classical knots (https://arxiv.org/abs/2002.01505)
motivation

Knots K, K^{*} in S^{3} are concordant if:

Concordance group

$\mathcal{C}:=$ abelian group of concordance classes of knots

■ Amphicheiral knots have order 2 in \mathcal{C}.

■ Other torsion in \mathcal{C} ? Unknown!

■ Classical obstructions are:

1. the Arf invariant, and
2. the algebraic concordance group.

Algebraic concordance group

■ A is a $2 n \times 2 n$ dim. matrix over a field $\mathbb{F}, \chi(F) \neq 2$, and

$$
\operatorname{det}\left(\left(A-A^{\top}\right)\left(A+A^{\top}\right)\right) \neq 0
$$

- A is metabolic if $\exists P$ such that $\operatorname{det}(P) \neq 0$ and $P A P^{\top}$:

$$
P A P^{\top}=\left[\begin{array}{c|c}
0 & B \\
\hline C & D
\end{array}\right] .
$$

If $A \oplus-B$ is metabolic, A is (algebraically) concordant to B.

- $\mathcal{G}^{\mathbb{F}}:=$ abelian group of these algebraic concordance classes.

Theorem (J. Levine)

$$
\mathcal{G}^{\mathbb{Q}} \cong \mathbb{Z}^{\infty} \oplus \mathbb{Z}_{2}^{\infty} \oplus \mathbb{Z}_{4}^{\infty}
$$

Virtual concordance

$$
\Sigma, \Sigma^{*} \text { closed oriented surfaces. }
$$

Knots $K \subset \Sigma \times I, K^{*} \subset \Sigma^{*} \times I$ are virtually concordant if:

This is equivalent to concordance of virtual knots, à la Kauffman.

Virtual knot concordance group

$\mathcal{V}:=$ concordance group of long virtual knots.

The structure of $\mathcal{V C}$ is mysterious.
$\square(C, 2020) \mathcal{V C}$ is not abelian.
■ (C, 2016) Every $[K] \in \mathcal{V C}$ contains a long virtual knot that is not band-pass equivalent to either the trefoil or the unknot.
■ (C, 2019) Every virtual concordance class contains a prime hyperbolic representative and a prime satellite representative.

Questions \& Today's goals

Question

Is there any non-classical torsion in VC?

Today's goals

■ Generalize Arf invariant, algebraic concordance group to homologically trivial knots in $\Sigma \times I$.

- Classify the uncoupled concordance group.
- Find a geometric realization of these groups.

■ Give a potential example of non-classical torsion in \mathcal{V} C.
almost classical knots

Definition (Almost classical)

$K \subset \Sigma \times I$ is almost classical if $[K]=0 \in H_{1}(\Sigma \times I ; \mathbb{Z})$. In other words, iff it bounds a Seifert surface in $\Sigma \times I$.

$F_{1}(m, n)$

$F_{0}(m, n)$

$F_{-1}(m, n)$

Directed Seifert forms

- $F \subset \Sigma \times I$ a Seifert surface of an $A C$ knot $K \subset \Sigma \times I$.
- Directed Seifert pairing: $\theta_{K, F}^{ \pm}: H_{1}(F) \times H_{1}(F) \rightarrow \mathbb{Z}$,

$$
\theta_{K, F}^{ \pm}(x, y)=\operatorname{Ik}_{\Sigma}\left(x^{ \pm}, y\right)
$$

- Directed Seifert matrix: $A^{ \pm}:=\left(\mathrm{lk}_{\Sigma}\left(a_{i}^{ \pm}, a_{j}\right)\right)$.
- Directed Alexander poly:

$$
\Delta_{K, F}^{ \pm}(t)=\operatorname{det}\left(A^{ \pm}-t\left(A^{ \pm}\right)^{\top}\right) .
$$

■ Quadratic form of $(K, F): q_{K, F}: H_{1}\left(F ; \mathbb{Z}_{2}\right) \rightarrow \mathbb{Z}_{2}$

$$
q_{K, F}(x) \equiv \theta_{K, F}^{ \pm}(x, x) \equiv \operatorname{lk}_{\Sigma}\left(x^{ \pm}, x\right) \quad(\bmod 2)
$$

NOTE: $A^{+} \neq\left(A^{-}\right)^{\top}$ (in general)

$$
\begin{gathered}
A^{+}+\left(A^{+}\right)^{\top}=A^{-}+\left(A^{-}\right)^{\top}, \text { or } \\
A^{-}-A^{+}=-\left(A^{-}-A^{+}\right)^{\top}
\end{gathered}
$$

algebraic concordance

Coupled concordance group $(\mathcal{V}, \mathcal{V})^{\mathbb{F}}$

- An \mathbb{F}-Seifert couple is a pair $\mathbf{A}=\left(A^{+}, A^{-}\right)$of $2 n \times 2 n$ matrices over \mathbb{F} such that:

$$
A^{-}-A^{+} \text {is skew-symmetric } \& \operatorname{det}\left(A^{-}-A^{+}\right) \neq 0
$$

- $\mathbf{A}=\left(A^{+}, A^{-}\right)$is called metabolic (or null-concordant) if $A^{ \pm}$are simultaneously congruent over \mathbb{F} to matrices in block form:

$$
\left[\begin{array}{c|c}
0 & P^{ \pm} \\
\hline Q^{ \pm} & R^{ \pm}
\end{array}\right]
$$

- $\mathbf{A}=\left(A^{+}, A^{-}\right)$is admissible if $\operatorname{det}\left(A^{+}+\left(A^{+}\right)^{\top}\right) \neq 0$.

■ Concordance classes of admissible Seifert couples form a group $(\mathcal{V G}, \mathcal{V})^{\mathbb{F}}$

Uncoupled concordance group $\mathcal{V} \mathcal{G}^{\mathbb{F}}$

- An \mathbb{F}-directed matrix is a $2 n \times 2 n$ dimensional matrix A with coefficients in \mathbb{F} such that $\operatorname{det}\left(A+A^{\top}\right) \neq 0$.

■ A is metabolic if congruent over \mathbb{F} to a matrix having a half dimensional block of zeros.

- Concordances classes of directed Seifert matrices form a group $\mathcal{V} \mathcal{G}^{\mathbb{F}}$, called the uncoupled concordance group.

Relating the algebraic concordance groups

There are surjections:

$$
\begin{aligned}
& \pi^{ \pm}:(\mathcal{V G}, \mathcal{V G})^{\mathbb{F}} \longrightarrow \mathcal{V} \mathcal{G}^{\mathbb{F}}, \pi^{ \pm}\left(A^{+}, A^{-}\right)=A^{ \pm} . \\
& \text {...and an injection: } \\
& \iota: \mathcal{G}^{\mathbb{F}} \rightarrow(\mathcal{V G}, \mathcal{V G})^{\mathbb{F}}, \iota(A)=\left(A, A^{\top}\right)
\end{aligned}
$$

Theorem (C-Mukherjee)

The classical knot concordance group $\mathcal{G}^{\mathbb{Z}}$ embeds as a subgroup of $(\mathcal{V G}, \mathcal{V G})^{\mathbb{Q}}$ into the equalizer of π^{+}and π^{-}.

Directed isometric structures

$$
A \in V \mathcal{G}^{\mathbb{F}} \longrightarrow\left(A+A^{\top}, A^{-1} A^{\top}\right)
$$

- $A^{-1} A^{\top}$ is an isometry of $A+A^{\top}$.

■ Even though $A^{+}+\left(A^{+}\right)^{\top}=A^{-}+\left(A^{-}\right)^{\top}$, isometric structures can be different.

Classification of $\mathcal{V} \mathcal{F}^{\mathbb{F}}$

Theorem (C-Mukherjee)

Let $\mathcal{J}(\mathbb{F})$ denote the fundamental ideal of the Witt ring over \mathbb{F}. Then:

$$
\mathcal{V} \mathcal{G}^{\mathbb{F}} \cong \mathcal{J}(\mathbb{F}) \oplus \mathcal{G}^{\mathbb{F}}
$$

Idea of proof:

- For $A \in \mathcal{V} \mathcal{G}^{\mathbb{F}}$, define an isometric structure $\left(A+A^{\top}, A^{-1} A^{\top}\right)$.

■ Decompose $B=A+A^{\top}$ into the primary components of the irreducible factors of the characteristic polynomial $\lambda(t)$ of $A^{-1} A^{\top}$.
■ If $t-1$ divides $\lambda(t), B$ has a component in $\mathcal{J}(\mathbb{F})$. All other components are in $\mathcal{G}^{\mathbb{F}}$.

Corollaries

Useful facts

1. If 1 is not a root of the directed Alexander polynomial, the concordance class is in $\mathcal{G}^{\mathbb{F}}$.
2. If 1 is a root of the Alexander polynomial, you get additional obstructions coming from the $\mathcal{J}(\mathbb{F})$ summand.

Theorem (C-Mukherjee)

For \mathbb{F} a global field of characteristic 0 , the only possible finite order of elements in $\mathcal{V G}{ }^{\mathbb{F}}$ and $(\mathcal{V G}, \mathcal{V G})^{\mathbb{F}}$ are 1,2 , and 4 .

Examples

Theorem (C-Mukherjee)

There are infinitely many knots $K \subset \Sigma \times I$ such that for each $k \in\{1,2,4\}, K$ bounds a Seifert surface having (uncoupled) algebraic concordance order k.

Proof.

Set $m_{k}=3+19^{2} \cdot 4 k, n=11$. Choose k so that m_{k} is prime. Then $\operatorname{order}\left(A_{0}^{+}\right)=4, \operatorname{order}\left(A_{ \pm 1}^{ \pm}\right)=1, \operatorname{order}\left(A_{+}^{-1}\right)=2$.

17

$$
F_{-1}(m, n)
$$

geometric realization

virtual concordance of seifert surfaces

Definition

Two Seifert surfaces $F_{0} \subset \Sigma_{0} \times I, F_{1} \subset \Sigma_{1} \times I$ of knots K_{0}, K_{1} will be called virtually concordant if there is:

1. a compact oriented 3 -manifold W,
2. a properly embedded annulus A in $W \times I$, and
3. a compact, oriented 3-manifold $M \subset W \times I$,
such that the following conditions are satisfied:
4. $\partial W=\Sigma_{1} \sqcup-\Sigma_{0}$,
5. $\partial A=K_{1} \sqcup-K_{0}$,
6. $\partial M=F_{1} \cup A \cup-F_{0}$, and
7. $M \cap(\partial W \times I)=F_{1} \sqcup-F_{0}$.

Example

Example

Theorem (C-Mukherjee)

> virtually concordant seifert surfaces $\Longrightarrow \begin{gathered}\mathbb{Z} \text {-Seifert couples } \\ \text { algebraically concordant }\end{gathered}$

Corollary (C-Mukherjee)

virtually concordant \& quadratic forms \longrightarrow their Arf invariants seifert surfaces
\& regular are equal

A^{-}has order $1, A^{+}$has order 2

Does this have order 2 in \mathcal{V} ?

Here are the isometric structures for A^{+}:

$$
A^{+}+\left(A^{+}\right)^{\top}=\left[\begin{array}{rrrr}
2 & -2 & 0 & 0 \\
-2 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right],\left(A^{+}\right)^{-1}\left(A^{+}\right)^{\top}=\left[\begin{array}{rrrr}
-1 & 2 & -1 & -1 \\
0 & 1 & 0 & 0 \\
-2 & 2 & -2 & -1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Here is the primary decomposition:

$$
B^{\prime} \oplus B^{\prime \prime}=\left[\begin{array}{rr|rr}
-2 & 0 & 0 & 0 \\
0 & 10 & 0 & 0 \\
\hline 0 & 0 & 2 & 5 \\
0 & 0 & 5 & 10
\end{array}\right], S^{\prime} \oplus S^{\prime \prime}=\left[\begin{array}{ll|rr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\hline 0 & 0 & -4 & -5 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Thank you!

