

22nd Annual Green Chemistry and Engineering Conference

How is experimental ecotoxicity data traditionally collected and used to assess chemicals?

22nd Annual Green Chemistry and Engineering Conference

22nd Annual Green Chemistry and Engineering Conference

Experimental Measurements of Toxicity In Vivo

• Acute Toxicity test

- Lethality Testing Kill and count them studies
- Time = 2 days (invertebrates) to 4-7 days. (fish)
 - LD₅₀
 - LC₅₀
 - TL_m (median tolerance dose)
 - EC₅₀ (effective concentration)
 - Lose equilibrium, sit on bottom \rightarrow "ecologically" dead
- Relatively cheap (but still over \$1000/test per test)

22nd Annual Green Chemistry and Engineering Conference

Experimental Measurements of Toxicity In Vivo

• Chronic toxicity test

- Growth, viability, reproduction
- More ecologically relevant data but takes longer, more expensive
- Often shows effect at much lower dose
- Test requires substantial labor and infrastructure
 - NOEC (No Effect Concentration)
 - LOEC (Low Effect Concentration)

22nd Annual Green Chemistry and Engineering Conference Major advantages of these tests

Data collected from a small set of 'standard' organisms Why an advantage? Disadvantage?

Large sets of data collected using fairly uniform methods

Case studies will illustrate the utility of this "simple" data

