

A 21ST CENTURY STRATEGY FOR THE DESIGN OF SAFER PRODUCTS

ROBERT TANGUAY

OREGON STATE UNIVERSITY
DEPARTMENT OF ENVIRONMENTAL AND MOLECULAR
TOXICOLOGY
SINNHUBER AQUATIC RESEARCH LABORATORY
ENVIRONMENTAL HEALTH SCIENCES CENTER
ROBERT.TANGUAY@OREGONSTATE.EDU

Challenges and Opportunities

- Traditional laboratory models slow, costly, not scalable
- Opportunities to integrate recent advances in toxicology to promote green chemistry
- We need to more rapidly identify hazards and mechanisms of toxicity
- Develop predictive models to proactively design <u>high</u> <u>performing</u> and inherently safer products

22nd Annual Green Chemistry and Engineering Conference

Constraints of Cell-based (in vitro) Models

- Cell by definition differentiated cells have limited potential targets
- Limited metabolism
- Experimental problems:
 - What cell type? Answer...do many, What assays? Answer... do many.
 - Assays become rather focused on what we already know
- High throughput is not high content, usually the exact opposite
- Is the data collected informative and predictive? unclear
- Simple cell based systems inherently have blind spots

What are the Options?

Immediate Human Relevance

High Throughput Molecular mechanism

Criteria to Use Whole Animal

Which Models Fit Basic Criteria?

Willeli Wiodels i it basic Charles			
Time to Maturity	3 days	12 days	60 days
Genome Sequenced			
Phenotypic Screens			
Behavioral Screens			
Automation Implemented	V	V	V

Systems Toxicological Approach using Zebrafish

- Molecular signaling is conserved with humans
- ~80% homology with humans, nearly all human diseases are modeled in zebrafish
- o Fully metabolically competent by 72 hpf. Why is this important?

Example: Exposures

- Early Responses in Zebrafish -

Why is this powerful?

Assessing Biological - Interactions and responses

Tier 1: Toxicity Screening

Toxicity testing whole organisms

Tier 2: Cellular Targets and Distribution

- Defined in vivo
 - Fluorescent nanomateials
 - Targeted assays i.e. Cell death, proliferation, etc.

Tier 3: Molecular Expression

- Genomic Responses
 - Whole animal gene expression profiles

Structure Activity Relationships

Feed data back into design scheme

22nd Annual Green Chemistry and Engineering Conference

EPA ToxCast Project

- ToxCast Phase I & II (1,060 unique chemicals)
 - Phase 1 ~300 chemicals
 - Mainly pesticides
 - Traditional toxicity data
 - Phase 2 ~700 chemicals
 - Broad range of industrial & consumer products, food additives, "green" products, cosmetic related chemicals
 - Lack traditional toxicity data

Experimental Design

Truong et al. (2014) Toxicol Sci 137: 212-233.

- Tested 6 concentrations(0 uM, 6.4nm, 64nm, 640nm, 6.4uM, 64 uM)
- Negative control –0.64% DMSO
- Positive Control –
 5 uM Trimethyltin
 Chloride
- 2 replicate plates (n=16/pp)
 N=32 animals/conc
- o 22 endpoints
- 2 behavioral assays

22nd Annual Green Chemistry and Engineering Conference

Estimation of Lowest Effect Levels

- Estimated using binomial test
- Maximized statistical power of the model
- Significance threshold determined for each chemical:endpoint pair
- 487 chemical hits

22nd Annual Green Chemistry and Engineering Conference Flame Retardants

Many types – halogenated, phosphorous and inorganic metal salts

Public safety

- Many uses electronics, building and construction, furnishings, and transportation
- Primary benefit is to prevent ignition REDUCE RISK
- Other benefits slow fire spread and heat release REDUCE HAZARD
- Fire hardening combustible materials (plastics) is an important long standing engineering philosophy

22nd Annual Green Chemistry and Engineering Conference

Evaluation of Flame Retardants (44)

N=32 6 concentrations

22nd Annual Green Chemistry and Engineering Conference

Morphology **Mortality**

Embryonic Behavior

Larval **Behavior**

Heatmap and hierarchical clustering of bioactivities

22nd Annual Green Chemistry and Engineering Conference

TBBPA-DBPE

Non-Toxic - Not bioactive

How Does TBBPA-DBPE Zebrafish Responses Compare to Available Toxicological Data?

Mammalian Data: Acute toxicity Not toxic

Rat oral LD50 > 2,000 mg/kg

Rabbit dermal LD50 > 2,000 mg/kg

Rat inhalation LC50 >24.4 mg/m3/2 hour

Sub-chronic toxicity: **Not Toxic**

NOAEL 2000 mg/kg/day (13 weeks oral, rat)

Aquatic toxicity: **Not Highly Toxic**

96 Hour-LC50 >100 mg/l (Rainbow trout)

> 500 mg/l in Carp

22nd Annual Green Chemistry and Engineering Conference

TBBPA

Highly Toxic – Very bioactive

22nd Annual Green Chemistry and Engineering Conference

How Does TBBPA Zebrafish Responses Compare to Available Toxicological Data?

Mammalian Data

*Acute toxicity Not toxic

Rat oral LD50 > 5,000 mg/kg Rabbit dermal LD50 > 2,000 mg/kg Rat inhalation LC50 >2550 mg/m3/2 hour

*Sub-acute toxicity: Not Toxic

NOEL >18 mg/l/4 hour (2 weeks, inhalation, rat)

>1000 ppm (4 weeks oral rat)

>2500 mg/kg (3 weeks, dermal, rabbit)

*Sub-chronic toxicity: Not Toxic

NOAEL 1000 mg/kg/day (13 weeks oral, rat)

How Does TBBPA Zebrafish Responses Compare to Available Toxicological Data?

Mammalian Data Continued

Reproductive toxicity (2-generation, rat): **Not Toxic**NOEL 100 mg/kg/day for parental toxicity
NOEL 1000 mg/kg/day for reproduction performance

Teratogenicity(rat, gavage): **Not Teratogenic** NOEL = 3000 mg/kg

Aquatic Toxicity - Very toxic to aquatic life 96 Hour-LC50 1.1 mg a.i./L (Rainbow Trout, flow-through) 0.4 mg/L (Rainbow Trout, static)

Example Phase 1 FRC Screening

Identified bioactive compounds

22nd Annual Green Chemistry and Engineering Conference

Example Phase 2 FRC Screening

Fewer bioactive compounds

Emerging Approaches – HTS Adult Assessments

Adult Behavioral Assessments

Swimming Activity Over Time

Anxiety Tests

Fear Response

22nd Annual Green Chemistry and Engineering Conference

Social Interactions

nnd = nearest neighbor distance iid = inter-individual distance

Learning

