
Online Appendix A: summary of notation

Panels A, B, and F show the notation for statistics of, respectively, assets, portfolios, and
optimal portfolios. Panels C, D, and E show the notation for, respectively, the M-V, M-SCVaR,
and SCVaR-constrained M-V frontiers. Part I of these three panels considers the case where a risk-
free asset is absent, whereas part II of such panels considers the case where it is present. Panel G
provides formulas for the relative changes in various statistics of the optimal portfolios due to an
SCVaR constraint. While part I of this panel considers the case where the Volcker rule is present,
part II considers the case where it is absent. Panel H provides formulas for the relative changes
in various statistics of the optimal portfolios due to the Volcker rule. While part I of this panel
considers the case where an SCVaR constraint is present, part II considers the case where it is
absent. Panel I explains how we assess the impact of an SCVaR constraint and the Volcker rule on
various statistics of the optimal portfolios.

Panel A. Statistics of assets

µ Vector of expected risky asset returns

rf Return of risk-free asset

Σ Matrix of variances and covariances of risky asset returns

µs Vector of stressed expected risky asset returns

rf,s Stressed return of risk-free asset

Σs Matrix of stressed variances and covariances of risky asset returns

Σϕ Weighted average of matrices Σ and Σs with respective weights of 1− ϕ and ϕ

Panel B. Statistics of portfolios

(E[rw ], σ[rw ]) Expected return and SD of portfolio w

Cα[rw ] CVaR at confidence level α of portfolio w

(Es[rw ], σs[rw ]) Stressed expected return and stressed SD of portfolio w

Cs,α[rw ] SCVaR at confidence level α of portfolio w

Panel C. M-V frontier

Part I: Risk-free asset absent

wE Portfolio on the M-V frontier with an expected return of E

(w0,w1) Portfolios that span wE

(θE , 1− θE) Weights of portfolios that span wE

Part II: Risk-free asset present

wE Portfolio on the M-V frontier with an expected return of E

(w0,w1) Portfolios that span wE

(θE , 1− θE) Weights of portfolios that span wE

Online Appendix A - 1



Panel D. M-SCVaR frontier

Part I: Risk-free asset absent

wα,E Portfolio on the M-SCVaR frontier with a

confidence level of α and an expected return of E

(w0,s,w1,s,w2,s) Portfolios that span portfolio wα,E

(θ0,α,E , θ1,α,E , 1− θ0,α,E − θ1,α,E) Weights of portfolios that span wα,E

Part II: Risk-free asset present

wα,E Portfolio on the M-SCVaR frontier with a

confidence level of α and an expected return of E

(w0,w1,s,w2,s) Portfolios that span wα,E

(θ0,α,E , θ1,α,E , 1− θ0,α,E − θ1,α,E) Weights of portfolios that span wα,E

Panel E. SCVaR-constrained M-V frontier

Part I: Risk-free asset absent

wα,Cs,E Portfolio on the SCVaR-constrained M-V frontier

with a confidence level of α, a bound of Cs,

and an expected return of E

(w0,ϕα,Cs,E
,w1,ϕα,Cs,E

,w2,ϕα,Cs,E
)

Portfolios that span wα,Cs,E

when the SCVaR constraint binds

(θ0,α,Cs,E , θ1,α,Cs,E , 1− θ0,α,Cs,E − θ1,α,Cs,E) Weights of portfolios that span wα,Cs,E

Part II: Risk-free asset present

wα,Cs,E Portfolio on the SCVaR-constrained M-V frontier

with a confidence level of α, a bound of Cs,

and an expected return of E

(w0,w1,ϕα,Cs,E
,w2,ϕα,Cs,E

)
Portfolios that span wα,Cs,E

when the SCVaR constraint binds

(θ0,α,Cs,E , θ1,α,Cs,E , 1− θ0,α,Cs,E − θ1,α,Cs,E) Weights of portfolios that span wα,Cs,E
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Panel F. Statistics of optimal portfoliosA.1

SD, SCVaR at confidence level α, SCVaR Volcker

and CER of the optimal portfolio constraint rule

(σA, CAs,α, CER
A) Absent Present

(σP , CPs,α, CER
P ) Present Present

(σB, CBs,α, CER
B) Absent Absent

(σQ, CQs,α, CERQ) Present Absent

Panel G. Relative changes in various statistics of the
optimal portfolios due to an SCVaR constraint

Part I: Volcker rule present

Relative change in SD σP

σA − 1

Relative change in SCVaR CPs,α
CAs,α
− 1

Relative change in SD-to-SCVaR ratio σP /CPs,α
σA/CAs,α

− 1

Relative change in CER CERP

CERA − 1

Part II: Volcker rule absent

Relative change in SD σQ

σB − 1

Relative change in SCVaR CQs,α
CBs,α
− 1

Relative change in SD-to-SCVaR ratio σQ/CQs,α
σB/CBs,α

− 1

Relative change in CER CERQ

CERB − 1

Panel H. Relative changes in various statistics of the
optimal portfolios due to the Volcker rule

Part I: SCVaR constraint present

Relative change in SD σP

σQ − 1

Relative change in SCVaR CPs,α
CQs,α
− 1

Relative change in SD-to-SCVaR ratio
σP /CPs,α
σQ/CQs,α

− 1

Relative change in CER CERP

CERQ − 1

Part II: SCVaR constraint absent

Relative change in SD σA

σB − 1

Relative change in SCVaR CAs,α
CBs,α
− 1

Relative change in SD-to-SCVaR ratio σA/CAs,α
σB/CBs,α

− 1

Relative change in CER CERA

CERB − 1

A.1SCVaR is given by: (i) Eq. (4) if the Volcker rule is present; and (ii) Eq. (13) if it is absent.
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Panel I. Assessing the impact of an SCVaR constraint and the Volcker rule
on various statistics of the optimal portfolios

Impact of the
Volcker rule

with
an SCVaR constraint

Impact of an
SCVaR constraint

without
the Volcker rule

Impact of an
SCVaR constraint

with
the Volcker rule

Impact of the
Volcker rule

without
an SCVaR constraint

Optimal portfolio
without an SCVaR constraint
and without the Volcker rule

Optimal portfolio
without an SCVaR constraint

and with the Volcker rule

Optimal portfolio
with an SCVaR constraint

and without the Volcker rule

Optimal portfolio
with an SCVaR constraint
and with the Volcker rule

Online Appendix A - 4



Online Appendix B: summary of results

Panel A summarizes how the size of the bound affects the location of the portfolio on the
SCVaR-constrained M-V frontier with a given expected return. Panels B, C, and D summarize the
impact of, respectively, an SCVaR constraint, the Volcker rule, and an SD constraint on various
statistics of the optimal portfolios in our example.

Panel A. The size of the bound and the location of a portfolio
on the SCVaR-constrained M-V frontier with a given expected return

Portfolio on the SCVaR-constrained
Size of bound M-V frontier with a given expected return

Smaller than the SCVaR of the portfolio on the Does not exist
M-SCVaR frontier with the same expected return
Equal to the SCVaR of the portfolio on the Is on the M-SCVaR frontier

M-SCVaR frontier with the same expected return
Strictly between the SCVaRs of the portfolios on the Lies strictly between the

M-SCVaR and M-V frontiers with the same expected return M-SCVaR and M-V frontiers
Equal to or larger than the SCVaR of the portfolio on the Is on the M-V frontier

M-V frontier with the same expected return

Panel B. Impact of an SCVaR constraint on various statistics of the optimal portfoliosB.1

Impact of an Effect of using a larger:
Relative change in: SCVaR constraint Risk aversion coeffi cient Bound

Part I: Volcker rule present
SD Negative Less negative

SCVaR Negative Less negative
SD-to-SCVaR ratio Positive Less positive

CER Negative Less negative
Part II: Volcker rule absent

SD Negative Less negative
SCVaR Negative Less negative

SD-to-SCVaR ratio Positive Less positive
CER Negative Less negative

Panel C. Impact of the Volcker rule on various statistics of the optimal portfolios

Impact of the Effect of using a larger:
Relative change in: Volcker rule Risk aversion coeffi cient Bound

Part I: SCVaR constraint present
SD DependsB.2 Depends

SCVaR ZeroB.3 No effect
SD-to-SCVaR ratio Depends Depends

CER Negative Depends
Part II: SCVaR constraint absent

SD Negative No effect —
SCVaR Negative No effect —

SD-to-SCVaR ratio Roughly zero No effect —
CER Negative Slightly less negative —

B.1SCVaR is given by: (i) Eq. (4) if the Volcker rule is present; and (ii) Eq. (13) if it is absent. This remark applies also to
panel C.
B.2Here, the term ‘depends’means that the sign of the relative change in the SD of the optimal portfolio due to the Volcker

rule depends on the size of the risk aversion coeffi cient and bound. A similar remark applies to subsequent panel cells where
this term appears.
B.3The relative change in SCVaR is zero because the SCVaR constraint binds with and without the Volcker rule (for all the

values of the risk aversion coeffi cient and bound used in our example).
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Panel D. Impact of an SD constraint on various statistics of the optimal portfolios

Impact of an Effect of using a larger:
Relative change in: SD constraintB.4 Risk aversion coeffi cient Bound

Part I: Volcker rule present
SD Negative Less negative

SCVaR Negative Less negative
CER Negative Less negative

Part II: Volcker rule absent
SD Negative Less negative

SCVaR Negative Less negative
CER Negative Less negative

B.4An SD constraint does not affect the risk-to-minimum capital requirement ratio of the optimal portfolio if risk in measured
by SD and minimum capital requirements are proportional to SDs.
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Online Appendix C: proofs of theoretical results

Definition of θ0,α,E and θ1,α,E . In Eq. (5), the weights of w0,s and w1,s in wα,E are, respectively:

θ0,α,E ≡
cs

bscs − a2
s

[
(bs − asE) + (asfs − bsds)

√
hs

y2
α − gs

]

and:

θ1,α,E ≡
as

bscs − a2
s

[
(csE − as) + (asds − csfs)

√
hs

y2
α − gs

]
where hs ≡ csE2−2asE+bs

bscs−a2s
is a positive number.

Definition of θ0,α,E and θ1,α,E . In Eq. (D.2), the weights of w0 and w1,s in wα,E are, respectively:

θ0,α,E ≡ 1− (as − csrf )

js

(E − rf )− ks

√
1
js

(E − rf )2

y2
α − gs

− (ds − csrf,s)

√
1
js

(E − rf )2

y2
α − gs

and:

θ1,α,E ≡
(as − csrf )

js

(E − rf )− ks

√
1
js

(E − rf )2

y2
α − gs

 .
Proof of Theorem 1. Suppose that α > αs, Cs ∈ R, and E ∈ R. First, we show (i). Assume
that Cs < Cs,α,wα,E . Since wα,E is on the M-SCVaR frontier and Cs < Cs,α,wα,E , no portfolio with
an expected return of E meets the SCVaR constraint. Hence, no portfolio exists on the SCVaR-
constrained M-V frontier with an expected return of E. This completes the first part of our proof.

Second, we show (ii). Assume that Cs = Cs,α,wα,E . Since wα,E is on the M-SCVaR frontier, wα,E

is the unique portfolio with an expected return of E that meets the SCVaR constraint. Therefore,
Eq. (8) holds. This completes the second part of our proof.

Third, we show (iii). Assume that Cs,α,wα,E < C < Cs,α,wE . Note that w
∗ ≡ wα,Cs,E solves:

C.1

min
w∈RN

1

2
w ′Σw (C.1)

s.t. w ′1 = 1 (C.2)
w ′µ = E (C.3)

yα
√
w ′Σsw −w ′µs ≤ Cs. (C.4)

A first-order condition for w∗ to solve problem (C.1) subject to constraints (C.2)—(C.4) is:

Σw∗ + λ11+λ2µ+ λ3

[
yαΣsw∗√
(w∗)′Σsw∗

− µs

]
= 0 (C.5)

C.1The existence of a solution to this problem follows from: (i) the function F : RN → R defined by F (w) = 1
2
w ′Σw is

continuous and coercive; (ii) the set of vectors in RN that meet constraints (C.2)—(C.4) is non-empty and closed; and (iii) a
continuous and coercive function has a minimum over a non-empty closed set. The uniqueness of this solution follows from: (a)
the strict convexity of function F ; and (b) and the convexity of the set of vectors in RN that meet constraints (C.2)—(C.4). For
a discussion of properties of coercive functions, see Beck (2014, Ch. 2).
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where λ1 ∈ R, λ2 ∈ R, and λ3 ∈ R+ are multipliers associated with these constraints.C.2 Since
Cs < Cs,α,wE , w

∗ is not on the M-V frontier. Hence, λ3 > 0. Let:

η ≡ λ3

[
yα√

(w∗)′Σsw∗

]
. (C.6)

Since yα > 0, λ3 > 0, and (w∗)′Σsw∗ > 0, we have η > 0. Eqs. (C.5) and (C.6) imply that:

(Σ + ηΣs)w∗ = −λ11−λ2µ+ λ3µs. (C.7)

Let:
ϕ∗ ≡ η

1 + η
. (C.8)

Since η > 0, Eq. (C.8) implies that ϕ∗ ∈ (0, 1). Dividing both sides of Eq. (C.7) by (1 + η) and
using Eq. (C.8), we have:

Σϕ∗w∗ = −
(

λ1

1 + η

)
1−
(

λ2

1 + η

)
µ+

(
λ3

1 + η

)
µs. (C.9)

Premultiplying Eq. (C.9) by Σ−1
ϕ∗ , we obtain:

w∗ = −
(

λ1

1 + η

)
(Σ−1

ϕ∗ 1)−
(

λ2

1 + η

)
(Σ−1

ϕ∗µ) +

(
λ3

1 + η

)
(Σ−1

ϕ∗µs). (C.10)

Let:

θ0,α,Cs,E ≡ −
(

λ1

1 + η

)
cϕ∗ (C.11)

and:

θ1,α,Cs,E ≡ −
(

λ2

1 + η

)
aϕ∗ . (C.12)

Eqs. (C.10)—(C.12) imply that Eq. (9) holds with ϕα,Cs,E = ϕ∗. This completes the third part of
our proof.

Fourth, we show (iv). Assume that Cs ≥ Cs,α,wE . Since wE is on the M-V frontier and meets
the SCVaR constraint, Eq. (10) holds. This completes the fourth part of our proof.

A numerical approach to find ϕα,Cs,E . Suppose that α > αs, Cs,α,wα,E < Cs < Cs,α,wE , and
E ∈ R. The following notation is useful. Let Ψ ≡ [1 µ µs] denote a N×3 matrix. For any Es ∈ R,
let κEs ≡ [1 E Es]

′ denote a 3 × 1. For any ϕ ∈ (0, 1), let Υϕ ≡ (Ψ′Σ−1
ϕ Ψ)−1 denote a 3 × 3

matrix. For any (m1,m2) ∈ {1, 2, 3} × {1, 2, 3}, let Υϕ,m1,m2
denote the element in row m1 and

column m2 of Υϕ. Let E∗s ≡ Es[rw∗ ] and σ∗s ≡ σs[rw∗ ] where w∗ is defined in the proof of Theorem
1. Also, let π∗ ≡ [π∗1 π∗2 π∗3]′ where π∗1 ≡ − λ1

1+η , π
∗
2 ≡ − λ2

1+η , and π
∗
3 ≡ λ3

1+η . Here, λ1, λ2, λ3, and
η are defined in the proof of Theorem 1.

Using Eq. (C.10), we have:
w∗ = (Σ−1

ϕ∗Ψ)π∗. (C.13)

Premultiplying Eq. (C.13) with Ψ′, we obtain:

κE∗s = (Ψ′Σ−1
ϕ∗Ψ)π∗. (C.14)

Premultiplying Eq. (C.14) by Υϕ∗ = (Ψ′Σ−1
ϕ∗Ψ)−1, we have:

π∗ = Υϕ∗κE∗s . (C.15)

C.2Note that the Kuhn-Tucker conditions are necessary and suffi cient for w∗ to solve the problem. For a discussion of such
conditions, see Horst, Pardalos, and Thoai (2000, Ch. 1).
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Since the SCVaR constraint binds:
E∗s = yασ

∗
s − Cs. (C.16)

It follows from Eqs. (C.15) and (C.16) as well as the definition of κE∗s that:

π∗3 = Υϕ∗,3,1 + Υϕ∗,3,2E + Υϕ∗,3,3 (yασ
∗
s − Cs) . (C.17)

The definition of π∗3 as well as Eqs. (C.6) and (C.8) imply that:

π∗3 = (ϕ∗/yα)σ∗s. (C.18)

Noting that (ϕ∗/yα −Υϕ∗,3,3yα) 6= 0, Eqs. (C.17) and (C.18) imply that:C.3

σ∗s =
Υϕ∗,3,1 + Υϕ∗,3,2E −Υϕ∗,3,3Cs

ϕ∗/yα −Υϕ∗,3,3yα
. (C.19)

It follows from Eqs. (C.16) and (C.19) that:

E∗s = yα

(
Υϕ∗,3,1 + Υϕ∗,3,2E −Υϕ∗,3,3Cs

ϕ∗/yα −Υϕ∗,3,3yα

)
− Cs. (C.20)

Using Eqs. (C.13) and (C.15), we have:

w∗ = (Σ−1
ϕ∗Ψ)Υϕ∗κE∗s . (C.21)

It follows from Eq. (C.21) that:

(σ∗s)
2 = [(Σ−1

ϕ∗Ψ)Υϕ∗κE∗s ]′Σs[(Σ
−1
ϕ∗Ψ)Υϕ∗κE∗s ]. (C.22)

Using the right-hand sides of Eqs. (C.19) and (C.20) in, respectively, the left- and right-hand sides
of Eq. (C.22), we obtain an equation with a single unknown, ϕ∗, which can be found numerically.

References (cited in Appendix C)
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C.3The fact that
(
ϕ∗/yα −Υϕ∗,3,3yα

)
6= 0 follows from the more general claim that if α > αs, E ∈ R, and ϕ ∈ (0, 1), then

Υϕ,3,3 > ϕ/y2α. Next, we provide a proof of this claim. Fix α > αs, E ∈ R, and ϕ ∈ (0, 1). Since α > αs, we have y2α > gs. Let
σ2s,Es denote the stressed variance of the portfolio that solves min

w∈RN
w ′Σsw subject to Ψ′w= κEs . Alexander and Baptista

(2017, Lemma 2) show that σ2s,Es = hs +
(Es−is)2

gs
where gs ∈ R++ and hs ∈ R++ are defined earlier and is ∈ R. Hence,

lim
Es→∞

σ2s,Es
E2s

= 1
gs
. Let σ2ϕ,Es denote the weighted average of unstressed and stressed variances with unstressed and stressed

variance weights of, respectively, 1 − ϕ and ϕ of the portfolio that solves min
w∈RN

w ′Σϕw subject to Ψ′w= κEs . Let σ
2
s,ϕ,Es

denote the stressed variance of this portfolio. Note that σ2ϕ,Es = κ′EsΥϕκEs . Hence, lim
Es→∞

σ2ϕ,Es
E2s

= Υϕ,3,3. It follows that

Υϕ,3,3 = lim
Es→∞

σ2ϕ,Es
E2s

≥ ϕ

(
lim

Es→∞

σ2s,ϕ,Es
E2s

)
≥ ϕ

(
lim

Es→∞

σ2s,Es
E2s

)
= ϕ

gs
> ϕ

y2α
.
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Online Appendix D: adding a risk-free asset
This Appendix extends our results to the case where a risk-free asset is present. The unstressed

and stressed returns of the risk-free asset are, respectively, rf ∈ R and rf,s ∈ R. We assume that
rf 6= a

c , rf 6=
as
cs
, and rf,s 6= ds

cs
as well as rf 6= aϕ

cϕ
and rf,s 6= dϕ

cϕ
for any ϕ ∈ (0, 1).

A portfolio is now an (N + 1) × 1 vector w = [w ′ wN+1]′ where w and wN+1 = 1 − w ′1
denote, respectively, the N × 1 vector of risky asset weights and the risk-free asset weight.

D.1. The M-V frontier
Let 0 denote the N × 1 zero vector. Merton (1972) uses portfolios w0 ≡ [0′ 1]′ and w1 ≡[

(µ−1rf )′Σ−1

a−crf 0
]′
to characterize the M-V frontier. The portfolio on it with an expected return of

E ∈ R is:
wE ≡ θEw0 + (1− θE)w1 (D.1)

where θE ≡ E−[(b−arf )/(a−crf )]
rf−[(b−arf )/(a−crf )] .

D.2. The M-SCVaR frontier
Let js ≡ csr

2
f − 2asrf + bs, ks ≡ csrfrf,s − asrf,s − dsrf + fs, ls ≡ csr

2
f,s − 2dsrf,s + es, and

gs ≡ ls − k2s
js
denote constants with js > 0, ls > 0, and gs > 0. Also, let αs be the constant for

which yαs =
√
gs. Alexander and Baptista (2017) use portfolios w0, w1,s ≡

[
(µ−1rf )′Σ−1s
as−csrf 0

]′
, and

w2,s ≡
[

(µs−1rf,s)′Σ−1s
ds−csrf,s 0

]′
to characterize the M-SCVaR frontier when α > αs. The portfolio on

it with an expected return of E ∈ R is:

wα,E ≡ θ0,α,E w0 + θ1,α,E w1,s +
(
1− θ0,α,E − θ1,α,E

)
w2,s (D.2)

where θ0,α,E ∈ R and θ1,α,E ∈ R are defined in Appendix C.

D.3. The SCVaR-constrained M-V frontier

For any ϕ ∈ (0, 1), w1,ϕ ≡
[

(µ−1rf )′Σ−1ϕ
aϕ−cϕrf 0

]′
and w2,ϕ ≡

[
(µs−1rf,s)′Σ−1ϕ

dϕ−cϕrf,s 0
]′
are two portfolios.

We next use w0 and {(w1,ϕ,w2,ϕ)}ϕ∈(0,1) to characterize the SCVaR-constrained M-V frontier.

Theorem 2. Fix any confidence level α > αs, any bound Cs ∈ R, and any expected return E ∈ R.
(i) If Cs < Cs,α,wα,E , then there is no portfolio on the SCVaR-constrained M-V frontier with
confidence level α and bound Cs that has an expected return of E. (ii) If Cs = Cs,α,wα,E , then such
a portfolio is:

wα,Cs,E = wα,E . (D.3)

(iii) If Cs,α,wα,E < Cs < Cs,α,wE , then it is:

wα,Cs,E = θ0,α,Cs,E w0 + θ1,α,Cs,E w1,ϕα,Cs,E
+ (1− θ0,α,Cs,E − θ1,α,Cs,E)w2,ϕα,Cs,E

(D.4)

where θ0,α,Cs,E ∈ R, θ1,α,Cs,E ∈ R, and ϕα,Cs,E ∈ (0, 1) are defined in Appendix C. (iv) If Cs ≥
Cs,α,wE , then it is:

wα,Cs,E = wE . (D.5)

Theorem 2 is similar to Theorem 1 where a risk-free asset is absent. Hence, our discussion of
the latter theorem extends to the former.

D.4. Example
We now add a risk-free asset to our numerical example. In doing so, we use US Treasury bills

with a maturity range of 0—0.25 years (daily returns are obtained from Bloomberg).D.1

D.1The average return and stressed average return on US Treasury bills are, respectively, 0.02% and 0.04%.
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Suppose that Cs = 20%. Panel A of Fig. D2 plots various frontiers in M-SD space. Compared
to panel A of Fig. 2 where a risk-free asset is absent, we note three minor differences. First, the
portfolios on the unconstrained and SCVaR-constrained M-V frontiers with any given (feasible)
expected return generally have slightly smaller SDs in panel A of Fig. D2.D.2 Second, the range
of expected returns where the SCVaR constraint does not bind widens slightly in panel A of Fig.
D2. Third, the range of feasible expected returns with this constraint widens slightly in panel A of
Fig. D2. Similar results hold if Cs = 10%; compare panels A and B of Figs. D2. Since the effect of
the presence of a risk-free asset on the location of the unconstrained and SCVaR-constrained M-V
frontiers is modest, so is its effect on the results on the impact of an SCVaR constraint on various
statistics of the optimal portfolio; compare panels A—D of Fig. D3 to panels A—D of Fig. 3.

Consider now the impact of an SCVaR constraint in the absence of the Volcker rule. The results
in the presence of a risk-free asset shown in panels E—H of Fig. D3 are similar to those reported for
panels E—H of Fig. 3.

D.5. Impact of the Volcker rule
When an SCVaR constraint is present, the results in panels A—D of Fig. D4 (with a risk-free

asset) are similar to the results in panels A—D of Fig. 4 (without a risk-free asset). When an SCVaR
constraint is absent, the results in panels E—H of Fig. D4 (with a risk-free asset) are similar to the
results in panels E—H of Fig. 4 (without a risk-free asset).

D.6. Proofs of theoretical results

Proof of Theorem 2. Suppose that α > αs, Cs ∈ R, and E ∈ R. First, we show (i). Assume
that Cs < Cs,α,wα,E . Since wα,E is on the M-SCVaR frontier and Cs < Cs,α,wα,E , no portfolio with
an expected return of E meets the SCVaR constraint. Hence, no portfolio exists on the SCVaR-
constrained M-V frontier with an expected return of E. This completes the first part of our proof.

Second, we show (ii). Assume that Cs = Cs,α,wα,E . Since wα,E is on the M-SCVaR frontier, the
only portfolio with an expected return of E that meets the SCVaR constraint is wα,E . Therefore,
Eq. (D.3) holds. This completes the second part of our proof.

Third, we show (iii). Assume that Cs,α,wα,E < Cs < Cs,α,wE . Note that w
∗ ≡ wα,Cs,E solves:

D.3

min
w∈RN

1

2
w ′Σw (D.6)

s.t. w ′ (µ− 1rf ) = E − rf (D.7)

yα
√
w ′Σsw −w ′ (µs − 1rf,s) ≤ Cs + rf,s. (D.8)

A first-order condition for w∗ to solve problem (D.6) subject to constraints (D.7) and (D.8) is:

Σw∗ + λ4 (µ− 1rf ) + λ5

[
yαΣsw∗√
(w∗)′Σsw∗

− (µs − 1rf,s)

]
= 0 (D.9)

where λ4 ∈ R and λ5 ∈ R+ are multipliers associated with these constraints.D.4 Since Cs < Cs,α,wE ,
w∗ is not on the M-V frontier. Hence, λ5 > 0. Let:

η ≡ λ5

[
yα√

(w∗)′Σsw∗

]
. (D.10)

Since yα > 0, λ5 > 0, and (w∗)′Σsw∗ > 0, we have η > 0. Eqs. (D.9) and (D.10) imply that:

(Σ + ηΣs)w∗ = −λ4 (µ− 1rf ) + λ5 (µs − 1rf,s) . (D.11)

D.2For the expected return equal to that of the tangency portfolio, the corresponding portfolio on the M-V frontier when a
risk-free asset is present coincides with the portfolio on such a frontier when this asset is absent.
D.3The existence and uniqueness of the solution to this problem follows from the arguments in footnote C.1.
D.4Note that the Kuhn-Tucker conditions are necessary and suffi cient for w∗ to solve this problem.
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Let:
ϕ∗ ≡ η

1 + η
. (D.12)

Since η > 0, Eq. (D.12) implies that ϕ∗ ∈ (0, 1). Dividing both sides of Eq. (D.11) by (1 + η) and
using Eq. (D.12), we have:

Σϕ∗w∗ = −
(

λ4

1 + η

)
(µ− 1rf ) +

(
λ5

1 + η

)
(µs − 1rf,s) . (D.13)

Premultiplying Eq. (D.13) by Σ−1
ϕ∗ , we obtain:

w∗ = −
(

λ4

1 + η

)
[Σ−1

ϕ∗ (µ− 1rf )] +

(
λ5

1 + η

)
[Σ−1

ϕ∗ (µs − 1rf,s)]. (D.14)

Let:

θ0,α,Cs,E ≡ 1 +

(
λ4

1 + η

)
(aϕ∗ − cϕ∗rf )−

(
λ5

1 + η

)
(dϕ∗ − cϕ∗rf,s) (D.15)

and:

θ1,α,Cs,E ≡ −
(

λ4

1 + η

)
(aϕ∗ − cϕ∗rf ) . (D.16)

Using Eqs. (D.15) and (D.16), we have:

1− θ0,α,Cs,E − θ1,α,Cs,E =

(
λ5

1 + η

)
(dϕ∗ − cϕ∗rf,s) . (D.17)

Eqs. (D.14)—(D.17) imply that Eq. (D.4) holds with ϕα,Cs,E = ϕ∗. This completes the third part of
our proof.

Fourth, we show (iv). Assume that Cs ≥ Cs,α,wE . Since wE is on the M-V frontier and meets
the SCVaR constraint, Eq. (D.5) holds. This completes the fourth part of our proof.

An approach to find ϕα,Cs,E . Suppose that α > αs, Cs,α,wα,E < Cs < Cs,α,wE , and E ∈ R. The
following notation is useful. Let Ψ ≡ [µ− 1rf µs−1rf,s] denote a N × 2 matrix. For any Es ∈ R,
let κEs ≡ [E − rf Es − rf,s]′ denote a 2 × 1 vector. For any ϕ ∈ (0, 1), let Υϕ ≡ (Ψ

′
Σ−1
ϕ Ψ)−1

denote a 2 × 2 matrix. For any (m1,m2) ∈ {1, 2, 3} × {1, 2, 3}, let Υϕ,m1,m2
denote the element in

row m1 and column m2 of Υϕ. Let E
∗
s ≡ Es[rw∗ ] and σ∗s ≡ σs[rw∗ ] where w∗ is defined in the proof

of Theorem 2. Also, let π∗ ≡ [π∗1 π∗2]′ where π∗1 ≡ − λ4
1+η and π

∗
2 ≡ λ5

1+η . Here, λ4 and λ5, and η are
defined in the proof of Theorem 2.

Using Eq. (D.14), we have:
w∗ = (Σ−1

ϕ∗Ψ)π∗. (D.18)

Premultiplying Eq. (D.18) with Ψ
′
, we obtain:

κE∗s
= (Ψ

′
Σ−1
ϕ∗Ψ)π∗. (D.19)

Premultiplying Eq. (D.19) by Υϕ∗ = (Ψ
′
Σ−1
ϕ∗Ψ)−1, we have:

π∗ = Υϕ∗κE∗s
. (D.20)

Since the SCVaR constraint binds:
E
∗
s = yασ

∗
s − Cs. (D.21)

It follows from Eqs. (D.20) and (D.21) as well as the definition of κE∗s that:

π∗2 = Υϕ∗,2,1 (E − rf ) + Υϕ∗,2,2 (yασ
∗
s − Cs − rf,s) . (D.22)
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The definition of π∗2 as well as Eqs. (D.10) and (D.12) imply that:

π∗2 = (ϕ∗/yα)σ∗s. (D.23)

Noting that
(
ϕ∗/yα −Υϕ∗,2,2yα

)
6= 0, Eqs. (D.22) and (D.23) imply that:D.5

σ∗s =
Υϕ∗,2,1 (E − rf )−Υϕ∗,2,2(Cs + rf,s)

ϕ∗/yα −Υϕ∗,2,2yα
. (D.24)

It follows from Eqs. (D.21) and (D.24) that:

E
∗
s = yα

[
Υϕ∗,2,1 (E − rf )−Υϕ∗,2,2(Cs + rf,s)

ϕ∗/yα −Υϕ∗,2,2yα

]
− Cs. (D.25)

Using Eqs. (D.18) and (D.20), we have:

w∗ = (Σ−1
ϕ∗Ψ)Υϕ∗κE∗s

. (D.26)

It follows from Eq. (D.26) that:

(σ∗s)
2 = [(Σ−1

ϕ∗Ψ)Υϕ∗κE∗s
]′Σs[(Σ

−1
ϕ∗Ψ)Υϕ∗κE∗s

]. (D.27)

Using the right-hand sides of Eqs. (D.24) and (D.25) in, respectively, the left- and right-hand sides
of Eq. (D.27), we obtain an equation with a single unknown, ϕ∗, which can be found numerically.

D.5The fact that
(
ϕ∗/yα −Υϕ∗,2,2yα

)
6= 0 follows from the more general claim that if α > αs, E ∈ R, and ϕ ∈ (0, 1),

then Υϕ,2,2 > ϕ/y2α. A proof of this claim appears next. Fix α > αs, E ∈ R, and ϕ ∈ (0, 1). Since α > αs, we have
y2α > gs. Let σ

2
s,Es

denote the stressed variance of the portfolio that solves min
w∈RN

w ′Σsw subject to Ψ
′w=κEs . Alexander

and Baptista (2017, Lemma 4) show that σ2s,Es = hs +
(Es−is)2

gs
where gs ∈ R++ is defined earlier, hs ∈ R+, and is ∈ R.

Hence, lim
Es→∞

σ2s,Es
E2s

= 1
gs
. Let σ2ϕ,Es denote the weighted average of unstressed and stressed variances with unstressed and

stressed variance weights of, respectively, 1 − ϕ and ϕ of the portfolio that solves min
w∈RN

w ′Σϕw subject to Ψ
′w=κEs . Let

σ2s,ϕ,Es denote the stressed variance of this portfolio. Note that σ
2
ϕ,Es

= κ′EsΥϕκEs . Hence, lim
Es→∞

σ2ϕ,Es
E2s

= Υϕ,2,2. It follows

that Υϕ,2,2 = lim
Es→∞

σ2ϕ,Es
E2s

≥ ϕ

(
lim

Es→∞

σ2s,ϕ,Es
E2s

)
≥ ϕ

(
lim

Es→∞

σ2s,Es
E2s

)
= ϕ

gs
> ϕ

y2α
.
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Fig. D1. The M-V, M-SCVaR, and SCVaR-constrained M-V frontiers when a
risk-free asset is present

Suppose that a risk-free asset is present. The solid and dotted lines show, respectively, the M-V
and M-SCVaR frontiers. The bottom and top dashed curves along with the portion of the solid
curve between points J6 and J7 show the SCVaR-constrained M-V frontier. Let E5—E8 denote the
expected returns associated with, respectively, points J5—J8. For any expected return either less
than E5 or more than E8, a portfolio on this frontier does not exist. For the expected return of
either E5 or E8, such a portfolio is on the M-SCVaR frontier. For any expected return strictly
between either E5 and E6 or E7 and E8, the portfolio is strictly between the M-V and M-SCVaR
frontiers. For any expected return between (and including) E7 and E8, the portfolio is on the M-V
frontier.

Expected
return

Standard deviation
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Online Appendix E: two properties of portfolios on the SCVaR-constrained M-V fron-
tier

This Appendix presents two properties of portfolios on the SCVaR-constrained M-V frontier.

E.1. Absence of a risk-free asset
The following two corollaries of Theorem 1 consider the case where a risk-free asset is absent.

Corollary 1. Fix any confidence level α > αs and any bound Cs ≥ Cs,α,wE,α where E ∈ R is an
expected return. Portfolio wα,Cs,E minimizes a weighted average of unstressed and stressed variances
among the portfolios with the same unstressed and stressed expected returns. The corresponding
unstressed and stressed variance weights sum to 100% and the stressed variance weight is: (i) 100%
if Cs = Cs,α,wE,α ; (ii) ϕα,Cs,E if Cs,α,wα,E < Cs < Cs,α,wE ; and (iii) 0% if Cs ≥ Cs,α,wE .

Proof. Suppose that α > αs and Cs ≥ Cs,α,wE where E ∈ R. Let Es,α,Cs,E denote the stressed
expected return of wα,Cs,E . First, assume that Cs = Cs,α,wα,E . Eq. (8) says that wα,Cs,E =wα,E .
Hence, wα,Cs,E minimizes stressed variance among the portfolios with an expected return of E and
a stressed expected return of Es,α,Cs,E . It follows that the stressed variance weight is 100%.

Second, assume that Cs,α,wα,E < Cs < Cs,α,wE . Eq. (C.21) implies that wα,Cs,E =w∗ minimizes
the weighted average of unstressed and stressed variances with unstressed and stressed variances
weights of, respectively, 1 − ϕ∗ and ϕ∗ among the portfolios with an expected return of E and a
stressed expected return of Es,α,Cs,E . It follows that the stressed variance weight is ϕα,Cs,E = ϕ∗.

Third, assume that Cs ≥ Cs,α,wE . Eq. (10) says that wα,Cs,E =wE . Hence, wα,Cs,E minimizes
variance among the portfolios with an expected return of E and a stressed expected return of
Es,α,Cs,E . It follows that the stressed variance weight is 0%.

Corollary 2. Fix any confidence level α > αs and any bound Cs ≥ Cs,α,wE,α where E ∈ R is
an expected return. Portfolio wα,Cs,E minimizes a weighted average of variance and SCVaR at
confidence level α among the portfolios with the same expected return. The corresponding variance
and SCVaR weights sum to 100% and the SCVaR weight is: (i) 100% if Cs = Cs,α,wE,α; (ii) strictly
between 0% and 100% if Cs,α,wα,E < Cs < Cs,α,wE ; and (iii) 0% if Cs ≥ Cs,α,wE .

Proof. Suppose that α > αs and Cs ≥ Cs,α,wE where E ∈ R. First, assume that Cs = Cs,α,wα,E . It
follows from Eq. (8) that the SCVaR weight is 100%.

Second, assume that Cs,α,wα,E < Cs < Cs,α,wE . Let ζ ≡ λ3
1/2+λ3

where λ3 > 0 is defined in the
proof of Theorem 1. Since λ3 > 0, we have ζ ∈ (0, 1). Consider the problem:

min
w∈RN

(1− ζ)(w ′Σw) + (ζ)(yα
√
w ′Σsw −w ′µs) (E.1)

s.t. w ′1 = 1 (E.2)
w ′µ = E. (E.3)

Suffi cient conditions for w∗ to solve problem (E.1) subject to constraints (E.2) and (E.3) are:

(w∗)′1 = 1, (E.4)

(w∗)′µ = E, (E.5)

and:

2 (1− ζ) Σw∗ + ζ

[
yαΣsw∗√
(w∗)′Σsw∗

− µs

]
+δ11+δ2µ = 0 (E.6)

for some (δ1, δ2) ∈ R2. Since w∗ is on the SCVaR-constrained M-V frontier, Eqs. (E.4) and (E.5)
hold. Multiplying Eq. (C.5) by 1

1/2+λ3
, we obtain:(

1

1/2 + λ3

)
(Σw∗ + λ11+λ2µ) +

(
λ3

1/2 + λ3

)[
yαΣsw∗√
(w∗)′Σsw∗

− µs

]
= 0. (E.7)
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Using the definition of ζ and Eq. (E.7), we have:

2 (1− ζ) (Σw∗ + λ11+λ2µ) + ζ

[
yαΣsw∗√
(w∗)′Σsw∗

− µs

]
= 0. (E.8)

It follows from Eq. (E.8) that Eq. (E.6) holds with δ1 = 2 (1− ζ)λ1 and δ2 = 2 (1− ζ)λ2.
Third, assume that Cs ≥ Cs,α,wE . It follows from Eq. (10) that the SCVaR weight is 0%.

E.2. Presence of a risk-free asset
The following two corollaries of Theorem 2 consider the case where a risk-free asset is present.

Corollary 3. Fix any confidence level α > αs and any bound Cs ≥ Cs,α,wE,α where E ∈ R is an
expected return. Portfolio wα,Cs,E minimizes a weighted average of unstressed and stressed variances
among the portfolios with the same unstressed and stressed expected returns. The corresponding
unstressed and stressed variance weights sum to 100% and the stressed variance weight is: (i) 100%
if Cs = Cs,α,wE,α; (ii) ϕα,Cs,E if Cs,α,wE,α < Cs < Cs,α,wE ; and (iii) 0% if Cs ≥ Cs,α,wE .

Proof. Suppose that α > αs and Cs ≥ Cs,α,wE,α where E ∈ R. Let Es,α,Cs,E denote the stressed
expected return of wα,Cs,E . First, assume that Cs = Cs,α,wα,E . Eq. (D.3) says that wα,Cs,E = wα,E .
Hence, wα,Cs,E minimizes stressed variance among the portfolios with an expected return of E and
a stressed expected return of Es,α,Cs,E . It follows that the stressed variance weight is 100%.

Second, assume that Cs,α,wα,E < Cs < Cs,α,wE . Eq. (D.26) implies that wα,Cs,E = w∗ minimizes
the weighted average of unstressed and stressed variances with unstressed and stressed variance
weights of, respectively, 1 − ϕ∗ and ϕ∗ among the portfolios with an expected return of E and a
stressed expected return of Es,α,Cs,E . It follows that the stressed variance weight is ϕα,Cs,E = ϕ∗.

Third, assume that Cs ≥ Cs,α,wE . Eq. (D.5) says that wα,Cs,E = wE . Hence, wα,Cs,E minimizes
variance among the portfolios with an expected return of E and a stressed expected return of
Es,α,Cs,E . It follows that the stressed variance weight is 0%.

Corollary 4. Fix any confidence level α > αs and any bound Cs ≥ Cs,α,wE,α where E ∈ R is
an expected return. Portfolio wα,Cs,E minimizes a weighted average of variance and SCVaR at
confidence level α among the portfolios with the same expected return. The corresponding variance
and SCVaR weights sum to 100% and the SCVaR weight is: (i) 100% if Cs = Cs,α,wE,α; (ii) strictly
between 0% and 100% if Cs,α,wα,E < Cs < Cs,α,wE ; and (iii) 0% if Cs ≥ Cs,α,wE .

Proof. Suppose that α > αs and Cs ≥ Cs,α,wE,α where E ∈ R. First, assume that Cs = Cs,α,wα,E .
It follows from Eq. (D.3) that the SCVaR weight is 100%.

Second, assume that Cs,α,wα,E < Cs < Cs,α,wE . Let ζ ≡ λ5
1/2+λ5

where λ5 > 0 is defined in the

proof of Theorem 2. Since λ5 > 0, we have ζ ∈ (0, 1). Consider the problem:

min
w∈RN

(1− ζ)(w ′Σw) + (ζ)[yα
√
w ′Σsw −w ′ (µs − 1rf,s)− rf,s] (E.9)

s.t. w ′ (µ− 1rf ) = E − rf . (E.10)

Suffi cient conditions for w∗ to solve problem (E.9) subject to constraint (E.10) are:

(w∗)′ (µ− 1rf ) = E − rf (E.11)

and:

2(1− ζ)Σw∗ + ζ

[
yαΣsw∗√
(w∗)′Σsw∗

− (µs − 1rf,s)

]
+δ3 (µ− 1rf ) = 0 (E.12)
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for some δ3 ∈ R. Since w∗ is on the SCVaR-constrained M-V frontier, Eq. (E.11) holds. Multiplying
Eq. (D.9) by 1

1/2+λ5
, we obtain:

(
1

1/2 + λ5

)
[Σw∗ + λ4 (µ− 1rf )] +

(
λ5

1/2 + λ5

)[
yαΣsw∗√
(w∗)′Σsw∗

− (µs − 1rf,s)

]
= 0. (E.13)

Using the definition of ζ and Eq. (E.13), we have:

2
(
1− ζ

)
[Σw∗ + λ4 (µ− 1rf )] + ζ

[
yαΣsw∗√
(w∗)′Σsw∗

− (µs − 1rf,s)

]
= 0. (E.14)

It follows from Eq. (E.14) that Eq. (E.13) holds with δ3 = 2
(
1− ζ

)
λ4.

Third, assume that Cs ≥ Cs,α,wE . It follows from Eq. (D.5) that the SCVaR weight is 0%.
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Online Appendix F: Adding an SD constraint to our numerical example

Fig. F1. Relative change in the SD of the optimal portfolio due to an SD constraint

Consider an M-V objective function with risk aversion coeffi cient γ and an SD constraint with
bound σ. Fig. F1 examines the relative change in the SD of the optimal portfolio due to this SD
constraint. In each panel, the thick and thin dashed lines show the relative change as a function
of γ ∈ [0.1, 10] when the bound is, respectively, 2% and 3%. A risk-free asset is absent in panels A
and C, whereas it is present in panels B and D. While the Volcker rule is present in panels A and
B, it is absent in panels C and D. Relative changes are reported in percentage points.
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Fig. F2. Relative change in the SCVaR of the optimal portfolio due to an SD
constraint

Consider an M-V objective function with risk aversion coeffi cient γ and an SD constraint with
bound σ. Fig. F2 examines the relative change in the SCVaR of the optimal portfolio due to this
SD constraint. In each panel, the thick and thin dashed lines show the relative change as a function
of γ ∈ [0.1, 10] when the bound is, respectively, 2% and 3%. A risk-free asset is absent in panels A
and C, whereas it is present in panels B and D. While the Volcker rule is present in panels A and
B, it is absent in panels C and D. Relative changes are reported in percentage points.
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Fig. F3. Relative change in the CER of the optimal portfolio due to an SD constraint

Consider an M-V objective function with risk aversion coeffi cient γ and an SD constraint with
bound σ. Fig. F3 examines the relative change in the CER of the optimal portfolio due to this SD
constraint. In each panel, the thick and thin dashed lines show the relative change as a function
of γ ∈ [0.1, 10] when the bound is, respectively, 2% and 3%. A risk-free asset is absent in panels A
and C, whereas it is present in panels B and D. While the Volcker rule is present in panels A and
B, it is absent in panels C and D. Relative changes are reported in percentage points.
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