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Chemicals We Encounter

1% 99%
Pharmaceuticals Industrial chemicals
* Designed to be * No intentional biological
biologically active activity
e Performance criteria e Performance is divorced
include a consideration of from toxicity
side effects e Can be produced in multi-
* Produced in relatively billion pound quantities
small volumes * Extremely diverse use
* Well defined use scenarios
scenarios

-




Environmental Impacts of Chemical Industry

3 o B W pnd s

3.93 billion Ibs. of toxic
chemicals were released
directly to air, land, and
water in 2010, 16%
increase from 2009.

------

US EPA TRI

High levels of toxic
chemicals in fish cause
massive fish kills

PLANT 2011
Exposure controls can and
do fail

P s ~___ Severe weather systems
0~ p and rising sea levels are
. providing palpable
-~ indicators of climate
change




Proactive Approach

Green chemistry &
Sustainable Development

Risk
Management

Environmental performance

Compliance

L

Economic performance

The design of chemical products and processes that
reduce or eliminate the use and generation of
hazardous substances

Anastas, P. and Warner, W. Green Chemistry: Theory and Practice, Oxford University
Press: New York, 1998.



Chemical Substitutions

Out of the frying pan and out of the fire:
replacement flame retardants now found in
breast milk

Rochester JR, Bolden AL. 2015. Environ Health Perspect 123:643-650.



Principles of Green Chemistry

the design of chemical products and processes that minimize
the use or generation of hazardous substances.

Waste
Less hazardous syntheses
Renewable feedstocks
Catalysts

Chemical derivatives
Atom economy

Safer solvents

Energy efficiency

e Safer chemicals

* Biodegradable
chemicals

* Potential for accidents

Anastas, P. and Warner, W. Green Chemistry: Theory and Practice, Oxford University
Press: New York, 1998. 6









Commercial chemical development

Risk
assessment
Toxicity
testing

Scale-up
ITestmg for I
Synthesis & function
W IPurlflcatlon x
function




Designing for function: dyes

What makes a compound appear to have color?

As the HOMO/LUMO energy

antibonding
combination gap decreases, the
LUMO = Ry S wavelength of
L “— Lumo the absorbed color increases.
(Ear:g;a; I L To find the perceived color,
Homo 4= look at the complementary
"F + Homo colors on the color wheel.
bonding
combination
Nucleophile Transition Electrophile E= hC/)\
State

350 nm 400 nm 450 nm 500 nm 550 nm 600 nm 650 nm 700 nm 750 nm 800 nm

Visible Continuous Spectrum 2
{Perceived Brightness Partially to Scale)




Traditional Approach towards Minimizing Risks from Industrial

Chemicals
Risk Equation, NAS 1983

Risk = f(hazard, exposure)

/ L\ Test for hazard

Probability of:

- Physical hazard — fire, chen

reactivity
* Toxicity and ecotoxicity

 Global resource depletion ar

destruction
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Minimize

exposure

in vivo testing

Saaaaa

0,90,,49,98. 49
0,40,00, 40,8 40
90,040,040
90,9, 4

$Millions

_.' Cancer
_.. ReproTox
_.. DevTox
_.' NeuroTox
_.. PulmonaryTox
_.' ImmunoTox



Green Chemistry and Rational Design

Principles of GC that focus
on chemical hazard

Use and generation
of safer chemicals
and products

Design chemicals and
products to degrade
after use

Minimize the
potential for
accidents

Inspiration

Focus on hazard
rather than
exposure

Risk = f(hazard,
exposure)

Tools that can be applied
by chemists at the
design stage:

* Identify and prioritize
potentially toxic
chemicals

j> * Reduce animal testing

* Decrease the cost of

testing chemicals for

Assumption

potential toxicity
e Design chemicals that
minimize toxicity

Desired outcome
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ldentification of Toxic Chemicals vs Design for
Minimal Toxicity

- Requires that chemists consider
biological activity alongside function
at the design stage

Redesign an existing chemical to
minimize biological activity

Design a new chemical that has a
superior safety profile to chemicals in
the market




Experimental Measurements of
Toxicity In Vivo

Can broadly classify toxicity tests based on length of exposure

Acute Toxicity test
— Drop dead testing
— Time =2 days (invertebrates) to 4 d. (fish)
* LDs
* LG5
* TL, (median tolerance dose)
* EC, (effective concentration)
— Lose equilibrium, sit on bottom = “ecologically” dead
— Not very ecologically relevant but quick, relatively cheap (but still ~$700-1,200 per test)

Chronic toxicity test
— Growth, reproduction
— More ecologically relevant data but takes longer, more expensive
— Shows effect at much lower dose
— Test requires much more “baby-sitting”
* NOEC (No Effect Concentration)
* LOEC (Low Effect Concentration)



Part 3: Using in silico models to
predict ecotoxicity



Toxicity (Hazard) Estimation Methods

<€

TIME AND COST >

AGE

In vivo — acute and chronic

In vitro — cellular assays

In vitro —
extracellular/

In chemico

In

silico
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Hazard prediction vs chemical design

Chemists/engineers consider biological activity alongside function
at the design stage




Predictive Models

 What is a predictive (QSAR) model?

A model whose primary purpose is for prediction of
a quantitative outcome (as opposed to inference)

* Mechanistic interpretation of the model is
considered necessary

* To make a good model that predicts well on
future samples, you need to know a lot about
— The predictors (physical meaning, relation to each

other)
— The biological data (accuracy, mechanisms, method)



What Are They Not Good For?

* An example:

A toxicologist collects some data from a small animal
trial and wants a model that would use gene
expression data to predict toxicological response.
There were about 54K predictors and data was
collected on ~20 animals.

e Problem?

e Solution?

— the mechanism is understood, effort must be made
to first identify the mechanistically-relevant set of
predictors



Toxicity

Property-based pre' ive models

Property filter
(Design guideline)

0
: :| gcus

Chemical
D ' Receptors / Enzymes / etc.

Direct Molecular Interaction

—— Pathway Regulation /
2 410 1 2 3 4 5 6 o —
Hy drophobicity
Cellular Processes

Tissue / Organ / Organism Tox Endpoint



#1

Why use properties and not structure?

Cl
L9,

Cl

Dicofol (Kelthane)
115-32-2

logP: 6.07

LUMO: -0.467 eV
LCs,: 0.603 mg/L

)

NS
3-(4-tert-Butylphenoxy)b
69770-23-6
logP: 5.93
LUMO: -0.530 eV
LCs,: 0.370 mg/L

O\/\/

phthalate
3126-90-7
logP: 5.53
LUMO: -0.757 eV
LCso: 0.900 mg/L

(} O W 70
T s 9%
O _~_- 5 QO )
(0]

bisphenol
79124-76-8

logP: 5.49
LUMO: -0.728 eV
LCyy: 0.300 mg/L

78-51-3
logP: 4.09

LUMO: 0.817 eV
LCsp: 11.2 mg/L

112-12-9

logP: 4.09
LUMO: 0.884 eV
LCso: 1.50 mg/L

Cl Cl
Cl ; Cl
NH,

3481-20-7
logP: 4.10
LUMO: -0.507 eV
LCso: 0.270 mg/L

132-64-9

logP: 4.12
LUMO: -0.410 eV
LCso: 1.50 mg/L

83-79-4
logP: 4.10

LUMO: -0.477 eV
LCs,: 0.0052 mg/L

13608-87-2

logP: 3.57
LUMO: -0.683 eV
LCso: 2.00 mg/L

o (i

e

525-82-6

logP: 3.56
LUMO: -0.776 eV
LCso: 3.50 mg/L

N

75-47-8

logP: 3.54
LUMO: -0.738 eV
LCso: 2.90 mg/L




Assessing Model Accuracy

* How well does a regression model perform? Answering this
guestion depends on how we want to use the model.

Possible goals are:

— To understand the relationship between the predictor and the
response.

— To use the model for prediction of unknowns

* |n either case, we can use several of different measures to
evaluate model performance. We will focus on two:
— Coefficient of determination (R?)
— Root mean square error (RMSE)



Root Mean Squared Error (RMSE)

* RMSE measures the average deviation of an observation
to the best-fit plane, i.e. square root of MSE

* RMSPE measures the average deviation of an observation
to its predicted value for the test or cross-validation set

n* = the number of observations in the test or cross-validation set
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Assessing Model Predictive Power:
External Validation

e Compute R? and RMSE on data for which the model was not
built (i.e. a test set or cross-validation set).

— For a held-out set of data, R? is commonly referred to as Q2

 RMSE measures the average deviation of an observation to
the best-fit plane, i.e. square root of MSE

« RMSEP measures the average deviation of an observation to
its predicted value for the test or cross-validation set

n* = the number of observations in the test or cross-validation set



K-fold Cross Validation: Internal
Validation

Here, we randomly split the data into K blocks of roughly
equal size

We leave out the first block of data and fit a model, which is
used to predict the held-out block

We continue this process until we have predicted all K hold-
out blocks

The final performance is based on the hold-out predictions

D Validation Set

- Training Set

Round 1 Round 2 Round 3 Round 10

90% 91% 95%

Validatior.1 93%
Final Accuracy = Average(Round 1, Round 2, ... 25

Accuracy



Sample Results

Training Data

Validation Data

RMSE R?

RMSEP

QZ

Linear Reg

5.23 0.691

4.53

0.742

* Areason you may see differences: multicollinearity
— Multicollinearity in the predictors can produce somewhat

unstable solutions for each resample
— When the data are slightly changed, the model can

drastically change




Common Pitfalls of QSARs

* Over-fitting: occurs when a model has extremely good

prediction for the training data but predicts poorly when
— the data are slightly perturbed

— new data are used (external validation)

— Number of descriptors used should not be > 1/5 number of compounds
in training set

Imaginary relationships: Complex regression and classification
models assume that there are patterns in the data.

— Without some control many models can find very intricate relationships
between the predictor and the response

— These patterns may not be valid for the entire population.



Over-Fitting

The plots below show classification boundaries for two models
built on the same data

Predictor B

Which one is over-fit?

7 +
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Predictor A Predictor A
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Defining the Applicability Domain

Extent of extrapolation: What types of
chemicals can be reliably predicted?

Describe the training set
Test the applicability
Mechanistic applicability



QSAR Commandments

1. An unambiguous algorithm

A defined applicability domain

3. Appropriate measures of goodness of fit,
robustness and predictivity are used
1. R RMSE (R?>0.6)
2. Q2 RMSEP (R2> 0.5)

4. Model validation: quantitative assessment of
model robustness and its predictive power

5. Cardinal rules:
— n>4k (n=# of compounds, k = # of descriptors)
— Each descriptor must have significance level p <0.05
— Pairwise correlation among descriptors < 0.9

N

Gramatica, P. QSAR and Combinatorial Sci. 2007, 26, 694.
Tropsha, A.; Gramatica, P.; Gombar, V. QSAR and Combinatorial Sci. 2003, 22, 69.



Comparing QSAR Models

Table 2 Predictive tool summary

ADMET CADRE-AT ECOSAR KATE TEST
Free-ware? No No Yes Yes Yes
Statistical 2D ANNE Classification Class-specific linear Class-specific linear Consensus model
method system regression regression
AD definition Molecular Molecular Log P range and class Log P range and class Molecular

descriptor space descriptor space categorization concerns categorization concerns descriptor space
Training set size 490 565 1000s“ 535 823
Training set Pimephales Pimephales All OCSPP approved species  Oryzias latipes, pimephales ~ Pimephales
species promelas promelas promelas promelas
Output LCs, Toxicity category LCs, LCsqy LCsq

(n=4)

# of chemicals 78 80 61 35 57

in the AD”

“The exact number of compounds is not available. ” Number of chemicals in the validation set (N = 83) that are in the AD of each model. OCSPP
- office of chemical safety and pollution prevention; 2D ANNE -two-dimensional artificial neural network ensemble. AD - applicability domain.
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Test Set and Regulatory Categories

12
|

=
e o]
>
o -
“g’ © = o n=45 ol n=13 Assess 83 chemicals
2 n=9 — n=16 external to the training
<
~N -
o
-2 -1 0 1 2 3 4
Log(LCso)

Fig. 1 The distribution of log(LCso) thresholds (mg L™2).



Accuracy and results

Table 3 Tool performance and comparison summary statistics based on all 83 chemicals in the testing data set

Measures of predictive accuracy ADMET CADRE-AT ECOSAR KATE TEST
Total accuracy (%)* 53% 83% 51% 58% 48%
Predictive power (%)” 49% 80% 49% 40% 35%
Number of missing predictions 5 3 2 26 23
Coefficient of variance (R?) 0.27 NA® 0.11¢ 0.35 0.21
RMSE (log scale) 1.60 NA 2.94¢ 1.47 1.32
% within 1 regulatory category 80.8 92.5 85.2 85.5 88.3
% within a factor of 2 (%) 25.6 NA® 25.9 26.3 30.0
% within a factor of 5 (%) 48.7 NA® 54.3 47.4 50.0
% within a factor of 10 (%) 57.7 NA® 63.0 64.9 63.3
% within a factor of 100 (%) 80.8 NA® 76.5 82.5 85.0
% within a factor of 1000 (%) 91.0 NA® 86.4 94.7 98.3

“Total accuracy is the fraction of chemicals assessed by each tool for which the predicted LCs, falls within the same regulatory category as the
measured LCs,. ” Similar to total accuracy, predictive power measures the total number of correct category assignments. However, lack of predic-
tion is treated as an incorrect assignment. © Cannot be calculated; software tool provides regulatory category designation only. ¢ Parametric corre-
lation might provide poor estimate of covariance due to extreme outliers. RMSE - root mean squared error.
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Experimental LCso (Mmg/L, log scale)
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0
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Predicted vs Measured LC,,
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m Log P Warning
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£
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6

Fig. 3 Correlations between predicted and experimental LCsq values
on log for (A) ADMET predictor, (B) ECOSAR, (C) KATE, and (D) TEST.
Red: chemicals that lie outside the AD; blue: log P estimates used by the
tool are >1 log unit below Marvin log D; 4 estimates. R?ap: coefficient of
determination for chemicals inside AD; Rzadj is the coefficient of deter-
mination for chemicals inside the AD and without log P warnings.
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Developing Tools That Enable the Rational Design of
Safer Chemicals

Rule-based #1 #3 In silico d'es!gn
approaches and prediction
—— of biological
. "%?”ié“' activity

6 8 10 12 14

Tools for safer
design

In chimico or in
vitro assays of
chemical

Experimental
spectroscopic
methods

reactivity




Ill

The physiological “gates” of chemical
exposure

Reduce bioavailability,
Distribution & storage

Reduce distribution
and storage

1. Chemical &5 not

binavailable
—

4. Prevent toximdynamic
interaction responsible
fortoxic effect.

Reduce bioactivation/

increase deactivation

2. Chemialrate of Reduce interaction

ditribotiain:i: boid:k with biological targets

reduced

3. Promote chemical
detoxification and
elimination

Mechanistic layers of reducing
toxicological hazard.

Voutchkova, A.; Osimitz, T.; Anastas, T. Chem. Rev. 2010, 110, 5845 36



| Retina =

Process « \

Choroid »

Sclera »
Lens

Pupil

Upper Respirato
Nasal Cavity

Property-based guidelines for

ry Tract

Pharynx

Larynx

Lower Respiratory Tract

Trachea

Primary bronchi

Lungs
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Eyes

|

bioavailability

Absorption
organs

Lungs

Acidic oS Basic
substance substance

Unionized at Lipid Un-ionized
pH>pKa t pH>pK
soluble NEGHEELES

Skin

skin surface
sweat pore

capillaries
pilo erectile muscle

sweat gland

venule -

arteriole

adipose tissue nerve ending matrix
(fat)



Property-based guidelines for
bioavailability

water solubility
molecular size

vapor pressure < 0.001
mmHg

Eyes

Particle size < 5um
molecular size < 400 Da
vapor pressure < 0.001
mmHg

Gl
tract

Absorption
organs

Lungs

Voutchkova, A.; Osimitz, T.; Anastas, T. Chem. Rev. 2010, 110, 5845

molecular size < 500 Da
log P, 0-5
Non-ionization at Gl pH

Skin

molecular size < 400 Da
log P, 0-6
presence of solvents

lonization (polar, ionized)




Lipinski rules for drug likeness
Oral Bioavailability

Lipinski, 1997

~90% of drugs on the market have the following properties in common:

Lipinski’s Rules for Druglikeness

20-70 atoms

At least one N or O
Less than 6 rings

©NOUEWNE

Not more than 5 hydrogen bond donors

Not more than 10 hydrogen bond acceptors
Molecular weight under 160-480 D
Octanol-water coefficient (logP) < 5

Lipinski, C. et al, Adv. Drug Del. Rev. 2001, 46: 3—-26

5
4.15
o
g
= 2
QD
b J
g
- 0
-2

Molecular refractivity from 40-130 m3/mol.

o
l.. :
o ....
o
n®n A
" = B
c
R
P —
350 500

Molecular weight

H-bond acceptor count

0 2 2

H-bond donor count




#1 Rule-based approaches:
chemical reactivity

Examples of electrophilic toxicophores:

AP o
250 TN,
R/
(IS
Michael acceptors

Mutagenicity, carcinogenicity,
hepatoxicity, neurotoxicity,

—N=C=0
—N=C=S
Isocyanates

Mutagenicity, carcinogenicity,
respiratory sensitization,

O

R~ R

Epoxides
Mutagenicity, carcinogenicity,
respiratory sensitization

hematotoxicity asthma
R
2 5 Hr}/—NH NH O>\—NH NH i
i 2 ) 2
)k N R R. N )k N R 0 R
H H H Ar—NH-NH,
Hydrazides, semicarbazides 0
Thiocarboxamides, thioureas Developmental toxicity, ,
osteolathyrism, blood Quinones

Thyroid gland toxicity,
hypothyroidism

dyscrasias, cancer,
autoimmune disease.

[Mutagenicity, carcinogenicity,

Oxidative stress i




Structural Modifications That
Influence Biological Activity

H Me
H\%\ro H\%\ro
Ho Ho)

N N

Acrylonitrile Methylacrylonitrile
Possible human carcinogen Non-carcinogenic

o

H

Ethyl acrylate
Carcinogenic

0]
YJ\O/
Me

Methyl methacrylate
Non-carcinogenic

ede

MTI 800
X = C" fish LC5¢ = 3 mg/L
X = Si, no mortality at 50 mg/L

/\O

Benzene

Carcinogenic

Me

Toluene

Less carcinogenic




Pharmacodynamics/Toxicodynamics

Baseline toxicity (Narcosis) Reactive toxicity

Lipid bilayer expansion hypothesis of anesthetic effect

00 1. Covalent interactions
2. Receptor binding

3. Non-covalent interactions

Anesthetic molecules
with different molecular volumes

- Bulky and hydrophobic (organic)
molecules accumulate inside the cell
membrane causing its distortion and
expansion

- This reversibly alters function of
membrane ion channels, thus
providing anesthetic effect.

- Actual chemical structure of
molecule not important, but its
molecular volume and
hydrophobicity play the major role



Baseline Narcosis: Octanol-water partition
coefﬂuent (Iog P)

[SOl Ute] octanol )

zed
[solute] 2o

lOg Poct/wat — log(

Strongly orrelated to:
- Bioavailability

- Bioaccumulation

- Narcosis

In Silico methdos:
Group contribution (CLOGP, ALOGP,

KOWWIN): r’= 0.90-0.95
Molecular topology methdos Experimental methods:
(VLOGP, QikProp): r’= 0.90-0.98 - Shake flask

Free energy of solvation methods - HPLC (OECD 117)
- Electrokinetic chromatography

-10 +10
hydrophilic lipophilic



Reactive toxicity: Covalent Interactions

Model biological nucleophiles

o} o} N/ PN N
SH
s on Ao e [ © »
NH N N
2 SH

Mechanisms
H
77N _R
| o
Enz”>" r) Enz”> S Ty —— S + H,C
X nz w \/N\H 0% >R ~o N R 2
R o </
X =1,Br, Cl R=C=C;Ph,C=C c” C=N
Ph O Q
X4<y,\/ NH>—Protein ——» >—NH\
Protein
H "
LN O _
Enz/s.- ~ En NN Enz/s\/\fO

H
C=0 NO, C=C C=N S0,



Application to Design Guidelines for Aquatic
Toxicity

Agglomerated biological data that is prone to experimental error

b —_—
L —
Egthe;éj_r:n;:;\;w Japanese medaka Daphnia magna
7 ! LCso, 96-h assay EC.,, 48-h assay
U.S. E.PA. Japan Ministry of Environment
‘671 chemicals 285 chemicals 263 chemicale

4 categories guided by EPA thresholds of concern for acute aquatic toxicity
(LCso/ECsy: )

<1 mg/L 1-100 mg/L 100-500 mg/L
0.0067 - 1.49 1.49-3.32
mmol/L mmol/L
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Rule of 2 for reduced aquatic toxicity

logD: logP at pH 7.4 (biological)
dE: HOMO-LUMO gap

85% of the compounds that have low
acute aquatic toxicity concern have a logD
<1.7and AE>6¢eV

L
©

58

Compounds that meet these criteria are
10 times more likely to have low acute
aguatic toxicity compared to compounds

4 5 6 7 8 9

that do not meet these criteria. These
results are mechanistically rationalized. -2 0 2



Take-away: how to go about considering
ecotoxicity of a chemical

* |s it a known compound? If so, identify all
available experimental data (in vivo and in vitro)
for all ecotoxicity endpoints

* |fitis a new compound/material, consider
predictive methods:
— Predict logP and dE
— Determine if likely safe to aquatic species (rule of 2)
— Consider likelihood of reactivity (reactive f-n groups)
— Consider bioavailability



Case Study: Selecting Safer Aromatic
Amine

- Aromatic amines are widely used in dyeing NH;
industry as a starting material for manufacturing N @
of different types of azo dyes

Used in chemical industry for manufacturing

petrol and diesel fuel, varnishes, and X N
antioxidants. | _ Z
N N

Widely used in some metal-coating
multifunctional compositions for motor,

NH
" SN
transmission and industrial oils.
Some aromatic amines can be find application N O
2

in plastic, textile and rubber industries.
Used in production of cloths, rubber and

plastics. HoN NH,
Formed during the thermal treatment of foods

with high protein content. They can also be
transferred from food packaging materials into
foodstuffs



* Toxicity: However, they are known to be toxic,
associated with methaemoglobinemia,

agranulocytosis, aplastic anaemia,

hepatotoxicity, skin hypersensitivity and
increased risk of mutagenicity.

e Mechanism:

1. oxidation of the aromatic ring ortho or para
to the aniline nitrogen



Diazo dyes and primary aromatic
amines: mutagenicity

H

R enz R P450 R — > DNA
_N - > \©\ > — > modification
¢ _.OH
| & N
R

2. Oxidation of the aniline nitrogen to hydroxylamine, nitroso, nitro and related
species. the hydroxylamine species undergo acetylation or sulfation to deliver a good
leaving group which leads to reactive metabolites



s it possible to develop a “safe” diazo dye?

— Decrease N-hydroxylation of aromatic amine

“!NHZ ”O
NH, O HoN

2-aminobiphenyl 3-aminobiphenyl 4-aminobiphenyl
non-carninogenic weak carcinogen potent carcinogen
non-planar, planar, can be N-hydroxylated

cannot be N-hydroxylated

— Reduce the electrophilic reactivity of the SA by steric or electronic

effects.
NH, NH,
R is small R is sterically bulky
(e.g. Me, CI, OMe) (e.g. large alkyl groups)
enhances carcinogenicity reduces carcinogeniciy




Goal of Case Study

You are provided with a list of PAAs and the
acute and chronic ecotoxicity data associated
with them, in addition to predicted data on
biodegradation. From these compounds select 3
candidates to propose as safer alternatives.

Report back: Prepare 2 min report (



Biodegradation resources

e EpiSUITE BIOWIN (US EPA)
* http://eawag-bbd.ethz.ch/predict/
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