

micah chrisman

the ohio state university

knots in washington 49.5-12/5/2021

joint w/ Sujoy Mukherjee (OSU)

[CM] Algebraic concordance and almost classical knots (https://arxiv.org/abs/2002.01505)

motivation

$\ensuremath{\mathbb{C}}\xspace$ =abelian group of concordance classes of knots

- Amphicheiral knots have order 2 in C.
- Other torsion in C? Unknown!

Classical obstructions are: 1. the Arf invariant, and 2. the algebraic concordance group.

Algebraic concordance group

• A is a $2n \times 2n$ dim. matrix over a field \mathbb{F} , $\chi(F) \neq 2$, and

$$\det((A - A^{\intercal})(A + A^{\intercal})) \neq 0$$

• A is *metabolic* if $\exists P$ such that $det(P) \neq 0$ and PAP^{\intercal} :

$$PAP^{\mathsf{T}} = \begin{bmatrix} 0 & B \\ \hline C & D \end{bmatrix}.$$

If A ⊕ −B is metabolic, A is (algebraically) concordant to B.
G^F :=abelian group of these algebraic concordance classes.

Theorem (J. Levine)

$$\mathbb{G}^{\mathbb{Q}} \cong \mathbb{Z}^{\infty} \oplus \mathbb{Z}_2^{\infty} \oplus \mathbb{Z}_4^{\infty}$$

Virtual concordance

 Σ, Σ^* closed oriented surfaces.

Knots $K \subset \Sigma \times I$, $K^* \subset \Sigma^* \times I$ are virtually concordant if:

This is equivalent to concordance of virtual knots, à la Kauffman.

$\mathcal{VC} := \text{concordance group of long virtual knots.}$

The structure of \mathcal{VC} is mysterious.

- (C, 2020) VC is not abelian.
- (C, 2016) Every [K] ∈ VC contains a long virtual knot that is not band-pass equivalent to either the trefoil or the unknot.
- (C, 2019) Every virtual concordance class contains a prime hyperbolic representative and a prime satellite representative.

Question

Is there any non-classical torsion in $\mathcal{VC}?$

Today's goals

- Generalize Arf invariant, algebraic concordance group to homologically trivial knots in $\Sigma \times I$.
- Classify the uncoupled concordance group.
- Find a geometric realization of these groups.
- Give a potential example of non-classical torsion in \mathcal{VC} .

almost classical knots

Definition (Almost classical)

 $K \subset \Sigma \times I$ is almost classical if $[K] = 0 \in H_1(\Sigma \times I; \mathbb{Z})$. In other words, iff it bounds a Seifert surface in $\Sigma \times I$.

Directed Seifert forms

- $F \subset \Sigma \times I$ a Seifert surface of an AC knot $K \subset \Sigma \times I$.
- Directed Seifert pairing: $\theta_{K,F}^{\pm}: H_1(F) \times H_1(F) \to \mathbb{Z}$,

$$\theta_{K,F}^{\pm}(x,y) = \mathsf{lk}_{\Sigma}(x^{\pm},y).$$

- <u>Directed Seifert matrix</u>: $A^{\pm} := (lk_{\Sigma}(a_i^{\pm}, a_j)).$
- Directed Alexander poly:

$$\Delta^{\pm}_{K,F}(t) = \det(A^{\pm} - t(A^{\pm})^{\intercal}).$$

Quadratic form of (K, F): $q_{K,F} : H_1(F; \mathbb{Z}_2) \to \mathbb{Z}_2$

$$q_{K,F}(x) \equiv \theta_{K,F}^{\pm}(x,x) \equiv \mathsf{lk}_{\Sigma}(x^{\pm},x) \pmod{2}$$

NOTE:
$$A^+ \neq (A^-)^{\intercal}$$
 (in general)

Lemma

$$A^+ + (A^+)^{\mathsf{T}} = A^- + (A^-)^{\mathsf{T}}$$
, or
 $A^- - A^+ = -(A^- - A^+)^{\mathsf{T}}$

algebraic concordance

Coupled concordance group $(\mathcal{VG}, \mathcal{VG})^{\mathbb{F}}$

■ An F-Seifert couple is a pair A = (A⁺, A⁻) of 2n × 2n matrices over F such that:

$$A^- - A^+$$
 is skew-symmetric & det $(A^- - A^+) \neq 0$.

A = (A⁺, A⁻) is called *metabolic (or null-concordant)* if A[±] are simultaneously congruent over 𝔅 to matrices in block form:

$$\begin{bmatrix} 0 & P^{\pm} \\ Q^{\pm} & R^{\pm} \end{bmatrix}.$$

- $\mathbf{A} = (A^+, A^-)$ is admissible if $\det(A^+ + (A^+)^{\mathsf{T}}) \neq 0$.
- \blacksquare Concordance classes of admissible Seifert couples form a group $(\mathcal{VG},\mathcal{VG})^{\mathbb{F}}$

An 𝔽-directed matrix is a 2n × 2n dimensional matrix A with coefficients in 𝔅 such that det(A + A^T) ≠ 0.

■ A is metabolic if congruent over F to a matrix having a half dimensional block of zeros.

• Concordances classes of directed Seifert matrices form a group $\mathcal{VG}^{\mathbb{F}}$, called the uncoupled concordance group.

Relating the algebraic concordance groups

There are surjections:

$$\pi^{\pm} : (\mathcal{VG}, \mathcal{VG})^{\mathbb{F}} \longrightarrow \mathcal{VG}^{\mathbb{F}}, \pi^{\pm}(A^{+}, A^{-}) = A^{\pm}.$$

...and an injection:

$$\iota: \mathfrak{G}^{\mathbb{F}} \to (\mathcal{V}\mathfrak{G}, \mathcal{V}\mathfrak{G})^{\mathbb{F}}, \iota(A) = (A, A^{\intercal})$$

Theorem (C-Mukherjee)

The classical knot concordance group $\mathfrak{G}^{\mathbb{Z}}$ embeds as a subgroup of $(\mathfrak{VG}, \mathfrak{VG})^{\mathbb{Q}}$ into the equalizer of π^+ and π^- .

$$A \in \mathcal{VG}^{\mathbb{F}} \longrightarrow (A + A^{\intercal}, A^{-1}A^{\intercal})$$

• $A^{-1}A^{\mathsf{T}}$ is an isometry of $A + A^{\mathsf{T}}$.

■ Even though A⁺ + (A⁺)^T = A⁻ + (A⁻)^T, isometric structures can be different.

Theorem (C-Mukherjee)

Let $\mathfrak{I}(\mathbb{F})$ denote the fundamental ideal of the Witt ring over \mathbb{F} . Then:

$$\mathcal{VG}^{\mathbb{F}}\cong \mathfrak{I}(\mathbb{F})\oplus\mathfrak{G}^{\mathbb{F}}.$$

Idea of proof:

- For $A \in \mathcal{VG}^{\mathbb{F}}$, define an isometric structure $(A + A^{\mathsf{T}}, A^{-1}A^{\mathsf{T}})$.
- Decompose B = A + A^T into the primary components of the irreducible factors of the characteristic polynomial λ(t) of A⁻¹A^T.
- If t − 1 divides λ(t), B has a component in J(F). All other components are in G^F.

Useful facts

- 1. If 1 is not a root of the directed Alexander polynomial, the concordance class is in $\mathcal{G}^{\mathbb{F}}.$
- 2. If 1 is a root of the Alexander polynomial, you get additional obstructions coming from the $\mathcal{I}(\mathbb{F})$ summand.

Theorem (C-Mukherjee)

For \mathbb{F} a global field of characteristic 0, the only possible finite order of elements in $\mathcal{VG}^{\mathbb{F}}$ and $(\mathcal{VG}, \mathcal{VG})^{\mathbb{F}}$ are 1, 2, and 4.

Theorem (C-Mukherjee)

There are infinitely many knots $K \subset \Sigma \times I$ such that for each $k \in \{1, 2, 4\}$, K bounds a Seifert surface having (uncoupled) algebraic concordance order k.

Proof.

Set $m_k = 3 + 19^2 \cdot 4k$, n = 11. Choose k so that m_k is prime. Then $\operatorname{order}(A_0^+) = 4$, $\operatorname{order}(A_{\pm 1}^{\pm}) = 1$, $\operatorname{order}(A_{+}^{-1}) = 2$.

17

 $F_{-1}(m, n)$

geometric realization

Definition

Two Seifert surfaces $F_0 \subset \Sigma_0 \times I$, $F_1 \subset \Sigma_1 \times I$ of knots K_0 , K_1 will be called *virtually concordant* if there is:

- 1. a compact oriented 3-manifold W,
- **2.** a properly embedded annulus A in $W \times I$, and
- **3.** a compact, oriented 3-manifold $M \subset W \times I$,

such that the following conditions are satisfied:

1.
$$\partial W = \Sigma_1 \sqcup -\Sigma_0$$
,

$$\mathbf{2.} \ \partial A = K_1 \sqcup - K_0,$$

3.
$$\partial M = F_1 \cup A \cup -F_0$$
, and

4. $M \cap (\partial W \times I) = F_1 \sqcup -F_0.$

Theorem (C-Mukherjee)

virtually concordant seifert surfaces

ℤ−Seifert couples algebraically concordant

Corollary (C-Mukherjee)

virtually concordant & quadratic forms seifert surfaces & regular \implies their Arf invariants are equal

Example: 6.85091

 A^- has order 1, A^+ has order 2

Does this have order 2 in \mathcal{VC} ?

Here are the isometric structures for A^+ :

$$A^{+}+(A^{+})^{\mathsf{T}} = \begin{bmatrix} 2 & -2 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}, (A^{+})^{-1}(A^{+})^{\mathsf{T}} = \begin{bmatrix} -1 & 2 & -1 & -1 \\ 0 & 1 & 0 & 0 \\ -2 & 2 & -2 & -1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Here is the primary decomposition:

$$B' \oplus B'' = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ \hline 0 & 0 & 2 & 5 \\ 0 & 0 & 5 & 10 \end{bmatrix}, S' \oplus S'' = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & -4 & -5 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

25

Thank you!