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Chemicals	We	Encounter

Pharmaceuticals
• Designed	to	be	
biologically	active

• Performance	criteria	
include a	consideration	of		
side	effects

• Produced	in	relatively	
small	volumes

• Well	defined	use	
scenarios

Industrial	chemicals
• No	intentional	biological	
activity

• Performance	is	divorced	
from	toxicity

• Can	be	produced	in	multi-
billion	pound	quantities

• Extremely	diverse	use	
scenarios

1% 99%



Environmental	Impacts	of	Chemical	Industry

Plaquemines Parish, LA

High	levels	of	toxic	
chemicals	in	fish	cause	
massive	fish	kills

3.93	billion	lbs.	of	toxic	
chemicals	were	released	
directly	to	air,	land,	and	
water	in	2010,	16%	
increase	from	2009.

US EPA TRI

Fukushima Nuclear Power 
Plant 2011
Exposure	controls	can	and	
do	fail

Severe	weather	systems	
and	rising	sea	levels	are	
providing	palpable	
indicators	of	climate	
change	



Proactive	Approach

The	design	of	chemical	products	and	processes	that	
reduce	or	eliminate	the	use	and	generation	of	

hazardous	substances

Economic	performance
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Management

Green	chemistry	&
Sustainable	Development

Anastas,	P.	and	Warner,	W.	Green	Chemistry:	Theory	and	Practice,	Oxford	University	
Press:	New	York,	1998.



Chemical	Substitutions
Out	of	the	frying	pan	and	out	of	the	fire:	
replacement	flame	retardants	now	found	in	
breast	milk	

Rochester	JR,	Bolden	AL.	2015.	Environ	Health	Perspect 123:643–650.

BPS BPF

BPA



Principles	of	Green	Chemistry

6
Anastas,	P.	and	Warner,	W.	Green	Chemistry:	Theory	and	Practice,	Oxford	University	

Press:	New	York,	1998.

Green	
synthetic	
pathways

Design	of	
safer	

chemicals		

• Waste
• Less	hazardous	syntheses
• Renewable	feedstocks
• Catalysts
• Chemical	derivatives
• Atom	economy
• Safer	solvents	
• Energy	efficiency

• Safer chemicals	
• Biodegradable	

chemicals
• Potential for	accidents

the	design of	chemical	products	and	processes	that	minimize	
the	use	or	generation	of	hazardous	substances.



7

~	90%	materials'	feedstocks are	from	petroleum

82K	registered	for	commerce	(US	EPA),	ca.	4%	have	
health/safety	data	(e.g.	MSDS),	ca.	75%	have	not	been	
studied	at	all

In	practice,	EPA’s	TSCA	regulates	only	5	out	of	82,000+	
chemicals	in	commerce;	

62,000	chemicals	were	already	in	commerce	before	1972,		
are	exempt	from	TSCA

~	2000	new	chemicals	introduced	to	market/yr,	most	of	
which	have	no	experimental	health	or	safety	data



Roche	Biochemical	Pathways	Wall	Chart



Design	for	
function

Synthesis	&	
Purification

Testing	for	
function

Scale-up

Toxicity	
testing

Risk	
assessment

Commercial	chemical	development



Designing	for	function:	dyes
What	makes	a	compound	appear	to	have	color?

As	the	HOMO/LUMO	energy	
gap	decreases,	the	
wavelength	of
the	absorbed	color	increases.	
To	find	the	perceived	color,	
look	at	the	complementary	
colors	on	the	color	wheel.



Probability of:
• Physical hazard – fire, chemical

reactivity
• Toxicity and ecotoxicity
• Global resource depletion and

destruction

Test for hazard
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Minimize 
exposure

Risk	Equation,	NAS	1983
Risk	= ƒ(hazard,	exposure)



Green	Chemistry	and	Rational	Design
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Principles	of	GC	that	focus	
on	chemical	hazard

• Use	and	generation	
of	safer	chemicals	
and	products

• Design	chemicals	and	
products	to	degrade	
after	use

• Minimize	the	
potential	for	
accidents

Focus	on	hazard	
rather	than	
exposure

Risk	=	ƒ(hazard,	
exposure)

Tools	that	can	be	applied	
by	chemists	at	the	
design	stage:
• Identify	and	prioritize	

potentially	toxic	
chemicals

• Reduce	animal	testing	
• Decrease	the	cost	of	

testing	chemicals	for	
potential	toxicity

• Design	chemicals	that	
minimize	toxicity

Inspiration Assumption Desired	outcome



Identification	of	Toxic	Chemicals	vs Design	for	
Minimal	Toxicity

Value	of	Reactive	Approach

- Identify	hazardous	chemicals	from	
those	already	in	existence

- Evaluate	chemical	alternatives	
- Carry	out	risk	assessment

Value	of	Proactive	Approach

- Requires	that	chemists	consider	
biological	activity	alongside	function	
at	the	design	stage

- Redesign	an	existing	chemical	to	
minimize	biological	activity

- Design	a	new	chemical	that	has	a	
superior	safety	profile	to	chemicals	in	
the	market



Experimental	Measurements	of	
Toxicity	In	Vivo

Can	broadly	classify	toxicity	tests	based	on	length	of	exposure

• Acute	Toxicity	test
– Drop	dead	testing
– Time	=	2	days	(invertebrates)	to	4	d.	(fish)

• LD50
• LC50
• TLm (median	tolerance	dose)
• EC50 (effective	concentration)

– Lose	equilibrium,	sit	on	bottom	à “ecologically”	dead
– Not	very	ecologically	relevant	but	quick,	relatively	cheap	(but	still	~$700-1,200	per	test)

• Chronic	toxicity	test
– Growth,	reproduction
– More	ecologically	relevant	data	but	takes	longer,	more	expensive
– Shows	effect	at	much	lower	dose
– Test	requires	much	more	“baby-sitting”

• NOEC	(No	Effect	Concentration)
• LOEC	(Low	Effect	Concentration)



Part	3:	Using	in	silicomodels	to	
predict	ecotoxicity



In	vivo	– acute	and	chronic

In	vitro	– cellular	assays

In	vitro	–
extracellular/
In	chemico

In	
silico

Toxicity	(Hazard)	Estimation	Methods

16
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Hazard	prediction	vs	chemical	design

In	silico toxicity	(hazard)	
estimation	tools

- Identify	hazardous	chemicals	from	
those	already	in	existence

- evaluate	chemical	alternatives	
- risk	assessment

In	silico Chemical	Design

- Often	there	are	no	existing	
chemicals/materials	that	have	
desired	function	and	no	biol.	activity

- In	this	case	we	must	design	from	
scratch	(de	novo)	chemical	that	is	
functional	and	has	a	superior	safety	
profile	to	chemicals	in	the	market

Chemists/engineers	consider	biological	activity	alongside	function	
at	the	design	stage



Predictive	Models
• What	is	a	predictive	(QSAR)	model?

A	model	whose	primary purpose	is	for	prediction	of	
a	quantitative	outcome	(as	opposed	to	inference)

• Mechanistic	interpretation	of	the	model	is	
considered	necessary

• To	make	a	good	model	that	predicts	well	on	
future	samples,	you	need	to	know	a	lot	about
– The	predictors	(physical	meaning,	relation	to	each	
other)

– The	biological	data	(accuracy,	mechanisms,	method)

18



What	Are	They	Not Good	For?

• An	example:
A	toxicologist	collects	some	data	from	a	small	animal	
trial	and	wants	a	model	that	would	use	gene	
expression	data	to	predict	toxicological	response.
There	were	about	54K	predictors	and	data	was	
collected	on	~20	animals.

• Problem?
• Solution?

– the	mechanism	is	understood,	effort	must	be	made	
to	first	identify	the	mechanistically-relevant	set	of	
predictors

19



Property-based	predictive	models

Vol.	
MW

Wiener	
Index

logP
logS

SASA
dipole

QSAR

Property	filter
(Design	guideline)



CCL3

OH

Cl

Cl

Dicofol (Kelthane)
115-32-2
logP:	6.07
LUMO:	-0.467	eV
LC50:	0.603	mg/L

3-(4-tert-Butylphenoxy)b
69770-23-6	
logP:	5.93
LUMO:	-0.530	eV
LC50:	0.370	mg/L

O

O

phthalate	
3126-90-7	
logP:	5.53
LUMO:	-0.757	eV
LC50:	0.900	mg/L

bisphenol
79124-76-8	
logP:	5.49
LUMO:	-0.728	eV
LC50:	0.300	mg/L
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3481-20-7	
logP:	4.10
LUMO:	-0.507	eV
LC50:	0.270	mg/L

132-64-9	
logP:	4.12
LUMO:	-0.410	eV
LC50:	1.50	mg/L

83-79-4		
logP:	4.10
LUMO:	-0.477	eV
LC50:	0.0052	mg/L
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78-51-3	
logP:	4.09
LUMO:	0.817	eV
LC50:	11.2	mg/L

112-12-9	
logP:	4.09
LUMO:	0.884	eV
LC50:	1.50	mg/L
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BuO

BuO

13608-87-2	
logP:	3.57
LUMO:	-0.683	eV
LC50:	2.00	mg/L

525-82-6	
logP:	3.56
LUMO:	-0.776	eV
LC50:	3.50	mg/L

Cl

Cl

Cl

O

O

O

75-47-8	
logP:	3.54
LUMO:	-0.738	eV
LC50:	2.90	mg/L
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Why	use	properties	and	not	structure?
#	1



Assessing	Model	Accuracy
• How	well	does	a	regression	model	perform?	Answering	this	

question	depends	on	how	we	want	to	use	the	model.		
Possible	goals	are:
– To	understand	the	relationship	between	the	predictor	and	the	

response.
– To	use	the	model	for	prediction	of	unknowns

• In	either	case,	we	can	use	several	of	different	measures	to	
evaluate	model	performance.		We	will	focus	on	two:
– Coefficient	of	determination	(R2)
– Root	mean	square	error	(RMSE)

22



• RMSE	measures	the	average	deviation	of	an	observation	
to	the	best-fit	plane,	i.e.	square	root	of	MSE

• RMSPE	measures	the	average	deviation	of	an	observation	
to	its	predicted	value	for	the	test	or	cross-validation	set

23
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Root	Mean	Squared	Error	(RMSE)



Assessing	Model	Predictive	Power:	
External	Validation

• Compute	R2 and	RMSE	on	data	for	which	the	model	was	not
built	(i.e.	a	test	set	or	cross-validation	set).
– For	a	held-out	set	of	data,	R2 is	commonly	referred	to	as	Q2

• RMSE measures	the	average	deviation	of	an	observation	to	
the	best-fit	plane,	i.e.	square	root	of	MSE

• RMSEP	measures	the	average	deviation	of	an	observation	to	
its	predicted	value	for	the	test	or	cross-validation	set
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K-fold	Cross	Validation:	Internal	
Validation

• Here,	we	randomly	split	the	data	into	K blocks	of	roughly	
equal	size

• We	leave	out	the	first	block	of	data	and	fit	a	model,	which	is	
used	to	predict	the	held-out	block

• We	continue	this	process	until	we	have	predicted	all	K hold-
out	blocks

• The	final	performance	is	based	on	the	hold-out	predictions

25



Sample	Results

• A	reason	you	may	see	differences:	multicollinearity
– Multicollinearity in	the	predictors	can	produce	somewhat	

unstable	solutions	for	each	resample
– When	the	data	are	slightly	changed,	the	model	can	

drastically	change

26

Training Data Validation Data

RMSE R2 RMSEP Q2

Linear Reg 5.23 0.691 4.53 0.742



Common	Pitfalls	of	QSARs

• Over-fitting:	occurs	when	a	model	has	extremely	good	
prediction	for	the	training	data	but	predicts	poorly	when
– the	data	are	slightly	perturbed
– new	data	are	used	(external	validation)
– Number	of	descriptors	used	should	not	be	>	1/5	number	of	compounds	

in	training	set

• Imaginary	relationships:	Complex	regression	and	classification	
models	assume	that	there	are	patterns	in	the	data.
– Without	some	control	many	models	can	find	very	intricate	relationships	

between	the	predictor	and	the	response
– These	patterns	may	not	be	valid	for	the	entire	population.

27



Over-Fitting
The	plots	below	show	classification	boundaries	for	two	models	
built	on	the	same	data
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Defining	the	Applicability	Domain
• Extent	of	extrapolation:	What	types	of	
chemicals	can	be	reliably	predicted?

• Describe	the	training	set
• Test	the	applicability
• Mechanistic	applicability

29



QSAR	Commandments
1. An	unambiguous	algorithm
2. A	defined	applicability	domain
3. Appropriate	measures	of	goodness	of	fit,	

robustness	and	predictivity are	used
1. R2,	RMSE		(R2	>	0.6)
2. Q2,	RMSEP	(R2	>	0.5)

4. Model	validation:	quantitative	assessment	of	
model	robustness	and	its	predictive	power

5. Cardinal	rules:	
– n>4k	(n=	#	of	compounds,	k	=	#	of	descriptors)
– Each	descriptor	must	have	significance	level	p	<0.05
– Pairwise	correlation	among	descriptors	<	0.9

30
Gramatica,	P.	QSAR	and	Combinatorial	Sci.	2007,	26,	694.
Tropsha,	A.;	Gramatica,	P.;	Gombar,	V.	QSAR	and	Combinatorial	Sci.	2003,	22,	69.



Comparing	QSAR	Models

31



Test	Set	and	Regulatory	Categories

32

Assess	83	chemicals	
external	to	the	training	



Accuracy	and	results

33



Predicted	vs	Measured	LC50

34

External	Validation



Tools	for	safer	
design

Rule-based	
approaches

Experimental	
spectroscopic	
methods

In	silico design	
and	prediction	
of	biological	
activity

In	chimico or	in	
vitro assays	of	
chemical	
reactivity

#	1

#	2 #	4

#	3

Developing	Tools	That	Enable	the	Rational	Design	of	
Safer	Chemicals



The	physiological	“gates”	of	chemical	
exposure	

36Voutchkova,	A.;	Osimitz,	T.;	Anastas,	T.		Chem.	Rev.	2010,	110,	5845				

Mechanistic	layers	of	reducing	
toxicological	hazard.

Reduce	bioavailability,
Distribution	&	storage

Reduce	distribution	
and	storage

Reduce	bioactivation/
increase	deactivation

Reduce		interaction	
with	biological	targets



Property-based	guidelines	for	
bioavailability

Absorption	
organs	

GI	
tract

Skin

Lungs

Eyes

Acidic	
substance

pKa<7

Unionized	at			
pH>pKa

Basic	
substance

pKa>7

Un-ionized	
at	pH>pKa

Lipid	
soluble

Absorbed	across	
intestine	membrane	

intoblood

Chemical



Property-based	guidelines	for	
bioavailability

Absorption	
organs	

GI	
tract

Skin

Lungs

Eyes

molecular	size	<	400	Da
log	Pow 0	- 6
presence	of	solvents
Ionization	(polar,	ionized)

molecular	size	<	500	Da
log	Pow 0	- 5
Non-ionization	at	GI	pH

Particle	size	<	5um
molecular	size	<	400	Da
vapor	pressure	<	0.001	
mmHg

water	solubility	
molecular	size
vapor	pressure	<	0.001	
mmHg

Voutchkova,	A.;	Osimitz,	T.;	Anastas,	T.	Chem.	Rev.	2010,	110,	5845



Lipinski	rules	for	drug	likeness	
Oral	Bioavailability

Lipinski’s	Rules	for	Druglikeness
1. Not	more	than	5	hydrogen	bond	donors
2. Not	more	than	10	hydrogen	bond	acceptors
3. Molecular	weight	under	160-480	D
4. Octanol-water	coefficient	(logP)	<	5
5. 20-70	atoms
6. Molecular	refractivity	from	40-130	m3/mol.
7. At	least	one	N	or	O
8. Less	than	6	rings

39

Lipinski,	1997
~90%	of	drugs	on	the	market	have	the	following	properties	in	common:

Lipinski,	C.	et	al,	Adv.	Drug	Del.	Rev. 2001,	46:	3–26



Examples	of	electrophilic	toxicophores:

40

Rule-based	approaches:
chemical	reactivity

Michael	acceptors
Mutagenicity,	carcinogenicity,
hepatoxicity,	neurotoxicity,	

hematotoxicity

Isocyanates
Mutagenicity,	carcinogenicity,

respiratory	sensitization,	
asthma

Thiocarboxamides,	thioureas
Thyroid	gland	toxicity,	

hypothyroidism

Hydrazides,	semicarbazides
Developmental	toxicity,	
osteolathyrism,	blood	
dyscrasias,	cancer,	

autoimmune	disease.

Epoxides
Mutagenicity,	carcinogenicity,

respiratory	sensitization

Quinones
Mutagenicity,	carcinogenicity,

Oxidative	stress

#	1



Structural	Modifications	That	
Influence	Biological	Activity



Pharmacodynamics/Toxicodynamics

1. Covalent	interactions
2. Receptor	binding
3. Non-covalent	interactions

- Bulky	and	hydrophobic		(organic)	
molecules	accumulate	inside	the	cell	
membrane	causing	its	distortion	and	
expansion	

- This	reversibly	alters	function	of	
membrane	ion	channels,	thus	
providing	anesthetic	effect.	

- Actual	chemical	structure	of	
molecule	not	important,	but	its	
molecular	volume	and	
hydrophobicity	play	the	major	role

Baseline	toxicity	(Narcosis) Reactive	toxicity



Baseline	Narcosis: Octanol-water	partition	
coefficient	(log	P)

+10- 10
lipophilichydrophilic

Strongly	orrelated to:
- Bioavailability
- Bioaccumulation
- Narcosis

Experimental	methods:
- Shake	flask
- HPLC	(OECD	117)
- Electrokinetic chromatography

In	Silicomethdos:
- Group	contribution	(CLOGP,	ALOGP,	

KOWWIN):	r2	=		0.90-0.95
- Molecular	topology	methdos

(VLOGP,	QikProp):	r2	=		0.90-0.98
- Free	energy	of	solvation	methods



Reactive	toxicity:	Covalent	Interactions
Model	biological	nucleophiles

Mechanisms

Mechanistic domain Protein binding reaction

Michael acceptors X Nu Protein

Modified protein

X
Nu

Protein

SNAr electrophiles
X NuNu X

Nu Protein

Protein
Protein

Y1, Y2… Y1, Y2… Y1, Y2…

Schiff base formers O

Protein

N Protein

X Nu Protein Nu
Protein

SN2 electrophiles

Acylating agents X
O

Protein

O

Protein
NHNH2

NH2

Identification characteristics. Double or triple bond with electron-withdrawing substituent X,
such as -CHO, -COR, -CO2R , -CN, -SO2R, -NO2...

Identification characteristics. X = halogen or pseudohalogen, Y's are electron withdrawing 
groups (at least 2) such as -NO2, -CN, -CHO...

Identification characteristics. X = halogen or other leaving group bonded to primary alkyl, 
benzylic, or allylic carbon.

Identification characteristics. Reactive carbonyl compounds such as aliphatic aldehydes, 
some a,b and a,g diketones, a-ketoesters. Not simple monoketones and aromatic aldehydes.

Identification characteristics. X = halogen, or other group (e.g. -OC6H5 such that XH is acidic 
enough for X- to act as a good leaving group. X = -OAlkyl does not qualify.



Fathead minnow
LC50, 96-h assay

U.S. E.P.A.

671 chemicals

Japanese medaka Daphnia magna
LC50, 96-h assay EC50, 48-h assay

Japan	Ministry	of	Environment

285	chemicals 363	chemicals

<1	mg/L
<	0.0067	
mmol/L

1–100	mg/L	
0.0067	- 1.49		

mmol/L

100–500	mg/L
1.49-3.32		
mmol/L

>	500	mg/L
>3.32	mmol/L

4	categories	guided	by	EPA	thresholds	of	concern	for	acute	aquatic	toxicity	
(LC50/EC50:	)

Application	to	Design	Guidelines	for	Aquatic	
Toxicity

Agglomerated	biological	data	that	is	prone	to	experimental	error



Rule	of	2	for	reduced	aquatic	toxicity

-2 0 2 4 6
4
5
6
7
8
9

logD

dE

logD:	logP at	pH	7.4	(biological)
dE:	HOMO-LUMO	gap

85%	of	the	compounds	that	have	low	
acute	aquatic	toxicity	concern have	a	logD
<	1.7	and	ΔE >	6	eV

Compounds	that	meet	these	criteria	are	
10	times	more	likely	to	have	low	acute	
aquatic	toxicity compared	to	compounds	
that	do	not	meet	these	criteria.	These	
results	are	mechanistically	rationalized.

58
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Take-away:	how	to	go	about	considering	
ecotoxicity of	a	chemical

• Is	it	a	known	compound?	If	so,	identify	all	
available	experimental	data	(in	vivo	and	in	vitro)	
for	all	ecotoxicity endpoints

• If	it	is	a	new	compound/material,	consider	
predictive	methods:
– Predict	logP and	dE
– Determine	if	likely	safe	to	aquatic	species	(rule	of	2)
– Consider	likelihood	of	reactivity	(reactive	f-n	groups)
– Consider	bioavailability



Case	Study:	Selecting	Safer	Aromatic	
Amine

• Aromatic amines are widely used in dyeing 
industry as a starting material for manufacturing 
of different types of azo dyes

• Used in chemical industry for manufacturing 
petrol and diesel fuel, varnishes, and 
antioxidants. 

• Widely used in some metal-coating 
multifunctional compositions for motor, 
transmission and industrial oils. 

• Some aromatic amines can be find application 
in plastic, textile and rubber industries. 

• Used in production of cloths, rubber and 
plastics. 

• Formed	during	the	thermal	treatment	of	foods	
with	high	protein	content.	They	can	also	be	
transferred	from	food	packaging	materials	into	
foodstuffs	

NH2

N N



• Toxicity: However,	they	are	known	to	be	toxic,	
associated	with	methaemoglobinemia,	
agranulocytosis,	aplastic	anaemia,	
hepatotoxicity,	skin	hypersensitivity	and	
increased	risk	of	mutagenicity.

• Mechanism:
1.	oxidation	of	the	aromatic	ring	ortho or	para
to	the	aniline	nitrogen	



Diazo	dyes	and	primary	aromatic	
amines:	mutagenicity

N
N

R

R
NH2

R P450enz

N
H

R

OH

DNA
modification

2.	Oxidation	of	the	aniline	nitrogen	to	hydroxylamine,	nitroso,	nitro	and	related	
species.	the	hydroxylamine	species	undergo	acetylation	or	sulfation to	deliver	a	good	
leaving	group	which	leads	to	reactive	metabolites	



Is	it	possible	to	develop	a	“safe”	diazo dye?

– Decrease	N-hydroxylation	of	aromatic	amine

– Reduce	the	electrophilic	reactivity	of	the	SA	by	steric	or	electronic	
effects.

NH2NH2

R
NH2

RR

R is small 
(e.g. Me, Cl, OMe)

enhances carcinogenicity

R is sterically bulky 
(e.g. large alkyl groups)

reduces carcinogeniciy

2-aminobiphenyl
non-carninogenic

NH2

3-aminobiphenyl
weak carcinogen

4-aminobiphenyl
potent carcinogen

NH2

H2N

planar, can be N-hydroxylatednon-planar, 
cannot be N-hydroxylated



Goal	of	Case	Study

You	are	provided	with	a	list	of	PAAs	and	the	
acute	and	chronic	ecotoxicity data	associated	
with	them,	in	addition	to	predicted	data	on	
biodegradation.	From	these	compounds	select	3	
candidates	to	propose	as	safer alternatives.	

Report	back:	Prepare	2	min	report	(



Biodegradation	resources

• EpiSUITE BIOWIN	(US	EPA)
• http://eawag-bbd.ethz.ch/predict/
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