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Beyond “Fixed versus Random Effects”:
A Framework for Improving Substantive
and Statistical Analysis of Panel, Time-Series

Cross-Sectional, and Multilevel Data
Brandon L. Bartels

cross-sectional (TSCS), and multilevel (or hierarchical) data ~ face dif-
ficult choices when confronting the model specification and estimation
stages of their research. Importantly, clustered data structures possess mul-
tiple levels of analysis where lower-level units of analysis are nested within
higherlevel units of analysis. Clustering induces unobserved heterogeneity
across clusters, meaning the conditional cluster means of the dependent
variable vary for unobserved reasons. To examine clustered data, politi-
cal scientists often choose between a “fixed effects” (FE), “random effects”
(RE),! and “complete pooling” modeling approach. The first two approaches
account for unobserved heterogeneity, though in very different ways, while
complete pooling ignores unobserved heterogeneity altogether. Moreover,
each approach produces different, and, in some cases, ambiguous substan-
tive interpretations of coefficients.
While debates continue within political science about which approach
is best for certain situations (e.g., Beck 2001; Beck and Katz 2001, 2007;
Green, Kim, and Yoon 2001; Stimson 1985; Wilson and Butler 2007), [ argue
that some core issues concerning clustered data continue to be both mischar-
acterized and ignored. In addition to clarifying some misconceptions about
extant approaches, I present a unified and simple modeling framework for

Political scientists analyzing clustered data — namely panel, time-series

Source: Brandon L, Bartels (2015).




94 Dynamic Models

analyzing clustered data, which should be of general interest to analysts of
panel, TSCS, and multilevel data. I call this a “unified” approach because it
solves many of the substantive and statistical problems that extant approaches
possess. First, the method solves the problem of cluster confounding, which
occurs when a level-1 variable (a time-varying variable in TSCS and panel
data) exhibits distinct within-cluster and between-cluster effects, yet one
does not distinguish these two types of variation in the variable. Thus, the
within- and between-cluster effects are combined, or confounded, together
into a single effect (e.g., Skrondal and Rabe-Hesketh 2004; Zomn 2001b).
The solution, which entails estimating separate within- and between-cluster
effects, allows for more explicit substantive interpretations of effects. Second,
estimation of a random intercept model (or more generally, a random coef-
ficient model) allows one to control for unobserved heterogeneity at the
cluster level. Third, the solution to cluster confounding satisfies the contro-
versial statistical assumption associated with the RE approach that level-1
independent variables be uncorrelated with the random effects term. Fourth,
unlike the FE approach, the proposed method allows for the inclusion of
level-2 variables (time-constant variables in TSCS and panel data), thus not
limiting the types of hypotheses one can test. And fifth, the method allows
for statistical tests of cluster confounding, i.e., whether differences between
within- and between-cluster effects are statistically significant.

I empirically illustrate the modeling approach using three substantive
examples: (1) global human rights abuse (Poe and Tate 1994; Poe, Tate,
and Keith 1999); (2) oil production in OPEC countries (Blaydes 2004, 2006;
Goodrich 2006); and (3) Senate voting on Supreme Court nominations
(Epstein, Lindstadt, Segal, and Westerland 2006). Reexaminations of these
data produce refined interpretations of the some of the core substantive
conclusions.

Clustering and Unobserved Heterogeneity

As is well known, clustering induces unobserved heterogeneity, which means
that the cluster means of the dependent variable will vary across clusters
because of unmeasured cluster-level factors. Unobserved heterogeneity is a
core concept that should always be addressed in clustered data. For some
models, one can include observed variables that will explain part of this vari-
ation in the dependent variable across clusters, but there will almost always
be residual error variance at the cluster level, just as there is always residual
error variance in a plain vanilla OLS model. Figure 1 provides a simple illus-
tration of unobserved heterogeneity in clustered data. Across the horizontal
axis are ten clusters, e.g., individuals or countries in panel or TSCS data;
schools, countries, or states in multilevel data. The dots represent values
of the dependent variable for each unit of analysis within a given cluster.
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Cluster Number

Note: Dots represent responses within a given cluster. Dashes represent the means of Y for each cluster.
Figure 1: lllustration of unobserved heterogeneity across clusters

Each cluster contains six observations. For panel and TSCS data, the dots
could represent values of Y over six time periods. For multilevel data, the
dots could represent six individuals per school. The dash within each clus-
ter represents that cluster’s mean of the dependent variable. When statisti-
cians and political methodologists speak of “unobserved heterogeneity” in
clustered data, they are simply referring to variation in these dashes across
clusters.? That is, there is something about cluster 7 that makes it on average
higher in values of the dependent variable than clusters 1, 2, and 10; but
this “something” cannot be completely captured by observed independent
variables. Once some observed cluster-specific independent variables are
included in a model, we are then interested in variation in the conditional
cluster means of the dependent variable.

To introduce these issues in equation form, I prefer a generalized multi-
level modeling setup. For now, I assume a linear modeling framework.

Y; = By + BiXyy + BoXoy + €5 [Level-1 Equation] (1a)

Boj = Yoo + Yo121j + Uy [Level-2 Equation] (1b)

Equations 1a and 1b can be rewritten in a reduced-form representation by
substituting the level-2 equation into the level-1 equation:

Y =00 + By + BoXpy + Vor 2y + Ugy + €5 2)

In this setup, i indexes level-1 units and j indexes level-2 units. In TSCS and
panel data, i represents measurement occasions and j represents individuals
or countries. TSCS and panel data modelers are used to communicating the
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number of cross-sectional units (N) and time points (7). In the multilevel
representation above, cross-sectional units are level-2 units and T represents
the cluster sizes for each cluster (the number of measurement occasions per
cluster). Thus, if N = 30 and T = 40, we have 1,200 measurement occasions
(level-1 units) nested within 30 individuals or countries (level-2 units). Two
variables, X,; and X,;, are included at level 1. For panel and TSCS data,
these are time-varying variables. For multilevel data, with individuals nested
within higher-level units, these would be individual-level variables. Z,; is a
level-2 variable, which is a time-constant (or country/individual-specific)
variable in panel and TSCS data and a contextual variable in multilevel data.
e; represents the level-1 error, a random term assumed to be normally dis-
tributed with mean zero and an estimable variance.

The inclusion of 3, means that the intercept is allowed to vary somehow
across level-2 units. u,; represents unobserved heterogeneity across clusters,
and as I discuss in more detail below, there are alternative ways to treat
Referring to back to Figure 1, the inclusion of 3, and u, allows the con-
ditional means of the dependent variable to vary across level-2 units for
unobserved reasons. Note how the level-2 equation allows for the varying
intercept to be explained by observed (Z,) and unobserved heterogeneity
(ug). Failure to account for unobserved heterogeneity (i.e., completely pool-
ing the data) forces the conditional cluster means of the dependent vari-
able to be equal, which is a restrictive assumption indeed, though one we
can test for. If violated, forcing this assumption will lead to biased param-
eters estimates (e.g., Gelman and Hill 2007; Hsiao 2003; Raudenbush and
Bryk 2002; Skrondal and Rabe-Hesketh 2004). For panel and TSCS data,
dynamics are also a concern, and other work discusses this issue in greater
depth (Beck and Katz 1996; Hsiao 2003; Heckman 1981; Wilson and Butler
2007). Throughout this paper, I adopt a standard practice of using a lagged
dependent variable to account for dynamics.

Yij =Yoo t+ ﬂzXn, + 5zng + ﬁjYU(t_I) + 70121}' + Ug + ¢ 3)

Modeling Approaches for Handling
Unobserved Heterogeneity

How to model unobserved heterogeneity (u,) in clustered data consti-
tutes a core debate in the statistical literature generally (e.g., Baltagi 2005;
Hsiao 2003; Wooldridge 2002) and in political science applications (e.g.,
Beck 2001; Green et al. 2001; Stimson 1985; Wilson and Butler 2007; Zorn
2001a). Three general avenues are available for treating u,, The first is a
complete pooling approach, which assumes that u, = 0 and thus ignores
unobserved heterogeneity. Note that a commonly-used modeling approach
for TSCS data - the original Beck and Katz (BK) (1995) recommendation
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of using “panel-corrected standard errors” (PCSEs) - is a complete pooling
approach that does not account for unobserved heterogeneity. The authors’
PCSEs do, of course, make corrections for the standard errors, but the OLS
coefficients that the authors recommend are completely pooled estimates.
The major payoff of this approach is its simplicity, and numerous practitio-
ners have implemented this procedure (see Wilson and Butler 2007 for an
extensive review). A disadvantage of complete pooling is that ignoring unob-
served heterogeneity can induce omitted variable bias (e.g., Hsiao 2003;
Skrondal and Rabe-Hesketh 2004). Moreovet, as I will discuss in more detail
below, interpretation of results is unclear because the coefficients assume
that the within- and between-cluster effects are equal. Thus, one cannot be
completely confident over which level of analysis (e.g., longitudinal versus
cross-sectional; individual versus aggregate) the relationship actually occurs.

Second, a fixed effects approach allows each level-2 unit to possess its
own intercept, meaning u; is treated as fixed. The FE approach is a “no
pooling” approach. Since the cluster dummies absorb all of the between-
cluster variation in the data, the effects of X;; and X,; are solely within-
cluster effects and the effect of Z,; cannot be estimated. For TSCS data, a
now standard modeling practice is to use an FE model with panel-corrected
standard errors and a lagged dependent variable to account for dynamics
(Beck and Katz 1996; Beck 2001; Wilson and Butler 2007), though there is
not an ironclad consensus about this strategy among practitioners (see, e.g.,
Blaydes 2006; Goodrich 2006).

One of the concerns practitioners raise about the FE model is that it eats up
too many degrees of freedom, resuiting in shaky estimates (e.g., Beck 2001;
Beck and Katz 2001). This is somewhat of a misconception. Since all between-
cluster variation in the data is absorbed by the cluster-specific dummies, the
effects of independent variables are solely within-cluster effects, which has
implications for how one interprets coefficients. For TSCS data, such effects
are interpreted as: for a given country, as X varies across time by one unit, Y
increases or decreases by 3 units. The fact that cluster-specific independent
variables (like Z;; in equation 1b) cannot be included in the FE model is seen as
a major disadvantage of the FE approach since it eliminates the ability to test
between-cluster hypotheses. Another disadvantage is that one cannot retrieve
“good” estimates of sluggish, or slowly-changing, variables in the FE model
(Beck 2001; Plumper and Troeger 2007). Though again, this should not be
surprising, since the FE model produces solely within-cluster effects. For vari-
ables in panel or TSCS data that do not vary much over time, we should expect
coefficients to be inefficient given the lack of within-cluster information in the
data. For sluggish variables, the issue is not the FE model, per se, but instead
with the nature of the data. Importantly; one can test for the adequacy of the
FE specification by performing a joint F-test of the cluster dummies.

Third, a random effects, or random intercept, approach treats i, as dis-
tributed normally with mean zero and an estimable variance. This approach
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decomposes the total error into a level-1 component (e;) and a level-2 com-
ponent (u,). The RE model is a “partial pooling” approach, with the effects
of X;; and X,; a weighted average of the within and between-cluster varia-
tion in the data (e.g., Gelman and Hill 2007; Hsiao 2003; Skrondal and
Rabe-Hesketh 2004). The RE approach, and the more generalized random
coefficient model, is widely used in analyses of panel data (with large N rela-
tive to T) and multilevel data (e.g., Bowler, Donovan, and Hanneman 2003;
Martin 2001; Steenbergen and Jones 2002).3

A major complaint lodged against the RE model relates to the restric-
tive assumption that level-1 independent variables be uncorrelated with the
random effects term: Cov(X}, u@.) = (. Since a level-1 variable varies both
within and between clusters, many argue that this an unrealistic assump-
tion to satisfy, since unobserved heterogeneity will almost always be cor-
related with the independent variables. This controversial assumption often
makes the FE model, which does not incorporate this assumption, a superior
choice over the RE model (e.g., Beck 2001; Kristensen and Wawro 2003;
Wilson and Butler 2007). Analysts often rely on the Hausman (1978) test
to assess the adequacy of this controversial assumption. I will have more
to say about this assumption and the Hausman test later on. Moreover, for
TSCS data, some argue that RE is inappropriate because it treats unobserved
heterogeneity across countries as random, yet for a population of coun-
tries, an FE approach would be superior (Beck 2001; Kristensen and Wawro
2003). This is a major misconception. Unobserved heterogeneity represents
unmeasured differences between countries in the dependent variable, and
so the RE approach simply separates random error into a within-cluster (e;)
and between-cluster (u,) component. The latter represents random error
across, e.g., countries, just as a simple OLS model would contain a random
error term that captures unobserved differences across countries in a cross-
sectional analysis. A disadvantage of the RE approach - and one shared with
the complete pooling approach - relates to the interpretation of coefficients.
Though the coefficients from an RE model are now partially pooled, as
opposed to completely pooled, the estimates still assume that the within- and
between-cluster effects are equal, thus making substantive interpretations
imprecise. One major advantage of the RE approach over FE is that one can
include level-2 variables (e.g., time-constant variables in TSCS and panel
data), which allows one to test the effects of between-cluster variables.

A Unified Modeling Approach for Clustered Data

In this section, I elaborate on a simple yet powerful methodology capable of
solving many of the substantive and statistical problems common to extant
approaches and, at the same time, maintaining many of the positive aspects
of these approaches. The approach: (1) solves the substantive interpretation
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problems associated with cluster confounding, which occurs when one
assumes that the within- and between-cluster effects are equal; (2) accounts
for unobserved heterogeneity via the use of a random intercept model, which
incorporates a random error at the cluster level; (3) satisfies the controver-
sial statistical assumption that the level-1 variables be uncorrelated with the
random effects term; (4) allows for the inclusion of level-2 variables, some-
thing the FE approach cannot accommodate; and (5) allows for statistical
tests of cluster confounding, which bear resemblance to the Hausman test.

Cluster Confounding. To motivate the issue of cluster confounding, I draw
upon work in statistics by Skrondal and Rabe-Hesketh (2004, 50-53; see also
Rabe-Hesketh and Skrondal 2005) and in political science by Zorn (2001b).
In panel, TSCS, and multilevel data, there are multiple sources of variation
in the data, which has implications for how we understand the effects of
independent variables. It is worth remembering that variables may be mea-
sured so that (1) they vary both within and between clusters (e.g., time-vary-
ing variables in panel and TSCS data; level-1 variables in multilevel data)
or (2) they vary only between clusters and not within clusters (e.g., time-
constant variables in panel and TSCS data; level-2 variables in multilevel
data). Relationships between independent variables and the dependent vari-
able will vary over different units of analysis depending on which level they
are measured at. An important issue that has gotten lost in the debate over
modeling approaches is the notion that a level-1 variable may exhibit quite
distinct within- and between-cluster effects, as highlighted by Zorn (2001b)
in the context of discrete-time duration modeling. For example, in TSCS data,
what if X exhibited a null within-cluster, or longitudinal, effect but a positive
between-cluster effect? We would conclude that, for a given country, increases
in X over time do not affect Y. But across countries, as average levels of X
increase, average levels of Y increase as well. Recall that the FE model would
only recover the within-country effect. Importantly, the complete pooling and
RE models would assume that the within- and between-country effects are
equal. That is, we would have one coefficient, and we would assume that, for
a given country, a one-unit change in X across time has the same impacton Y
as a one-unit change in the average of X between countries.

The example above is one of cluster confounding, which occurs when a
level-1 variable exhibits distinct within-cluster and between-cluster effects,
yet one only includes the original level-1 variable in the model without distin-
guishing these two types of variation in the variable. As a result of not mak-
ing this distinction, the within- and between-cluster effects are combined, or
confounded, into a single effect representing an average of the within- and
between-cluster effects. If the within- and between-cluster effects of a level-1
variable are the same, which is something we can test for, then cluster con-
founding is not a problem. But if they are not equal, the uncorrected results
cannot distinguish whether the effects are within- or between-cluster effects.
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Cluster confounding has significant implications for how one interprets the
effects of independent variables in clustered data, and therefore, detecting
and correcting for it is crucial for understanding the precise nature of rela-
tionships and for testing hypotheses.

Figure 2 illustrates the importance of cluster confounding by present-
ing different types of scenarios of within- versus between-cluster effects.
For each plot, three clusters (e.g., countries, individuals, states, schools) are
presented. The solid lines represent within-cluster effects and the dashed
lines represent between-cluster effects. In Figure 2A, no cluster confounding
exists; the within- and between-cluster slopes are equal. In the remaining
three plots, significant cluster confounding occurs. Figure 2B presents a sce-
nario where there is a positive within-cluster effect, but a negative between-
cluster effect. For TSCS data, this would mean that, for a given country,
increases in X produce increases in Y, but between countries, as average

Within-Cluster Effect =~ «w==e Between-Cluster Effect
A. Within-Cluster Effect = Between- B. Positive Within-Cluster Effect,
Cluster Effect (No Cluster Confounding) Nufl Between-Cluster Effect
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Figure 2: lllustration of cluster confounding
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levels of X increase, the average of Y does not change. Figure 2C illustrates
drastic cluster confounding, where the within-cluster effect is positive, but
the between-cluster effect is negative. And Figure 2D represents a scenario
where the within-cluster effect is null, while the between-cluster effect is
negative. For instance, in multileve] data, we might have a null individual
effect but a negative aggregate effect. One can imagine additional cluster
confounding scenarios as well. On the whole, Figure 2 highlights the dire
consequences of not accounting for cluster confounding in empirical analy-
sis. One runs the risk of making incorrect substantive interpretations and
rendering incorrect verdicts on hypotheses.

Solving the problem of cluster confounding first involves calculat-
ing within- and between-cluster transformations of a level-1 variable, X, "
(e.g., Skrondal and Rabe-Hesketh 2004; Zorn 2001b). One first calculates
the cluster-specific mean of X;;, which we will call X,. This is the between-
cluster operationalization of X Then, the within- cluster operationalization
of X is calculated as: X Yo X X Since we have completely separated
the W1thm from the between cluster variation in X, note that X and X
are completely uncorrelated. As 1 discuss in more detall in the substannve
applications, X,.‘Jf" represents deviations in units of measurement from the
cluster mean. [ have created a Stata program to generate these within- and
between-cluster transformations. Details are in Online Appendix A.

Random Intercept Model. The next step involves specifying a random inter-
cept model and including the within- and between-cluster transformations of
the X’s in the model. Importantly, this modeling approach solves the problem
of cluster confounding while accounting for cluster-level unobserved hetero-
geneity. I use the reduced-form representation of the model from equation 2
to demonstrate the approach:

Y5 =Yoo + @X + Bzng +Yoly; T "102)_{1,' + ’Yoa}_(zj Ty te; (4

B, and 3, now represent within-cluster effects of X, and X,, respectively. These
would be purely individual effects in typical multilevel data and purely lon-
gitudinal effects for TSCS and panel data. -y,, and -y,; now represent between-
cluster effects of X, and X,, respectively. These would be aggregate effects in
multilevel data and cross-sectional effects in panel and TSCS data. In the sub-
stantive applications, I discuss interpretations of these effects in more detail.
Since this is a random-intercept model, the total error is partitioned into a
within-cluster (e;) and between-cluster component (ug). Both are assumed
to be normally dlsmbuted with means equaling zero and estimable variances.

Advantages. An extremely important feature of this model is that it satisfies
the controversial assumption, Cov(X;, u,;) = 0. The within-cluster transforma-
tions of X, and X, are now completely uncorrelated with the between-cluster
random effect, Uy, thus escaping the bias that can occur when violating this
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assumption. Of course, we still assume that all level-2 variables are uncor-
related with u; (e.g., Cov (X, j» Ug;) =0), but then again, we make similar
assumptions in a simple OLS regression that the independent variables be
uncorrelated with the error term. Another important feature of this model is
that, unlike the FE model, one can include level-2 variables, like Z,;, in the
model. Thus, the major advantage of this modeling approach over the FE
model is that one can still estimate within-cluster effects of variables, but in
addition, one can simultaneously estimate between-cluster effects and the
effects of additional level-2 variables. Unlike the FE model, the proposed
approach does not limit the types of hypotheses one can test.

Statistical Tests for Cluster Confounding. Another important feature of this
modeling approach is that it allows for statistical tests of whether cluster
confounding poses a significant problem, that is, whether the differences
between the within- and between-cluster effects are statistically significant.
To perform these tests, one estimates the same underlying model as in equa-
tion 4 but with different operationalizations of the X’s:

Yij =Yoo t+ ﬁlxlij +182X2ij + 70121;' +70221j + 703)—{2;' tUy; +¢; (5)

Instead of including the within-cluster operationalizations of the X’s (i.e., X"
and X3 ) as was done in equation 4, one includes the originally-coded X;; an
X,;.* For this specification, 3; and 3, in equation 5 will be identical to 4, and 3,
in equation 4; they still represent within-cluster effects of X; and X,, respectively.
However, including the originally-coded X’s instead of the within-cluster trans-
formations changes the meaning of v,, and ~,,. In equation 5, -y, and 7,
now represent the differences between the within-cluster and between-cluster
effects of X, and X,, respectively (see Skrondal and Rabe-Hesketh 2004, 53).
These ~ coefficients, in conjunction with their standard errors, allow one to
test for the existence of cluster confounding, that is, whether the differences
between the within- and between-cluster effects are statistically significant.

Note the resemblance of this testing procedure to the Hausman (1978)
test, which tests for differences between coefficients from an FE model an
RE model. The Hausman test essentially assesses the adequacy of the RE
model’s assumption that the within- and between-cluster effects are equal. If
they are equal, then cluster confounding is not a problem, and therefore the
RE coefficients will not differ systematically from the FE coefficients. Many
practitioners also conclude that significant differences between FE and RE
estimates means that the RE estimates are inconsistent due to the violation
of the controversial assumption that Cov(Xij, ug) = 0. But the estimation of
distinct within- and between-cluster effects for X removes this bias in the RE
model (see, e.g., Skrondal and Rabe-Hesketh 2004, 52-53, 269).

A Note on Dynamics. To account for dynamics in TSCS and panel data, one
should add the within-cluster operationalization of the lagged dependent
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variable, Yg!“(’t_u, This represents how, for a given country, past values of the
dependent variable influence current values. It would not be substantively
meaningful, however, to include the lagged cluster mean of Yj (i.e., Yie)-

Extensions

A logical extension to the random intercept specification discussed above
is to specify a random coefficient model (RCM) (see Beck and Katz 2007;
Raudenbush and Bryk 2002; Skrondal and Rabe-Hesketh 2004; Steenbergen
and Jones 2002; Western 1998). In addition to allowing the intercept to
vary across clusters, the RCM allows level-1 coefficients to vary across clus-
ters. Substantively, this accounts for cluster-level heterogeneity in the effects
of level-1 variables (i.e., causal heterogeneity). If one is interested in how
contextual variables shape the magnitude of level-1 effects, one can include
cross-level interactions. Below is an illustration:

Y, = By; + By Xl + By Xoy + ¢ [Level-1 equation] (6a)

Bo; = Yoo + Yor21; + Yoo Xrj + Y03 X2; +Up; [Level-2 equation] (6b)
By = Mo + My + Uy (6¢)

By = Yoo + Yary; + Uy; (6d)

The within-cluster effects of X; and X, (i.e., 8;; and 3,) are allowed to vary
across clusters. Z;;, a level-2 variable, is specified to moderate the impact
of the within-cluster effects of X; and X,. Unobserved heterogeneity in the
effects of 3; and $3, is represented by u;; and uy;, respectively.

Another specification that may be of substantive importance is to model
how between-cluster variation in X moderates the within-cluster impact of
X. In the multilevel context, Gelman, Shor, Bafumi, and Park (2006) have
shown how the individual-level effect of income on vote choice depends on
aggregate levels of income across states. That is, within poorer states, poor
individuals are significantly more likely to vote Democratic than rich individ-
uals. But within richer states, income essentially has a null individual-level
effect. In short, aggregate income across states moderates the individual-
level effect of income. A generalized version of such a model can be specified
as:

Y = By; + By Xty + By Xoy + ey [Level-1 equation] (7a)
Boj = Yoo + Y1Zy; + Yo X +VeaXzj +lo;  [Level-2 equation] (7b)

By = Yo + m% ;T (7¢)
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Byj =Yoo + 721)_(2;' + Uy (7d)

In this model, the between-cluster X’s moderate their respective within-
cluster effects of the X’s. The RCM offers additional opportunities for testing
substantively important phenomena.

Estimation

The linear random intercept model can be estimated via feasible generalized
least squares (FGLS), maximum likelihood (ML)}, or Bayesian simulation via
Markov Chain Monte Carlo (MCMC); technical details of these procedures
are discussed extensively elsewhere (Beck and Katz 2007; Gelman and Hill
2007; Hsiao 2003; Skrondal and Rabe-Hesketh 2004; Western 1998). Each
procedure should yield similar statistical inferences (assuming one employs
diffuse priors in the MCMC approach). Beck and Katz {(2007) show that
FGLS has poor finite-sample properties for the RCM, so practitioners should
proceed with caution when using this approach.

For nonlinear modeis (with binary, ordinal, count and other non-continu-
ous outcomes), the two “standards” for estimation are ML and MCMC (e.g.,
Rodriguez and Goldman 2001). These methods have been shown to be sig-
nificant improvements over penalized quasi-likelihood (PQL) and marginal
quasi-likelihood (MQL) procedures implemented in the software HLM (see
Rodriguez and Goldman 1995, 2001). For ML, maximizing the likelihood
entails acquiring the unconditional distribution of the outcome by integrat-
ing out the random effect(s). This can be done using numerical integration
via quadrature-based methods (Skrondal and Rabe-Hesketh 2004) or simu-
lated maximum likelihood (Train 2003). Skrondal and Rabe-Hesketh have
found that adaptive quadrature produces more accurate results compared to
standard quadrature. For RCMs, as the number of random effects increases,
ML becomes computationally inefficient, and analysts should consider using
MCMC instead. Estimation via ML is available in both Stata (using the “xt”
commands) and R (using the “Ime” or “nime” packages). Additional details
about model estimation and software are included in Online Appendix A.

Standard Errors. In TSCS analysis, standard errors have received a great deal
of attention. Beck and Katz’s (1995) panel-corrected standard errors (PCSEs)
adjust OLS standard errors for panel heteroskedasticity (due to clustering)
and contemporaneous error correlation. Since the proposed framework out-
lined above accounts for cluster-level heterogeneity and separates within-
from between-cluster variation in level-1 variables, threats to the accuracy
of standard errors should be minimal. One can always test for various forms
of heteroskedasticity that may exist even after modeling heterogeneity, and
robust standard errors could be used to correct for any heteroskedasticity
that may exist. Online Appendix B provides a further discussion of this issue
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and an empirical comparison highlighting how standard errors from the pro-
posed framework produce highly similar inferences to those from alternative
models that explicitly correct for standard errors.

Empirical Analysis: Three Substantive Applications

To illustrate the proposed methodology, I present three substantive appli-
cations. I use two TSCS applications, both of which involve estimation of
linear models. The first is a reexamination of global human rights abuse
(Poe and Tate 1994; Poe, Tate, and Keith 1999). The data possess a large N
relative to T, therefore bearing some resemblance to panel data.” The sec-
ond application is a reexamination of the “rewarding impatience” hypothesis
regarding oil production in OPEC countries (Blaydes 2004, 2006; Goodrich
2006). These data contain a small N relative to T. The third application is
a multilevel analysis with a binary dependent variable, where I reexamine
Epstein, Lindstadt, Segal, and Westerland’s (2006) analysis of Senate vot-
ing on Supreme Court nominations. For all three applications, I discuss and
present some graphical post-estimation strategies which greatly illuminate
substantive interpretations of the results.

Global Human Rights Abuse, 1977-1993

Poe and Tate (1994) provide an important and influential examination of
global human rights abuse. Their study is rich with normative, theoretical,
and empirical implications. In that analysis, the authors examine 153 coun-
tries from 1981 to 1987. In Poe et al. (1999), the authors update and back-
date their data over time, add some countries to the dataset, and present
new models that refine some of the substantive conclusions from the earlier
work. These data include 164 countries covering the years 1977 to 1993. For
the dependent variable, the authors rely on “political terror scales,"” where
a country is categorized on a scale of 1 to 5 based on the “occurrence of
political imprisonment, execution, disappearances, and torture” (Poe et al.
1999, 297). Countries are categorized by coding the yearly reports from both
Amnesty International (AI) and the State Department (SD). Thus, there are
two dependent variables, both ranging from 1 to 5, where higher values rep-
resent higher levels of personal integrity rights abuse. Results from models
using both the Al and SD dependent variables yield similar results. In my
reexamination, I analyze the Al dependent variable only.

The authors include ten time-varying variables (i.e., level-1 variables).
These include a lagged dependent variable (to account for dynamics), democ-
racy (7-point Freedom House political rights scale; higher values indicate
higher levels off democracy),® population size (logged population), population
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change (percent change from the previous year), economic standing (per cap-
ita GNP), economic growth (percent change in GNP from the previous year),
leftist government (dummy variable), military control (dummy variable),
international war (dummy variable), and civil war (dummy variable). The
authors include one time-constant variable (i.e., level-2 variable): British
cultural influence (dummy variable). For more details on measurement, see
Poe et al. (1999, 296). Using a completely pooled modeling approach (OLS
with PCSEs), Poe et al. (1999) find that democracy, economic standing, and
British cultural significantly decrease levels of rights abuse, while population
size, military control, international war, and civil war significantly increase
rights abuse.

I reexamine these results using the modeling approach advocated above.
The results are presented in Table 1. The total number of observations is
2,471; N = 164, and T~15.7 The left side of Table 1 reports a replication of
Poe et al.’s results. The right side of the table reports results from a linear
random intercept model, estimated via ML, which includes within-country
effects, between-country effects, and the absolute value of the difference
between the within- and between-country effects (which tests for cluster
confounding). Regarding model fit, a likelihood ratio test strongly supports
the specification of the random intercept model over a completely pooled
approach; significant unobserved heterogeneity (u,) exists at the country
level, The estimate of p suggests that 46% of the error variance is accounted
for by the country-level error.

Moving to the results, note first that the within-country lag of the depen-
dent variable exhibits a statistically significant effect, meaning that, for a
given country, as past values of rights abuse increase, current values increase
as well. Poe et al. find that democracy significantly decreases rights abuse.
When decomposing variation in democracy, results reveal that democracy
exhibits about equal within-country (—0.10) and between-country (--0.11)
effects on rights abuse. And the test of cluster confounding suggests that the
difference between these two effects is statistically insignificant. Thus, the
effect of democracy can be viewed as a pooled estimate, with the within-
and between-country effects being equal, as assumed by Poe et al. Similar
results exist for population size. The within- and between-country effects
are roughly equal, and the difference between them is statistically insignifi-
cant. For a given country, as population size increases over time, rights abuse
significantly increases. And, countries with greater populations on average
have higher average levels of rights abuse than countries with lower average
populations. Poe et al.’s pooled analysis shows that population change has
an insignificant effect on rights abuse levels. However, results from the ran-
dom intercept model reveal that significant cluster confounding occurs for
this variable. While population change does not exhibit a significant within-
country effect, it does have a statistically significant between-country effect.
This means that countries that have undergone greater average levels of




107

Bartels @ Beyond “Fixed versus Random Effects”

100" > =d 'b6'6701 =X

{0 = o113 Z-joAaT °H) 1531 Y1

90 - (40413 |e301 /1013 Z-PPAST) ¢
$Z0 - (40113 Z-pAaT)IeA
6Z°0 - (10293 |-PAST)IEA
L0 > d’€8'Ze8 100 > d ‘b’ L 168 X PPON
1£9°Z =590 01 1Z¥yT =590 "jof

1St =(6/D)1 p9[ =N 1St =(6A0)1 '$91 =N SUCRBAIISGO
SL0 Z+'0) £10- 0S50 oLo) £0°0 weisuo)
000 {oz'0) 90°L 000 (61°0) £5°L 000 (90'0) 90 000 (s0'0) 050 Jep 1A
t00 @zo 650 000 (120 £€9°0 wo (90'0) SO0 000 00) rL0 Jepp [euoeusaiuy
= - - 100 (60°0) £T0— - - - 000 (€00 80°0- IUBNYU| |RIN}ND YsHUg
200 (€10) 1€0 100 [(4X0)] 1£°0 460 (s0°0) 000 100 (€0'0) 60'0 jouoD Aseypy
oLo ‘Lo 870 $0'0 (1K) Ze0— 650 (80'0) 00— 00'0 +0'0) {10- JUSWILLBA0D ISy
680 (10'0) 000 640 oo 000 o (000 00°C SE0 (co0) 000 abuey) dwouod3 94
000 (L00) +¥0'0 000 (L0'0) §0°0— 870 (000 00— 000 00'0) 00— Buipuels Jiuwiouos3
€00 (00 £0°0 £0°0 (€0°0) 200 00 (c00) 000 £€2°0 (00°0) 000 abuey) uoneindoy
990 {ot°0) ¥0'0 000 oo 810 z00 (60°0) 70 000 (Lo0'0) 00 871 uonejndog
66'C 00} 000 00’0 (€00) Lo~ 000 (100 QLo— 000 (10'0) 90°0— (3N0Y w0PIaLY) Aenowsg
- - - - - - 000 oo 8€°0 000 o0 $9'0 asngy s1ybry

d as) 320D d {(7$) 202 d as) 303 d (35>d) 20D

(u2amIaq-ulypm)sqy S13Ya Anunod-uaamiag P33 AnunoI-tiim snsas §10 (666 1) 10 32 3od

{PooyyayIl Winwwixep) PPOW 1da3)u) WOopUel Jesur]

£661-£/61 ‘S|Ppow jeuonewaiu) Lissuwy - asnge syybu uewny jeqolb o sPPo i1 3jqer




108 Dynamic Models

population change have significantly greater levels of rights abuse. Economic
standing also exhibits significant cluster confounding. Poe et al. report a
positive and significant pooled effect of this variable, but my results reveal
that per capita GNP exhibits a statistically insignificant within-country effect
and a statistically significant between-country effect. Thus, one cannot con-
clude that as a particular country’s per capita GNP increases across time,
rights abuse significantly decreases. What we can conclude is that countries
with generally higher levels of per capita GNP have generally lower levels of
rights abuse. Percent economic change exhibits neither a significant within-
nor between-country effect on rights abuse.

Poe et al. report that leftist governments have significantly lower levels of
rights abuse compared to non-leftist government. Does this effect occur for a
given country across time (as a particular country moves in and out of being
a leftist government) or between countries for ones that have been leftist
more frequently? The results from the random intercept model support the
latter. Since leftist government is a dummy variable, the between-country
operationalization is the proportion of the time countries have leftist govern-
ments over this time span. Thus, as this proportion increases, rights abuse
significantly decreases. The within-country effect is statistically insignificant.
Results reveal marginally significant levels of cluster confounding (p = 0.10),
but given the within effect is insignificant and the between effect is signifi-
cant, estimating both effects for this variable makes substantive interpre-
tation much more precise. The results for military control resemble those
for leftist government. Poe et al. report that military control significantly
increases rights abuse. Results from the random intercept model reveal that
this pooled effect shows significant cluster confounding. For a given country,
a change in the state of military control across time exhibits a null impact
on rights abuse. However, as the proportion of years in which a country is
under military control increases across countries, rights abuse significantly
increases.

The effects of the two war variables show significant cluster confounding.
International war exhibits a statistically insignificant within-country effect,
meaning that, for a given country, being at war at a given time point does
not significantly increase rights abuse compared to not being at war dur-
ing another time point. However, countries that have been at war more fre-
quently have significantly higher rights abuse levels compared to countries
that have been at war infrequently. Civil war exhibits statistically significant
within- and between-country effects, though the between-country effect
is significantly greater. Finally, countries with British cultural influence (a
between-country variable) experience significantly lower rights abuse levels
than countries without such influence.

On the whole, the results clarify and refine some of the core conclu-
sions made by Poe et al. It is worth noting that the between-country effects
are consistently stronger than the within-country effects, which is sensible
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given that there is more between-country information in the data (i.e., 164
countries) than within-country information (about 15 years). To illuminate
interpretations of these effects, Figure 3 presents graphical depictions of
within-country (left column of Figure 3) and between-country effects (right
cotumn) for four variables of interest. The graphs depict predicted values (y)
of the dependent variable while allowing the variable of interest to vary and
holding the remaining variables constant at their mean values.?
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Figure 3: Within-country and between-country effects of selected variables on personal
integrity abuse




110 Dynamic Models

For the between-country effects, the X-axis simply represents variation in
the country specific means of the particular variable (X;). For the within-
country operationalizations, where XE}V =X; -X j» units of measurement
are now deviations from the cluster mean. “0” represents the country mean
of the variable for each country. “~1” would represent one unit below the
country mean, and “2” would represent 2 units above the country mean. This
has implications for how one plots the within-country effects of a variable.
In essence, each country will occupy a different range of the within-country
measurement space depending on a given country’s mean for that variable.
To illustrate this issue, consider the democracy variable, which ranges from
1 to 7. If a particular country’s mean of democracy over the time span is
4.6, then that country’s within-country operationalization of democracy will
range from —3.6 (i.e., 1 — 4.6) to 2.4 (i.e.,, 7 — 4.6). The within-country
slopes for different between-country values will be parallel (as is seen in
Figure 3), but changing values of the between-country value will shift the
intercept up or down (also illustrated in Figure 3). In Figure 3, I plot within-
country effects when the between-country variable is set at low, medium,
and high values.’

Plots A and B in Figure 3 show how the within- and between-country
effects of democracy are roughly equal. Both exert rather strong effects, and
they highlight how: (1) for a given country, increasing levels of democracy
across time significantly reduce rights abuse, and (2) countries that are gen-
erally more democratic have significantly lower levels of rights abuse com-
pared to countries that are generally undemocratic. Plots C and D illuminate
the null within-country effect and the quite potent between-country effect of
economic standing. This distinction has important substantive implications
for how we understand the causes of rights abuse. Readers of Poe et al.’s
findings may jump to the conclusion that as a given state experiences fluc-
tuations in its economic standing across time, rights abuse will fluctuate
as well. But, based on these results, this is an incorrect inference to make.
Increases in economic standing for a given country fail to dampen abuse.
Instead, economic standing exhibits only an aggregate, cross-sectional effect,
such that countries with generally higher per capita GNP have significantly
lower rights abuse levels compared to countries with generally lower per
capita GNP The remaining plots illustrate analogous effects, suggesting that
military control and international war exhibit significant between-country
effects and insignificant within-country effects. Some might claim that if only
a given country would avoid military control, rights abuse would decrease.
And, when a given country is at war with another country, rights abuse
is higher compared to when that country is not at war. Both are incorrect
inferences based on the results. We can only conclude aggregate, between-
country effects for these variables. That is, countries that are under military
control and in international wars a greater proportion of the time have sig-
nificantly higher levels of rights abuse. In sum, making these distinctions
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between within- and between-country effects has important theoretical and
empirical implications for our understanding of global rights abuse.

Qil Production in OPEC Countries, 1960-1995

Blaydes (2004) presents empirical evidence in support of her “rewarding
impatience” hypothesis, which, derived from a formal bargaining model,
posits that impatient countries with shorter time horizons attain significantly
greater oil production outputs than patient countries with longer time hori-
zons. Analyzing OPEC countries’ 0il production levels from 1960-1995 and
employing a pooled modeling approach (OLS with PCSEs), Blaydes finds that
increases in the amount of per capita oil reserves (the key variable of inter-
est) are associated with significantly lower levels of oil production. She also
finds a quadratic effect for per capita reserves, suggesting there is a threshold
whereby this “rewarding impatience” effect kicks in. In a response to Blaydes,
Goodrich (2006) takes issue with Blaydes’s pooled modeling approach and
suggests that a fixed-effects approach is superior. Goodrich finds that the
within-country effect of the key variable, per capita reserves, is statistically
insignificant. But in a separate between-country analysis, Goodrich finds that
per capita reserves does indeed exhibit a significant effect. Blaydes (2006)
responds to Goodrich with some of the usual criticisms of the FE approach -
it is inefficient and that per capita reserves is a “sluggish” variable so the
fixed-effect estimate of that variable is inaccurate and inefficient. Recall that
the problem related to sluggish variables is not with the FE model, per se,
but with the data, If a variable does not greatly vary, one will never retrieve a
“good” estimate of that variable unless one collects different and better data.
Blaydes estimates a random intercept model, as well as running Plumper
and Troeger's fixed-effects vector decomposition (fevd) model for sluggish
variables. She contends that the results support her original arguments per-
taining to the “rewarding impatience” hypothesis.

Table 2 presents a reexamination of these results. The data consist of 11
OPEC countries over 35 years. The dependent variable is the natural log of
annual crude oil production. The independent variables are: natural log of
proven oil reserves, natural log of per capita oil reserves (and a squared term of
this variable to test the quadratic effect), a lagged dependent vartable to account
for dynamics, and a conflict dummy variable to control for events such as the
Iranian revolution, the Iran-Iraq War, the Persian Gulf War, and sanctions on
Iraq. All variables are time-varying covariates. The first two models present
replications of Blaydes’s (2006) Model 3. The first is an OLS model with PCSEs,
and the second is a random intercept model.!® The third model is a random
intercept model (estimated via ML) implementing the procedures I have advo-
cated in this paper. Both Blaydes and Goodrich introduce alternative speci-
fications with some additional independent variables, but results from these
models produce substantively similar results for the key variables as Model 3.
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In terms of model fit, a likelihood ratio test supports the specification of
the random intercept model over a completely pooled approach. There is
significant unobserved heterogeneity (1) at the country level. Also, the esti-
mate of p indicates that 17% of the total error variance is accounted for by
the country-level error. Results reveal significant cluster confounding for all
variables, suggesting severe discrepancies between the within- and between-
country effects of variables. Regarding the key variable of interest, In(per
capita reserves), recall that Blaydes found a negative and significant effect,
as well as a negative significant effect for the squared term. This suggests
an upside-down U-shaped effect, where there is some threshold at which oil
production peaks as a function of per capita reserves, After that threshold,
increases in In(per capita reserves) produce a decrease in oil production.
Of course, Blaydes’s models assume that the within- and between-country
effects of these variables are equal. The random intercept model shows that
the within-country effect of both per capita reserves and its squared term are
statistically insignificant. In fact, the results suggest a linear, positive within-
country effect (as will be seen more clearly in Figure 4), which is contrary to
what Blaydes predicted. Thus, for a given OPEC country, increases in In(per
capita reserves) over time produce a positive but statistically insignificant
effect on oil production. Turning to the between-country effect of per capita
reserves, the results report negative and statistically significant coefficients
for both In(per capita reserves) and its squared term. This means that coun-
tries with generally higher levels of per capita reserves have lower oil pro-
duction than countries with generally lower levels of per capita reserves.

Figure 4 illustrates these findings. Using the same procedures as discussed
for Figure 3 (in the human rights abuse example), Figure 4 presents both the
within- and between-country effect of in{(per capital reserves) on In(crude
oil production). Note the very small positive within-country effect of per
capita reserves on oil production. The quadratic between-country effect of
per capita reserves is displayed in plot B. For very low levels of In(per capita
reserves), there is a slightly positive effect. But after the threshold, as aver-
age reserves increase between countries, average oil production decreases.
On the whole, the “rewarding impatience” hypothesis occurs at the aggre-
gate, between-country level of analysis, such that countries with generally
higher levels of per capita reserves attain greater ail production than coun-
tries with generally lower levels of per capita reserves. Importantly, there is
no support for the longitudinal form of the hypothesis. Regarding some of
the other effects, we see that both In(proven reserves) and conflict exhibit
much more potent between-country than within-country effects. This is
somewhat surprising since we have much more longitudinal information in
the data (T = 35) compared to cross-sectional variation (N = 11). However,
if there is little variation across time, estimates will not be as potent. And the
data contain significant differences in the averages of these variables across
countries, which contributes to the larger between-country effects.
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Figure 4: Within-country and between-country effect of per capita reserves on crude oil
production

Senate Voting on Supreme Court Nominations, 1937-2005

The final substantive application involves a multilevel data analysis of
Senate voting on Supreme Court nominations, where the dependent vari-
able is binary (1 = yea vote, 0 = nay vote). Epstein et al. (2006) present
an update of the Cameron, Cover, and Segal (CCS) (1990} model of Senate
voting on nominees, which posits the influence of the following variables on
a Senator’s vote: a nominee’s lack of qualifications (measured using content-
analysis of newspaper editorials during the nomination process; ranges from
0 to 1, where higher values represent a less qualified nominee), whether
the president is in a strong political position (president’s party controls the
Senate and president is not in fourth year of office), whether a senator is
of the same party as the president (1 = same party, 0 = otherwise), and the
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ideological distance between the nominee and a senator. To measure ideologi-
cal distance, Epstein et al. (2006, 299) employ a “bridging” procedure that
uses the president’s Poole-Rosenthal Common Space score in conjunction
with the nominee’s Segal-Cover (1989) ideological score to place senators
and nominees in the same ideological space.'’ Epstein et al. take on some
additional issues that I do not address here. On the whole, the authors find
continued empirical support for the CCS model.

Epstein et al. include Senate votes on 40 nominations. There are 3,709
total votes. Treating this as a two-level hierarchical structure, the data consist
of 3,709 votes nested within 40 nominations. Ideological distance and same
party as the president are level-1 variables (varying across both Senate votes
and nominations). Lack of qualifications and strong president are level-2
variables (varying only between nominations). Epstein et al. use a complete
pooling approach (probit), which means that one cannot conclude with con-
fidence whether the level-1 variables (ideological distance and same party)
are within- or between-nomination effects. The model in Table 3 examines
this issue. The left side of Table 3 presents a replication of Epstein et al.’s
pooled probit model. The right side of the table includes a random inter-
cept probit, which estimates within- and between-nomination effects of the
level-1 variables as well as effects of the level-2 variables. It also presents
tests of cluster confounding for the level-1 variables. In terms of model fit, a
likelihood ratio test supports the specification of the random intercept model

Table 3: Models of Senate voting on Supreme Court nominations

Random intercept probit modet

Within- Between-
Epstein et al. nomination nomination Abs(within-
probit mode} effects effects between)
Coef. Coef. Coef. Coef.
(SE) P (5E) P (5£) P (5£) p
ideological Distance —2.24 000 -3.48 0.00 1.58 0.67 5.06 0.18
(0.14) (0.24) (3.74) (3.76)
Same Party 0.71 0.00 0.70 0.00 5.81 0.07 s 0.11
{0.08) (0.10) (3.15) (3.16)
Lack of Qualifications -2.32 0.00 - - -4.69 0.00 - -
©.12) (0.97)
Strong President 0.77 0.00 - - 0.60 0.38 - -
0.07) (0.69)
Constant 1.82 0.00 0.12 0.95
{0.08) .79
Level-1 units (votes): 3,709
Observations N=3,709 Level-2 units (nominations); 40
Model x? 581.42, p <. 001 381.37, p < .001
Var(Level-2 Error) - 2.04
p (Level-2 Error / Total - 0.67
Error) - :

LR Test (H,: Level-2
Error = 0) x2 = 446.59, p < .001
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over a completely pooled approach. There is significant unobserved hetero-
geneity at the nomination level. The estimate of p indicates that 67% of the
total error variance is accounted for by the nomination-level error.

Results from the random intercept model show that ideological distance
exhibits a negative and statistically significant within-nomination effect on
the probability of a yea vote and a positive but statistically insignificant
between-nomination effect. Thus, Epstein et al.’s negative and significant
pooled effect is driven by the strong within-nomination effect. While there
is no statistically significant cluster confounding for ideological distance, the
fact that the within and between effects are so drastically different strongly
supports the need to distinguish the two types of effects. Thus, we can con-
clude that for a given nomination, as ideological distance between a senator
and a nominee increases, the probability of a yea vote significantly decreases.
Importantly, there is no contextual effect of ideological distance. That is,
nominations for which there is a high average ideological distance do not
have significantly different propensities of yea voting compared to nomina-
tions for which there is a low average ideological distance. For the effects of
party, Epstein et al. find that senators of the same party as the president are
significantly more likely to vote in favor of the nominee compared to sena-
tors not of the same party as the president. Results from the random inter-
cept model show that the within-nomination effect of party is positive and
statistically significant, while the between nomination effect is positive and
marginally significant. Moreover, there is only marginal evidence of cluster
confounding. For a given nomination, senators of the president’s party are
significantly more likely to vote yea than senators not of president’s party.
For the between effect of party, nominations in which the president has a
high proportion of co-partisans in the Senate exhibit higher average prob-
abilities of a yea vote compared to nominations where the President has a
low proportion of co-partisans. For the remaining variables, we see that lack
of qualifications has a negative and statistically significant effect, meaning
that the more a nominee lacks qualifications, the less likely that nominee will
receive a yea vote. While Epstein et al. found that the effect of strong presi-
dent is positive and statistically significant, results from the random inter-
cept model show that the effect of this variable is statistically insignificant.

Figure 5 presents graphical interpretations of the within- and between-
cluster effects of ideological distance and same party as president. Akin to
procedures used for producing Figures 3 and 4, the graphs plot the predicted
probability of a yea vote while allowing the variable of interest to vary and
holding remaining variables constant at their mean values.'? For the within-
nomination effects, I plot predictions when the between variable is set at the
10th percentile, median, and 90th percentile. Since this is a probit, note how
the within-cluster effects are not parallel, since effect sizes will depend on
the value of the between-nomination effect. Plot A shows the potent within-
nomination effect of ideological distance. For values of distance that are
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Figure §: Within-nomination and between-nomination effects of ideological distance and
party on Senate voting for Supreme Court nominations

nearly one unit away from the cluster mean, the probability of a yea vote
approaches 0.4 for nominations where average distance is low. The null, and
even slightly positive, between-nomination effect of ideological distance is
displayed in plot B. This indicates that nominations with a high average dis-
tance evince roughly the same average probability of a yea vote compared to
nominations with a low average distance. Plot C shows that for a given nomi-
nation with a low proportion of senators who are the president’s co-partisans
(the long-dashed line), the president’s co-partisans are more likely to vote
for the president’s nominee than those not of the same party as the president.
Note how the strength of this within-cluster effect dissipates slightly as the
proportion of the Senate that is of the same party as the president increases.
But then again, the overall propensity of a yea vote increases as well, which
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is also seen in plot D. For nominations in which only about 30% of the senate
is of the same party as the president, the average probability of a yea vote is
about 0.8, which is still quite high. But as this proportion increases to over
70%, the average probability of a yea vote increases to nearly 1.0.

Discussion and Conclusion

As the substantive applications discussed above make clear, the modeling
framework discussed in this paper has the potential to enrich both statistical
analysis and substantive interpretations of effects in examinations of panel,
TSCS, and multilevel data. Practitioners can be more explicit in communicat-
ing the substantive effects of certain variables by separating out the within-
and between-cluster components of those effects. And the framework allows
for statistical tests of whether these effects are statistically different. Given
the substantive and statistical advantages of such a modeling strategy, ana-
lysts should be encouraged to implement many of these procedures.

Of course, this paper does not provide a panacea. There continue to be
issues that need addressing in the analysis of clustered data. A primary issue
in panel and TSCS data is dynamics. Since dynamics were not a focus of this
paper, I adhered to a common and sensible practice to account for dynamics
in panel and TSCS data: the inclusion of a lagged dependent variable (e.g.,
Beck and Katz 1996). As other work discusses, this may not always be the
most optimal strategy, and analysts and methodologists should pay closer
attention to issues of dynamics (e.g., Hsiao 2003; Wilson and Butler 2007).
Moreover, analysts should not necessarily treat dynamics as a nuisance sim-
ply to be corrected. In panel and TSCS, dynamics are often of great substan-
tive interest (e.g., Bartels, Box-Steffensmeier, Smidt, and Smith 2008; Green
and Yoon 2002; Heckman 1981; Green, Palmquist, and Schickler 2002;
Wawro 2002).

As I discussed in the “extensions” section in this paper, analysts should
also pay attention to how a random coefficient model can produce substan-
tively innovative tests of hypotheses. Inclusion of cross-level interactions can
assess how contextual variables moderate lower-level effects. Also, akin to
Gelman et al’s (2006) multilevel example of income and vote choice, the
RCM fosters innovative tests of how aggregate variation in X shapes the indi-
vidual effect of that X. In the study of human rights abuse, for example, does
variation in average GNP across countries moderate the longitudinal impact
of GNP on rights abuse? In other words, will the within-country slopes in
Figure 3C vary as a function of a country’s average economic standing? Also,
in the study Supreme Court nominations, one can envision how an RCM
would help shed light on Epstein et al.’s contention that ideological distance
has significantly increased over time, particularly since the nomination of
Robert Bork. Specifying a random coefficient for the within-nomination
operationalization of distance would allow the effect of this variable to vary




Bartels o Beyond “Fixed versus Random Effects” 119

across nominations and to retrieve comparable estimates of the effect of ide-
ological distance across nominations. As seen by these and other examples,
the use of this general multilevel modeling framework opens up new ave-
nues for enhancing empirical analysis of panel, TSCS, and multilevel data.

Notes

1. I use “random effects” and “random intercept” interchangeably throughout the paper.
The term “random effects” technically implies both a random intercept model and the
more general random coefficient model. But most people refer to the former when
they use the term.

2. More specifically, I am referring here to unobserved heterogeneity in the response.
Random coefficient models can account for this type of heterogeneity as well as unob-
served causal heterogeneity, which means that level-1 effects vary over clusters due to
unmeasured factors.

3. GEE models (Zeger and Liang 1986; Zom 2001a), which share some basic similarities
to the RE approach, are becoming more commonly used in political science analyses of
clustered data. Also called population-averaged models, GEE estimates are marginal
with respect to unobserved heterogeneity, while RE estimates are conditional with
respect to unobserved heterogeneity.

4. Note that this specification is the approach suggested by Bafumi and Gelman (2006).
However, the authors are not explicit about the interpretations of the coefficients.

5. Beck (2001) argues that a key distinction between panel and TSCS data is that the
units in panel data (individuals) are sampled from a larger population, while the units
in TSCS data represent a population of countries. Another major difference is that in
TSCS data, N and T are usually not drastically different, while in panel data, N is very
large relative to T. It is for this latter reason that I say this first example bears some
resemblance to panel data.

6. The authors also used the Polity IIl democracy scale, and results were very similar to

those using the Freedom House measure.

., The data are unbalanced, so T varies across countries.

. The cluster-level random effects term, uy, is set to 0, its expected value.

. To determine what was deemed low, medium, and high values, I had to make judg-
ment calls based on the distributions for each between-cluster variable. Democracy:
low = 2, medium = 4, high = 6; economic standing: low = 10th percentile, medium =
mean, high = 90th percentile; military control: low = 20th percentile, medium =
median, high = 80th percentile; international war: low = 25th percentile, high = 75th
percentile. The country means of international war have a lopsided distribution, so
high and low values were deemed the most appropriate to plot.

10. I could not produce an exact replication of Blaydes’s (2006) Model 3 for both the OLS
and random intercept models. The results are similar and produce the same substan-
tive implications.

11. The bridge is nominees chosen by a president who controls the Senate. See Epstein
et al. (2006, 299) for more details on the measurement strategy.

12. The predicted probabilities are marginal with respect to the level-2 random effect.
That is, u,; is averaged over, as opposed to held constant at a particular value (i.e.,
conditional with respect to ug). Thus, these are akin to average partial effect (see
Wooldridge 2002; Skrondal and Rabe-Hesketh 2004). In nonlinear models, whether
predicted probabilities are marginal or conditional with respect to u; is an important
distinction. In linear models, calculating predicted values of Y using each approach
produces the same result.

O 0N
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