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Online Appendix A: summary of notation

Panels A1, A2, A3, A4, and A5 refer to, respectively, assets, portfolios, the MV frontier, the
MV agent, and the DMSS agent. Panels A6, A7, and A8 refer to single-agent economies with,
respectively, an MV agent, a DMSS agent and a single account, and a DMSS agent with multiple
accounts. Panel I refers to two-agent economies with MV and DMSS agents. Panel A9 refers to
equilibrium expected returns.

Panel A1. Assets
J Number of assets
J Set of assets

(d ,S) Vector of expected asset payoffs and variance-covariance matrix of asset payoffs
p Asset price vector

Panel A2. Portfolios

q Portfolio (quantities of asset shares)
(dq , sq ) Expected payoff and payoff standard deviation of portfolio q
v1−α,q Payoff VaR at confidence level 1− α of portfolio q
pq Price of portfolio q

(rq , σq ) Expected return and return standard deviation of portfolio q
V1−α,q Return VaR at confidence level 1− α of portfolio q

Panel A3. MV frontier

A, B, C, D Values used to characterize the MV frontier
qd,p Portfolio on the MV frontier with expected payoff d and price p

(qA/C,1,qB/A,1) Portfolios that span the MV frontier

Panel A4. MV agent

q0 Vector of asset endowments
γ0 Risk aversion coeffi cient
q∗0 Optimal portfolio

(d∗0, s
∗
0) Expected payoff and payoff standard deviation of the optimal portfolio

Panel A5. DMSS agent

M Number of accounts
M Set of accounts
qm Vector of asset endowments in account m

(αm, Hm) Threshold probability and return of account m
(α,Hαm) Bounds on thresholds for the existence of the optimal portfolio within account m
q∗m Optimal portfolio within account m
γ∗m Implied risk aversion coeffi cient of the optimal portfolio within account m

(d∗m, s
∗
m) Expected payoff and payoff standard deviation of the optimal portfolio within account m

qa Vector of aggregate asset endowments
q∗a Aggregate portfolio
γ∗a Implied risk aversion coeffi cient of the aggregate portfolio

(d∗a, s
∗
a) Expected payoff and payoff standard deviation of the aggregate portfolio
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Panel A6. Single-agent economies with an MV agent

[(d ,S), (q0, γ0)] Economy
Γ0 Set of risk aversion coeffi cients of the MV agent
Θ0 Set used to determine equilibria
θ0 Element of Θ0

(p∗,q∗0) = (pθ0,γ0 ,q
∗
0,θ0,γ0

) Equilibrium

Panel A7. Single-agent economies with a DMSS agent and a single account

[(d ,S), (q1, H1, α1)] Economy
Γ1 Set of implied risk aversion coeffi cients of the

DMSS agent’s optimal portfolio within account 1
γ1 Element of Γ1

(p∗,q∗1) = (pγ1 ,q
∗
1,γ1

) Equilibrium

Panel A8. Single-agent economies with a DMSS agent and multiple accounts

[(d ,S), {(qm, Hm, αm)}m∈M] Economy
Γa Set of implied risk aversion coeffi cients of the

DMSS agent’s aggregate portfolio
γa Element of Γa
Θa Set used to determine equilibria
θ∗a Element of Θa

(p∗, {q∗m}m∈M) = (pθ∗a,γa , {q
∗
m,θ∗a,γa

}m∈M) Equilibrium

Panel A9. Two-agent economies with MV and DMSS agents

[(d ,S), (q0, γ0), {(qm, Hm, αm)}m∈M] Economy
Γ0,a Set of implied risk aversion

coeffi cients of the DMSS
agent’s aggregate portfolio

γ0,a Element of Γ0,a
ϕ0,a Value that depends on γ0 and γ0,a
Θ0,a Set used to determine equilibria
θ∗0,a Element of Θ0,a

[p∗, (q∗0, {q∗m}m∈M)] = [pθ∗0,a,ϕ0,a , (q
∗
0,θ∗0,a,ϕ0,a

, {q∗m,θ∗0,a,ϕ0,a}m∈M)] Equilibrium

Panel A10. Equilibrium expected returns, betas,
zero-covariance portfolio, and market portfolio

r∗j Expected return of asset j

β∗j Beta of asset j

qzc Zero-covariance portfolio

r∗qzc Expected return of the zero-covariance portfolio

1 Market portfolio

r∗1 Expected return of the market portfolio
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Online Appendix C: proofs of theoretical results

Proof that portfolios on the MV frontier satisfy Eq. (10). Fix any (d, p) ∈ R× R++.
Portfolio qd,p solves:

min
q∈RJ

1

2
q ′Sq (C.1)

s.t. q ′d = d (C.2)

q ′p = p. (C.3)

First-order conditions for qd,p to solve problem (C.1) subject to constraints (C.2) and (C.3) are:

Sqd,p − δd − ηp = 0, (C.4)

q ′d,pd = d, (C.5)

q ′d,pp = p, (C.6)

where δ and η are Lagrange multipliers associated with these constraints. Eq. (C.4) implies that:

qd,p = δ(S−1d) + η(S−1p). (C.7)

Premultiplying Eq. (C.7) by d ′ and using Eq. (C.5) along with the definitions of A and B, we
have:

d = δB + ηA. (C.8)

Similarly, premultiplying Eq. (C.7) by p ′ and using Eq. (C.6) along with the definitions of A and
C, we have:

p = δA+ ηC. (C.9)

It follows from Eqs. (C.8) and (C.9) along with the definition of D that:

δ =
dC − pA

D
(C.10)

and:

η =
pB − dA

D
. (C.11)

Eqs. (C.7), (C.10), and (C.11) imply that Eq. (10) holds with φd,p = Aδ.

Proof that portfolios on the MV frontier satisfy Eq. (11). Eq. (C.7) implies that:

s2
q = δ2B + 2δηA+ η2C. (C.12)

Using Eqs. (C.10) and (C.11) in Eq. (C.12), we have:

s2
q =

(
dqC − pA

D

)2

B + 2

(
dqC − pA

D

)(
pB − dqA

D

)
A+

(
pB − dqA

D

)2

C. (C.13)

It follows from Eq. (C.13) and the definition of D that:

s2
q =

Cd2
q − 2Adqp+Bp2

D
. (C.14)

Using Eq. (C.14) and the definition of D, we have Eq. (11).
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Proof of Theorem 1. First-order conditions for q∗0 to solve maximization problem (1) subject to
constraint (2) are:

d − γ0Sq
∗
0 − λp = 0 (C.15)

(q∗0)′ p = q ′0p. (C.16)

Using Eqs. (C.15) and (C.16), we have:

q∗0 =
S−1(d − λp)

γ0

(C.17)

where:

λ =
d ′S−1p − γ0q ′0p

p ′S−1p
. (C.18)

Eqs. (C.17) and (C.18) along with the definitions of A, qA/C,1, and qB/A,1 imply that Eq. (13)
holds.

For any 0 < α < α and p > 0, let q1−α,p denote the portfolio with minimum return VaR at
confidence level 1 − α among the portfolios with a price of p. For brevity, let V1−α,p denote its
return VaR at the confidence level 1 − α. For any m ∈ M, let d∗m and s∗m denote, respectively
the expected payoff and payoff standard deviation of the optimal portfolio within account m. The
following two lemmas are useful in our proof of Theorem 2.

Lemma 1. If 0 < α < α and p > 0, then V1−α,p = −Hα.

Proof. Suppose that 0 < α < α and p > 0. Using Eq. (6), portfolio q1−α,p is on the MV frontier.
Using Eq. (12). that rq1−α,p solves:

min
r∈R

zα

√
1/C +

(1 + r −A/C)2

D/C
− r. (C.19)

A first-order condition for rq1−α,p to solve problem (C.19) is:

zα(1 + rq1−α,p −A/C)/ (D/C)√
1/C + (1 + rq1−α,p −A/C)2/ (D/C)

− 1 = 0. (C.20)

It follows from Eq. (C.20) that:

rq1−α,p =

√
D2/C3

z2
α −D/C

+A/C − 1. (C.21)

Using Eqs. (11) and (C.21), we have:

σq1−α,p =

√
z2
α/C

z2
α −D/C

. (C.22)

Eqs. (7), (15), (C.21), and (C.22) imply that V1−α,q1−α,p = −Hα.

Lemma 2. Fix any account m ∈M. If αm < α and Hm ≤ Hαm , then the optimal portfolio within
account m, q∗m, is on the MV frontier. Also, dq∗m > pqm(A/C) and v1−αm ,q∗m = −pqm(1 +Hm).
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Proof. Fix any account m ∈ M. Suppose that αm < α and Hm ≤ Hαm . First, we show that
portfolio q∗m is on the MV frontier. Assume by way of a contradiction that it is not. Then, there
exists a portfolio q̂ with dq̂ = dq∗m and sq̂ < sq∗m . Let q ζ ≡ ζq̂ + (1− ζ)q where ζ > 0 is arbitrarily
small and q̂ is a portfolio with d̂ ≡ dq̂ > dq and pq̂ = pqm . Note that pqζ = pq∗m , dqζ > dq∗m , and
sqζ < sq∗m . Since pqζ = pq∗m > 0, it follows that rqζ > rq∗m and σqζ < σq∗m . Using Eq. (7) along
with the facts that rqζ > rq∗m , σqζ < σq∗m , and zαm > 0, we have V1−αm ,qζ < V1−αm ,q∗m . Equality
pqζ = pq∗m along with inequalities dqζ > dq∗m and V1−αm ,qζ < V1−αm ,q∗m contradict the fact that q

∗
m

is the optimal portfolio within account m. This completes the first part of our proof.
Second, we show that dq∗m > pqm(A/C). For notational brevity, let d ≡ dq∗mand p ≡ pqm . It

follows from Eq. (7) that:

V1−αm ,q∗m = zαm

{√
p2(1/C) + [d− p(A/C)]2/ (D/C)

p

}
− d

p
+ 1. (C.23)

Using Eq. (C.23), we have:

∂V1−αm ,q∗m
∂d

=

{
zαm [d− p(A/C)]/ (D/C)√

p2(1/C) + [d− p(A/C)]2/ (D/C)
− 1

}
1

p
. (C.24)

Since zαm > 0, Eq. (C.24) implies that if dq∗m ≤ pqm(A/C), then ∂V1−αm ,q∗m /∂d < 0. Hence, we
have dq∗m > pqm(A/C). This completes the second part of our proof.

Third, we show that v1−αm ,q∗m = −pqm(1 + Hm). Fix a portfolio q with pq > 0. Using the
definition of r̃q in constraint (5), we have:

P [d̃q ≤ (1 +Hm) pq ] ≤ αm. (C.25)

It follows from Eq. (C.25) that a portfolio q with pq > 0 satisfies constraint (5) if and only if:

v1−α,q ≤ − (1 +Hm) pq . (C.26)

Eq. (C.26) implies that v1−αm ,q∗m ≤ −pqm(1 + Hm). Assume by way of a contradiction that

v1−αm ,q∗m < −pqm(1 + Hm). Let q ξ ≡ ξ ̂̂q + (1 − ξ)q∗m where ξ > 0 is arbitrarily small and ̂̂q is
a portfolio with ̂̂d ≡ d̂̂q > dq∗m and p̂̂q = pqm . Note that pqξ = pqm , dqξ > dq∗m , and sqξ < sq∗m .
Since pqξ = pqm > 0, it follows that rqξ > rq∗m and σqξ < σq∗m . Using Eq. (7) along with the facts
that rqξ > rq∗m , σqξ < σq∗m , and zαm > 0, we have V1−αm ,qξ < V1−αm ,q∗m . Equality pqξ = pq∗m along
with inequalities dqξ > dq∗m and V1−αm ,qξ < V1−αm ,q∗m contradict the fact that q

∗
m is the optimal

portfolio within account m. This completes the third part of our proof.

Proof of Theorem 2. Fix any account m ∈M. First, we show (i). Suppose that αm ≥ α. Using
the definition of zαm and Eq. (14), we have:

0 < zαm ≤
√
D/C. (C.27)

Fix any expected payoff d ∈ R. Note that:

[d− pqm(A/C)]/ (D/C)√
p2
qm(1/C) + [d− pqm(A/C)]2/ (D/C)

<
1√
D/C

. (C.28)

Using Eqs. (C.24), (C.27), and (C.28), one can increase a portfolio’s expected payoff and decrease
a portfolio’s return VaR at confidence level 1−αm by moving up along the MV frontier of portfolios
with a price of pqm . It follows that the optimal portfolio within account m does not exist.
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Suppose now that αm < α and Hm > Hαm . Recall that V1−αm denotes the return VaR at
confidence level 1− αm of the portfolio with minimum return VaR at this confidence level among
all portfolios with a price of pqm . Using Lemma 1, we have −Hm < −Hαm = V1−αm . Hence, there
exists no portfolio q with pq = pqm that meets constraint (C.26). Therefore, the optimal portfolio
within account m does not exist. This completes our proof of part (i).

Second, we show part (ii). Suppose that αm < α and Hm ≤ Hαm . Lemma 2 and Eq. (11)
imply that:

d∗m = pqm (A/C) +
√

(D/C)[(s∗m)2 − p2
qm(1/C)]. (C.29)

Using Eqs. (6) and (C.29) along with Lemma 2, we have:

zαmsq∗m − pqm(A/C)−
√

(D/C) [s2
q∗m − p

2
qm(1/C)] = −(1 +Hm)pqm . (C.30)

It follows from Eq. (C.30) that:

K7(s2
q∗m) +K8(sq∗m) +K9 = 0, (C.31)

where K7 ≡ z2
αm − D/C, K8 ≡ −2zαm (A/C −Hm − 1) pqm , and K9 ≡ [(A/C −Hm − 1)2 +

D/C2]p2
qm . Using Eq. (C.31), we have:

sq∗m =

zαm (A/C −Hm − 1)±
√

(D/C)[(A/C −Hm − 1)2 − (z2
αm −D/C)/C]

z2
αm −D/C

 pqm . (C.32)

It follows from Eq. (15) that Hαm < A/C − 1. Noting that Hm ≤ Hαm < A/C − 1, we have
A/C −Hm − 1 > 0. Using the fact that αm < α and Eq. (14), we obtain z2

αm −D/C > 0. Since
A/C−Hm−1 > 0, z2

αm−D/C > 0, and q∗m solves maximization problem (3) subject to constraints
(4) and (C.26), Eq. (C.32) implies that:

s∗m =

zαm (A/C −Hm − 1) +
√

(D/C)[(A/C −Hm − 1)2 − (z2
αm −D/C)/C]

z2
αm −D/C

 pqm . (C.33)

Using Eqs. (C.7), (C.11), and (C.10) along with the definition of qA/C,1 and qB/A,1, we have:

q∗m =

(
d∗mAC − pqmA2

D

)
qB/A,1 +

(
pqmBC − d∗mAC

D

)
qA/C,1 (C.34)

It follows from Eq. (C.34), the definition of D, and elementary algebra that Eq. (16) holds where:

γ∗m =
D/C

d∗m − pqm (A/C)
. (C.35)

The fact that γ∗m is the implied risk aversion coeffi cient of the optimal portfolio within account m
follows from Eqs. (13) and (16). This completes our proof of part (ii).

Proof of Theorem 3. Suppose that αm < α and Hm ≤ Hαm for any account m ∈ M. Using (ii)
of Theorem 2, Eq. (16) holds for any account m ∈M. Summing Eq. (16) across all elements of M,

we have Eq. (17) where γ∗a =

[ ∑
m∈M

(1/γ∗m)

]−1

. Using Eq. (??), we have 1/γ∗m =
d∗m−pqm (A/C)

D/C . It

follows that γ∗a is given by Eq. (18). The fact that γ
∗
a is the implied risk aversion coeffi cient of the

DMSS agent’s aggregate portfolio follows from Eqs. (13) and (17).
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Proof of Theorem 4. Fix any economy [(d ,S),(q0, γ0)] with γ0 ∈ Γ0. Also, fix any θ0 ∈ Θ0.
Suppose that p = pθ0,γ0 .

C.1 It follows from the definition of qB/A,1 that:

AqB/A,1 = S−1d . (C.36)

Using Eqs. (13) and (C.36), we have:

q∗0 =

(
p1 −

A

γ0

)
qA/C,1 +

S−1d
γ0

(C.37)

The definitions of A, C, and qA/C,1 imply that:

A = θ0 (B − γ0d1) , (C.38)

C = θ2
0

(
γ2

0s
2
1 − 2γ0d1 +B

)
, (C.39)

and:

qA/C,1 =
S−1d − γ01

θ0

(
γ2

0s
2
1 − 2γ0d1 +B

) . (C.40)

It follows from Eqs. (C.37)—(C.40) that:
q∗0 = 1. (C.41)

Given p, 1 thus solves the MV agent’s portfolio selection problem and asset markets clear. Hence,
(p∗,q∗0) = (pθ0,γ0 ,q

∗
0,θ0,γ0

) is an equilibrium for economy [(d ,S),(q0, γ0)].

The following lemma is useful in our proof of Theorem 5.

Lemma 3. Fix any (H1, α1, γ1) with H1 > −1, α1 > α, and γ1 ∈ Γ1. If p = pγ1 , then α1 < α.

Proof. Fix any (H1, α1, γ1) with H1 > −1, α1 > α, and γ1 ∈ Γ1. Suppose that p = pγ1 . The
definitions of A, C, and pγ1 imply that:

A =
(d1 − zα1s1) (B − γ1d1)

(H1 + 1) (d1 − γ1s
2
1)

(C.42)

and:

C =
(d1 − zα1s1)2 (γ2

1s
2
1 − 2γ1d1 +B

)
(H1 + 1)2 (d1 − γ1s

2
1)2

. (C.43)

Using the definition of D along with Eqs. (C.42) and (C.43), we have:

D/C = B − (B − γ1d1)2

γ2
1s

2
1 − 2γ1d1 +B

. (C.44)

First, suppose that γ1 = γα1 . Using Eqs. (C.42)—(C.44) along with elementary algebra, we
have:

D/C = z2
α1 − C (A/C −H1 − 1)2 . (C.45)

Since C (A/C −H1 − 1)2 ≥ 0, we have D/C > z2
α1 and thus α1 < α. This completes the first part

of our proof.
Second, suppose that 0 < γ1 < γα1 . Let f : R++ → R be defined by:

f(γ) = B − (B − γd1)2

γ2s2
1 − 2γd1 +B

(C.46)

C.1Noting that (a) θ0 ∈ R++ and (b) (d−γ0S1) ∈ RJ++ (since γ0 ∈ Γ0), we have pθ0,γ0 ∈ R
J
++.
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for any γ ∈ R++. Eqs. (C.44) and (C.46) imply that f(γ1) = D/C. Using Eq. (C.46), we have:

∂f(γ)

∂γ
=

2 (B − γd1)
(
Bs2

1 − d2
1

)
γ

(γ2s2
1 − 2γd1 +B)2

. (C.47)

Since (Bs2
1 − d2

1) > 0, γ > 0, and (γ2s2
1 − 2γd1 +B) > 0, Eq. (C.47) implies that ∂f(γ)/∂γ > 0 if

0 < γ < B/d1.C.2 Since 0.5 > α1 > α, we have d1/s1 > zα1 > 0. It follows that:

d1/s
2
1 > zα1/s1. (C.48)

Since B > d2
1/s

2
1, we have, we have:

B/d1 > d1/s
2
1. (C.49)

Using Eqs. (C.48) and (C.49), we have:

B/d1 > zα1/s1. (C.50)

Since γ1 < γα1 = zα1/s1, we have:
B/d1 > γ1. (C.51)

It follows that ∂f(γ1)/∂γ > 0. Hence, D/C > z2
α1 and thus α1 < α. This completes the second

part of our proof.

Proof of Theorem 5. Fix any economy [(d ,S), (q1, H1, α1)] with H1 > −1 and α1 > α. Suppose
that γ1 ∈ Γ1. Let p = pγ1 .

C.3 Lemma 3 implies that α1 < α. Since q1 = 1 and p = pγ1 , we have:

pq1 = p1 =
d1 − zα1s1
H1 + 1

. (C.52)

Using Eq. (C.52), the expected return and return standard deviation of market portfolio 1 are:

r1 =
(H1 + 1)d1
d1 − zα1s1

− 1 (C.53)

and:

σ1 =
(H1 + 1)s1
d1 − zα1s1

, (C.54)

respectively. Eqs. (7), (C.53), and (C.54) imply that its return VaR at confidence level 1− α1 is:

V1−α1,1 = −H1. (C.55)

Using Lemma 1 with α = α1, we have:

V1−α1,1 ≥ −Hα1 . (C.56)

Eqs. (C.55) and (C.56) imply that H1 ≤ Hα1 .
Since α1 < α and H1 ≤ Hα1 , part (ii) of Theorem 2 holds with m = 1. It follows from Eqs.

(C.42) and (C.43) that:

A

C
=

[
(H1 + 1) (d1 − γ1s

2
1)

(d1 − zα1s1)

](
B − γ1d1

γ2
1s

2
1 − 2γ1d1 +B

)
. (C.57)

C.2A proof that (Bs21 − d21) > 0 is as follows. Letting k ≡ (s1)d− (d1/s1)S1, we have k ′S−1k = Bs21 − d21. Noting that
rank([d S1]) = 2, we obtain k 6= 0. Since rank(S−1) = J and k 6= 0, we have k ′S−1k > 0. Similarly, a proof that
(γ2s21− 2γd1 +B) > 0 is as follows. Letting l ≡ d−γS1, we have l ′S−1l = γ2s21− 2γd1 +B. Noting that rank([d S1]) = 2,
we obtain l 6= 0. Since rank(S−1) = J and l 6= 0, we have l ′S−1l > 0.
C.3 If H1 > −1 and α1 > α, then (H1 + 1) > 0 and (d1 − zα1s1) > 0. Also, if γ1 ∈ Γ1, then γ1 < γ0, which implies that

(d−γ1S1) ∈ RJ++ and (d1 − γ1s21) > 0. Hence, if H1 > −1, α1 > α, and γ1 ∈ Γ1, then θγ1 ∈ R++ and pγ1 ∈ RJ++.
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Using Eqs. (C.43), (C.44), and (C.57) along with elementary algebra, we have:(
D

C

)[(
A

C
−H1 − 1

)2

−
z2
α1 −D/C

C

]
=

[
(z2
α1 −D/C) (H1 + 1) s1

d1 − zα1s1
− zα1

(
A

C
−H1 − 1

)]2

.

(C.58)
It follows from Eq. (C.33) with m = 1 along with Eqs. (C.52) and (C.58) that:

s∗1 = s1. (C.59)

Eqs. (C.29), (C.43), (C.44), (C.57), and (C.59) along with elementary algebra imply that:

d∗1 = d1. (C.60)

Using Eqs. (C.44), (C.52), (C.57), and (C.60) along with elementary algebra, we obtain:

D/C

d∗1 − (A/C) pq1
= γ1. (C.61)

Using the definition of qA/C,1 and p∗γ1 as well as Eq. (C.43), we have:

qA/C,1 =
(H1 + 1)

(
d1 − γ1s

2
1

)
(S−1d − γ11)

(d1 − zα1s1) (γ2
1s

2
1 − 2γ1d1 +B)

. (C.62)

Eqs. (C.52) and (C.62) imply that:

pq1qA/C,1 =
d1 − γ1s

2
1

γ2
1s

2
1 +B − 2γ1d1

(S−1d − γ11). (C.63)

Also, Eqs. (C.42) and (C.62) imply that:

AqA/C,1 =
B − γ1d1

γ2
1s

2
1 − 2γ1d1 +B

(S−1d − γ11). (C.64)

Note that Eq. (C.36) holds. Using Eq. (16) with m = 1 along with Eqs. (C.36), (C.61), (C.63),
and (C.64), we have:

q∗1 =
d1 − γ1s

2
1

γ2
1s

2
1 − 2γ1d1 +B

(S−1d − γ11)+
1

γ1

(S−1d)− B − γ1d1
(γ2

1s
2
1 − 2γ1d1 +B)γ1

(S−1d − γ11). (C.65)

Eq. (C.65) implies that q∗1 = 1. Given p, 1 thus solves the DMSS agent’s portfolio selection
problem. Hence, (p∗,q∗1) = (pγ1 ,q

∗
1,γ1

) is an equilibrium for economy [(d ,S), (q1, H1, α1)].

For any (m, γa, θa) ∈M×Γa×Θa, let gm(θa) denote the implied risk aversion coeffi cient of the
DMSS agent’s optimal portfolio within account m when p = p∗θa,γa . The following two lemmas are
useful in our proof of Theorem 6.

Lemma 4. Suppose that Hm > −1 and αm > α for any account m ∈ M. For any (m, γa, θa) ∈
M× Γa ×Θa, we have ∂gm(θa)/∂θa > 0.

Proof. Suppose that Hm > −1 and αm > α for any account m ∈ M. Fix any (m, γa, θa) ∈
M× Γa ×Θa. Let p = pθa,γa . The definitions of A, C, D, and pθa,γa imply that:

A

C
=

B − γad1
θa(γ2

as
2
1 − 2γad1 +B)

(C.66)
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and:
D

C
= B − (B − γad1)2

γ2
as

2
1 − 2γad1 +B

. (C.67)

Using arguments similar to those in the proof of Lemma 3, we obtain α1 < α. Since αm ≤ α1 (by
assumption) and α1 < α, we have αm < α. Using Eq. (15) with α = αm as well as Eqs. (24),
(C.66), and (C.67), we have:

(1 +Hm) = (1 +Hαm) (θa/θm). (C.68)

Noting that 0 < θa < θa ≤ θm, we have 0 < θa/θm < 1.C.4 The facts that (1 + Hm) > 0 and
0 < θa/θm < 1 along with Eq. (C.68) imply that Hm ≤ Hαm . Since αm < α and Hm ≤ Hαm , the
DMSS agent’s optimal portfolio within account m exists (see Theorem 2).

Using Eqs. (??)—(C.33), its implied risk aversion coeffi cient is:

gm(θa) ≡
√
D/C

(p ′1,γaqm)
√
h2
m(θa)− 1/K3

(C.69)

where p1,γa = d−γaS1 (using the definition of pθa,γa with θa = 1) and:

hm(θa) ≡
zαm [K1 − θa (Hm + 1)] +

√
(D/C) {[K1 − θa (Hm + 1)]2 − (z2

αm −D/C)/K3}
z2
αm −D/C

(C.70)

(K1 and K3 are defined in Section 3.3). Eq. (C.69) implies that:

∂gm(θa)

∂θa
=
∂gm(hm(θa))

∂hm

∂hm(θa)

∂θa
(C.71)

and:
∂gm(hm(θa))

∂hm
= −

( √
D/C

p ′1,γaqm

){
hm(θa)

[h2
m(θa)− 1/K3]3/2

}
. (C.72)

Noting that p1,γa ∈ RJ++ (since γa ∈ Γa) and qm ∈ RJ++, we have p
′
1,γa
qm > 0. Since D/C > 0,

p ′1,γaqm > 0, hm(θa) > 0, and h2
m(θa) > 1/K3, Eq. (C.72) implies that:

∂gm(hm(θa))

∂hm
< 0. (C.73)

It follows from Eq. (C.70) and elementary algebra that:

∂hm(θa)

∂θa
= −

(
Hm + 1

z2
αm −D/C

)zαm +
(D/C) [K1 − θa (Hm + 1)]√

(D/C) {[K1 − θa (Hm + 1)]2 − (z2
αm −D/C)/K3}

 .

(C.74)
Using the facts that (Hm + 1) > 0, K2 = z2

αm −D/C > 0, K3 > 0, and 0 < θa < θa ≤ θm along
with Eq. (24), we have:

−
(

Hm + 1

z2
αm −D/C

)
< 0 (C.75)

C.4A proof that θm > 0 is as follows. Since γa ∈ Γa, we have (B− γad1) > 0. Arguments similar to those in the second part
of footnote C.2 imply that K3 > 0. Since (B− γad1) > 0 and K3 > 0, we have K1 > 0. Noting that αm < α, we have K2 > 0.
Since K1 > 0, K2 > 0, K3 > 0, and (1 + Hm) > 0, it suffi ces to show that K2

1 − K2/K3 > 0. Using the definitions of K1,

K2, and K3, we have K2
1 −K2/K3 =

B−z2αm
K3

. Noting that 0.5 > αm > α, we have d1/s1 > zαm > 0 and thus d21/s
2
1 > z2αm .

Since B > d21/s
2
1, we have B > z2αm and thus (B − z2αm ) > 0. Using the facts that K3 > 0 and (B − z2αm ) > 0, we have

K2
1 −K2/K3 > 0 and thus θm > 0.
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and:

K1 − θa (Hm + 1) > K1 − θm (Hm + 1) =

√
K2

K3
=

√
z2
αm −D/C

K3
> 0. (C.76)

It follows from Eq. (C.76) that:

[K1 − θa (Hm + 1)]2 >
z2
αm −D/C

K3
. (C.77)

Since zαm > 0 and D/C > 0, Eqs. (C.76) and (C.77) imply that:

zαm +
(D/C) [K1 − θa (Hm + 1)]√

(D/C) {[K1 − θa (Hm + 1)]2 − (z2
αm −D/C)/K3}

> 0. (C.78)

It follows from Eqs. (C.75) and (C.78) that:

∂hm(θa)

∂θa
< 0. (C.79)

Using Eqs. (C.71), (C.73), and (C.79), we have ∂gm(θa)/∂θa > 0.

Lemma 5. Suppose that Hm > −1 and αm > α for any account m ∈ M. For any (γa, θa) ∈
Γa ×Θa, we have ∂ga(θa)/∂θa > 0.

Proof. Suppose that Hm > −1 and αm > α for any account m ∈ M. Fix any (γa, θa) ∈ Γa ×Θa.
Note that:

ga(θa) =

[ ∑
m∈M

1/gm(θa)

]−1

. (C.80)

Using Lemma 4 and Eq. (C.80), we have ∂ga(θa)/∂θa > 0.

Proof of Theorem 6. Fix any economy [(d ,S), {(qm, Hm, αm)}m∈M] with Hm > −1 and αm > α
for any account m ∈ M. Also, fix any γa ∈ Γa with ga < γa < ga. Using Lemma 5, we have
∂ga(θa)/∂θa > 0 for any θa ∈ Θa. Hence, there exists θ∗a ∈ Θa such that ga(θ∗a) = γa. Let p =
pθ∗a,γa .

Fix any m ∈ M. By definition, given p = pθ∗a,γa, q
∗
m,θ∗a,γa

solves the DMSS agent’s portfolio
selection problem within account m. Since Eq. (C.36) holds, it follows from Eq. (17) that the
DMSS agent’s aggregate portfolio is:

q∗a,θ∗a,γa =

(
p1 −

A

γa

)
qA/C,1 +

S−1d
γa

(C.81)

The definitions of A, C, and qA/C,1 imply that:

A = θ∗a (B − γad1) , (C.82)

C = (θ∗a)
2(γ2

as
2
1 − 2γad1 +B), (C.83)

and:

qA/C,1 =
S−1d − γa1

θ∗a(γ
2
as

2
1 − 2γad1 +B)

. (C.84)

It follows from Eqs. (C.81)—(C.84) that q∗a = 1 and thus asset markets clear. Hence, (p∗, {q∗m}m∈M) =
(p∗θa , {q

∗
m,θ∗a,γa

}m∈M) is an equilibrium for economy [(d ,S), {(qm, Hm, αm)}m∈M] and γ∗a = γa is
the implied risk aversion coeffi cient of the DMSS agent’s aggregate portfolio.
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For any (m, γ0,a, θ0,a) ∈M×Γ0,a×Θ0,a, let gm(θ0,a) denote the implied risk aversion coeffi cient
of the DMSS agent’s optimal portfolio within account m when p = p∗θa . The following two lemmas
are useful in our proof of Theorem 7.

Lemma 6. For any (m, γ0,a, θ0,a) ∈M× Γ0,a ×Θ0,a, we have ∂g0,m(θ0,a)/∂θ0,a > 0.

Proof. Similar to the proof of Lemma 4.

Lemma 7. For any (γ0,a, θ0,a) ∈ Γ0,a ×Θ0,a, we have ∂g0,a(θ0,a)/∂θ0,a > 0.

Proof. Fix any (γ0,a, θ0,a) ∈ Γ0,a ×Θ0,a. Note that:

g0,a(θ0,a) =

[ ∑
m∈M

1/g0,m(θ0,a)

]−1

. (C.85)

Using Lemma 6 and Eq. (C.85), we have ∂g0,a(θ0,a)/∂θ0,a > 0.

Proof of Theorem 7. Fix any economy [(d ,S), (q0, γ0), {(qm, Hm, αm)}m∈M] with γ0 > 0 as well
as Hm > −1 and αm > α for all m ∈ M. Also, fix any γ0,a ∈ Γ0,a with ga < γ0,a < ga. Using
Lemma 7, we have ∂g0,a(θ0,a)/∂θ > 0 for any θ0,a ∈ Θ0,a. Hence, there exists θ∗0,a ∈ Θ0,a such that
g0,a(θ

∗
0,a) = γ0,a. Let p = pθ∗0,a,ϕ0,a .

By definition, given p = pθ∗0,a,ϕ0,a, q
∗
0,θ∗0,a,ϕ0,a

solves the MV agent’s portfolio selection problem.
Note that Eq. (C.36) holds. Using Eqs. (17) and (C.36), the MV agent’s optimal portfolio is:

q∗0,θ∗0,a,ϕ0,a =

(
pq0 −

A

γ0

)
qA/C,1 +

S−1d
γ0

. (C.86)

Similarly, fix any m ∈ M. By definition, given p = pθ∗0,a,ϕ0,a, q
∗
0,θ∗0,a,ϕ0,a

solves the DMSS agent’s

portfolio selection problem within account m.C.5 Using Eqs. (17) and (C.36), the DMSS agent’s
aggregate portfolio is:

q∗a,θ∗0,a,ϕ0,a =

(
pqa −

A

γ0,a

)
qA/C,1 +

S−1d
γ0,a

. (C.87)

The definitions of A, C, and qA/C,1 imply that:

A = θ∗0,a
(
B − ϕ0,ad1

)
, (C.88)

C = (θ∗0,a)
2
(
ϕ2

0,as
2
1 − 2ϕ0,ad1 +B

)
, (C.89)

and:

qA/C,1 =
S−1d − ϕ0,a1

θ∗0,a(ϕ
2
0,as

2
1 − 2ϕ0,ad1 +B)

. (C.90)

Using Eqs. (C.86)—(C.90), we have q∗0,θ0,a+ q∗a,θ0,a = 1 and thus asset markets clear. It follows
that [p∗, (q∗0, {q∗m}m∈M)] = [pθ∗0,a,ϕ0,a , (q

∗
0,θ∗0,a,ϕ0,a

{q∗m,θ∗0,a,ϕ0,a}m∈M)] is an equilibrium for economy
[(d ,S), (q0, γ0), {(qm, Hm, αm)}m∈M] and γ∗a = γ0,a is the implied risk aversion coeffi cient of the
DMSS agent’s aggregate portfolio.

Proof of Theorem 8. Using Eq. (13), the MV agent’s optimal portfolio is on the MV frontier.
Premultiplying Eq. (13) by d ′ and using the definition of D, the expected payoff of this portfolio
is d∗0 = pq0 (A/C) + D/C

γ0
. It follows that d∗0 > p∗q0 (A/C). Similarly, using Eqs. (16) and (C.29),

the DMSS agent’s optimal portfolio within account m is on the MV frontier and d∗m > p∗qm (A/C)

C.5For any m ∈ M, if (θ0,a, γ0,a) ∈ Θ0,a × Γ0,a, then αm < α and Hm ≤ Hαm . Hence, q∗m,θ0,a,ϕ0,a exists; see Theorem 2.
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for any m ∈M. Eq. (10) and asset market clearing imply that in equilibrium market portfolio 1 is
on the MV frontier and d′1 > p∗1 (A/C).

Let d, d, and p be three constants with d 6= d and p > 0. Using Eqs. (C.7), (C.10) and (C.11),
along elementary algebra, the covariance between the returns on portfolios qp,d and qp,d is:

q ′
p,d
Sq

p,d

p2
=

C
D

[
d− p (A/C)

]
[d− p (A/C)]

p2
+

1

C
. (C.91)

For brevity, let p∗ = (p∗)′1 and d = d ′1. Using Eq. (C.91), the definition of portfolio qzc, and
elementary algebra, we have:C.6

q ′zcd = (p∗) (A/C)− (p∗)2

[
D/C2

d− p∗ (A/C)

]
. (C.92)

Since q ′zcp = p∗, Eq. (C.92) implies that:

r∗qzc = (A/C − 1)− D/C2

r∗1 − (A/C − 1)
. (C.93)

Using the fact that the market portfolio is on the MV frontier and Eq. (10), we have:

1 = p∗qA/C,1 +

(
dAC − p∗A2

D

)
(qB/A,1 − qA/C,1). (C.94)

Fix any portfolio q with p∗q ≡ q ′p∗ > 0. Note that:

σ∗q ,1 =
q ′S1
p∗qp
∗ . (C.95)

Using Eqs. (C.94) and (C.95), the definitions of qA/C,1 and qB/A,1, and elementary algebra, we
have:

σ∗q ,1 = 1/C +
[r∗q − (A/C − 1)] [r∗1 − (A/C − 1)]

D/C
. (C.96)

Fix any j ∈ J. Let ιj denote the J × 1 vector with the jth entry being one and the other J − 1
entries being zero. Using Eq. (C.96) with q = ιj , we have:

σ∗j,1 = 1/C +
[r∗j − (A/C − 1)] [r∗1 − (A/C − 1)]

D/C
. (C.97)

Similarly, using Eq. (C.96) with q = 1, we have:

σ∗1,1 = 1/C +
[r∗1 − (A/C − 1)]2

D/C
. (C.98)

Eq. (C.97) implies that:

r∗j =

[
(A/C − 1)− D/C2

r∗1 − (A/C − 1)

]
+

D/C

r∗1 − (A/C − 1)
σ∗j,1. (C.99)

Since σ∗j,1 = σ∗1,1β
∗
j , we have:

r∗j =

[
(A/C − 1)− D/C2

r∗1 − (A/C − 1)

]
+

D/C

r∗1 − (A/C − 1)
σ∗1,1β

∗
j . (C.100)

C.6Note that qzc can be found by using Eq. (10) with d =
(
A/C − D/C2

d1/p
∗
1−A/C

)
p∗1, p = p∗ = p∗1, and p = p∗.
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Using Eq. (C.97) in Eq. (C.100) along with elementary algebra, we obtain:

r∗j =

[
(A/C − 1)− D/C2

r∗1 − (A/C − 1)

]
+

[
r∗1 +

D/C2

r∗1 − (A/C − 1)
− (A/C − 1)

]
β∗j . (C.101)

Eq. (30) follows from Eqs. (C.93) and (C.101).
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Online Appendix D: adding a risk-free asset

In this appendix, we examine the case where a risk-free asset is present. Accordingly, in addition

to J risky assets, suppose that a risk-free asset (j = J + 1) is available. This asset is in zero net

supply and has a payoff of one. Portfolios (e.g., q), asset endowments (e.g., q0), and asset prices

(e.g., p) are now (J + 1)× 1 vectors. Let q̂ denote the J × 1 vector with the first J components of

q . Similarly, let p̂ denote the J × 1 vector with the first J components of p.

D.1. MV frontier

Since the price of the risk-free asset is pJ+1 > 0, the risk-free return is rf ≡ 1/pJ+1 − 1. Let

F ≡ A−C(1 + rf ) and G ≡ B−A(1 + rf )−F (1 + rf ). Suppose that F 6= 0 and rank([d p̂]) = 2.

Since rank(S) = J and rank([d p̂]) = 2, we have G > 0.

For any given expected payoff d ∈ R and any given price p ∈ R++, the corresponding portfolio

on the MV frontier is:
qd,p = p(qf,1) + φd,p(q t,1 − qf,1) (D.1)

where q t,1 ≡
[
(d−p̂/pJ+1)′S−1

F 0
]′
, qf,1 ≡ [0′ 1/pJ+1]

′, and φd,p ≡ (d − p/pJ+1)FG .
D.1 Portfolios

on it with price p are represented in (dq , sq ) space by:

sq =

√
(dq − p/pJ+1)2

G
. (D.2)

Since sq = pσq and dq = p(1 + rq ), such portfolios are represented in (rq ,σq ) space by:

σq =

√
(rq − rf )2

G
. (D.3)

Hence, their location in this space depends on rf and G.

D.2. Optimal portfolios

This section characterizes the agents’optimal portfolios.

D.2.1. MV agent

Next, we examine the MV agent’s optimal portfolio.

Theorem D.1. The MV agent’s optimal portfolio is:

q∗0 = (pq0)(qf,1) + (F/γ0)(q t,1 − qf,1). (D.4)

D.1Note that qf,1 and qt,1 are, respectively, the risk-free and tangency portfolios with a price of one.
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Theorem D.1 differs from Theorem 1 in that qf,1, q t,1, and F are used instead of, respectively,

qA/C,1, qB/A,1, and A.

D.2.2. DMSS agent

Let:
α ≡ Φ(−

√
G). (D.5)

Since G > 0, Eq. (D.5) implies that α ∈ (0, 0.5).

We now examine the DMSS agent’s optimal portfolios within accounts.

Theorem D.2. Fix any account m ∈ M. (i) If either (a) αm ≥ α or (b) αm < α and Hm > rf ,

then the DMSS agent’s optimal portfolio within account m does not exist. (ii) If αm < α and

Hm ≤ rf , then it exists and is:

q∗m = (pqm)(qf,1) + (F/γ∗m)(q t,1 − qf,1) (D.6)

where its implied risk aversion coeffi cient is:

γ∗m =


zαm
√
G−G

(rf−Hm)pqm
if Hm < rf

∞ if Hm = rf

. (D.7)

Theorem D.2 differs from Theorem 2 in two respects. First, qf,1, q t,1, and F are used instead

of, respectively, qA/C,1, qB/A,1, and A. Second, the formula for γ∗m is somewhat less complex.

Next, we examine the DMSS agent’s aggregate portfolio.

Theorem D.3. Suppose that αm < α and Hm ≤ rf for any account m ∈ M. The DMSS agent’s

aggregate portfolio is:
q∗a = (pqa)(qf,1) + (F/γ∗a)(q t,1 − qf,1) (D.8)

where:
γ∗a =

[∑
m∈M(1/γ∗m)

]−1 (D.9)

is its implied risk aversion coeffi cient and γ∗m is given by Eq. (D.7).

Theorem D.3 differs from Theorem 3 in that qf,1, q t,1, and F are used instead of, respectively,

qA/C,1, qB/A,1, and A.
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D.3. Equilibrium

In this section, we characterize equilibria in four types of economies: (1) a single-agent economy

with an MV agent; (2) a single-agent economy with a DMSS agent and a single account; (3) a

single-agent economy with a DMSS agent and multiple accounts; and (4) a two-agent economy

with an MV agent and a DMSS agent with multiple accounts.

D.3.1. Single-agent economy with an MV agent

Consider a single-agent economy with an MV agent. For any θ0 ∈ Θ0 and γ0 ∈ Γ0, let pθ0,γ0 ≡

θ0[(d−γ0S1)′ 1]′.

The following result characterizes equilibria.

Theorem D.4. Fix any economy [(d ,S),(q0, γ0)] where γ0 ∈ Γ0. For any θ0 ∈ Θ0, (p∗,q∗0) =

(pθ0,γ0 ,q
∗
0,γ0

) is an equilibrium for it.

Theorem D.4 is similar to Theorem 4 except that θ0 is now the risk-free asset price.

D.3.2. Single-agent economy with a DMSS agent and a single account

Consider a single-agent economy with a DMSS agent and a single account. For any γ1 ∈ Γ1,

let pγ1 ≡ θγ1 [(d−γ1S1)′ 1]′ where θγ1 is defined in Section 3.2.

The following result characterizes equilibria.

Theorem D.5. Fix any economy [(d ,S), (q1, H1, α1)] where H1 > −1 and α1 > α. For any

γ1 ∈ Γ1, (p∗,q∗1) = (pγ1 ,q
∗
1,γ1

) is an equilibrium for it and γ∗1 = γ1 is the implied risk aversion

coeffi cient of the DMSS agent’s optimal portfolio within account 1.

Theorem D.5 is similar to Theorem 5 except that θγ1 is now the risk-free asset price.

D.3.3. Single-agent economy with a DMSS agent and multiple accounts

Consider a single-agent economy with a DMSS agent and multiple accounts. Fix any γa ∈ Γa.

Let pγa ≡ θγa [(d−γaS1)′ 1]′ where:

θγa ≡
(∑

m∈M κm,γa
)
− 1∑

m∈M [(Hm + 1)κm,γa ]
(D.10)
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and:

κm,γa ≡
(d − γaS1)′q̂m + qm,J+1

zαms1 − γas21
(D.11)

for anym ∈M. Let Γa be the subset of Γa where 1/θγa−1−Hm > 0 and (d−γaS1)′q̂m+qm,J+1 > 0

for any m ∈M. Let q∗m,γa denote the DMSS agent’s optimal portfolio within account m when the

asset price vector is pγa .

The following result characterizes equilibria.

Theorem D.6. Fix any economy [(d ,S), {(qm, Hm, αm)}m∈M] where Hm > −1 and αm > α for

any account m ∈ M. For any γa ∈ Γa, (p∗, {q∗m}m∈M) = (pγa , {q∗m,γa}m∈M) is an equilibrium for

it and γ∗a = γa is the implied risk aversion coeffi cient of the DMSS agent’s aggregate portfolio.

Theorem D.6 is similar to Theorem 6 except that θγa is now the risk-free asset price and has a

closed-form expression.

D.3.4. Two-agent economy with an MV agent and a DMSS agent with multiple accounts

Consider a two-agent economy with an MV agent and a DMSS agent with multiple accounts.

Fix any γ0,a ∈ Γ0,a. Let pγ0,a ≡ θγ0,a [(d−ϕ0,aS1)′ 1]′ where:

θγ0,a ≡

(∑
m∈M κm,γ0,a

)
− 1 + ϕ0,a/γ0∑

m∈M [(Hm + 1)κm,γa ]
(D.12)

and:

κm,γ0,a ≡
(d − ϕ0,aS1)′q̂m + qm,J+1

zαms1 − ϕ0,as21
(D.13)

for any m ∈ M, and ϕ0,a = 1
1/γ0+1/γ0,a

(as before). Let Γ0,a be the subset of Γ0,a where 1/θγa −

1−Hm > 0 and (d−ϕ0,aS1)′q̂m + qm,J+1 > 0 for any m ∈ M. Let q∗0,γ0,a denote the MV agent’s

optimal portfolio when the asset price vector is pγ0,a . Similarly, let q
∗
m,γ0,a

denote the DMSS agent’s

optimal portfolio within account m when the asset price vector is pγ0,a .

The following result characterizes equilibria.

Theorem D.7. Fix any economy [(d ,S), (q0, γ0), {(qm, Hm, αm)}m∈M] where γ0 > 0 as well

as Hm > −1 and αm > α for any account m ∈ M. For any γ0,a ∈ Γ0,a, (p∗, {q∗m}m∈M) =

(pγ0,a , {q∗m,γ0,a}m∈M) is an equilibrium for it and γ∗a = γ0,a is the implied risk aversion coeffi cient
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of the DMSS agent’s aggregate portfolio.

Theorem D.7 is similar to Theorem 7 except that θγ0,a is now the risk-free asset price and has

a closed-form solution.

D.3.5. Equilibrium asset prices

As before, r∗j and β
∗
j denote, respectively, the equilibrium expected return and beta of asset

j, whereas r∗1 denotes the the equilibrium expected return of market portfolio 1. The equilibrium

risk-free return is denoted by r∗f .

The following result characterizes expected asset returns in equilibrium.

Theorem D.8. For any asset j ∈ J, its equilibrium expected return is:

r∗j = r∗f + β∗j (r
∗
1 − r∗f ). (D.14)

Theorem D.8 differs from Theorem 8 in that the CAPM of Sharpe (1964) now holds instead of

the zero-beta CAPM of Black (1972).

D.4. Example

In this section, we add a risk-free asset to the example of Section 4.

D.4.1. Single-agent economy with an MV agent

Consider a single-agent economy with an MV agent where his or her endowments are: (a) one

for each risky asset; and (b) zero for the risk-free asset; see Panel A1 of Table D.1. Assume that

γ0 = 1 and θ0 = 0.95; see Theorem D.4. Panels A, B, and C of Fig. D.1 report the equilibrium

prices, expected returns, and betas of the risky assets. The results are identical to those in Fig.

4 where a risk-free is absent. Note that the price, expected return, and beta of the risk-free asset

(not reported in the panels of Fig. D.1) are, respectively, 0.95, 5.26% [= 1/0.95− 1], and zero.

D.4.2. Single-agent economy with a DMSS agent and one account

Consider a single-agent economy with a DMSS agent and one account where his or her endow-

ment of each risky asset is one and his or her endowment of the risk-free asset is zero; see Panel A2

of Table D.1. Panels A, B, and C of Fig. D.2 report the equilibrium prices, expected returns, and

Online Appendix D - 5



betas of the risky assets. The results are identical to those in Fig. 5 where a risk-free is absent.

Note that the price, expected return, and beta of the risk-free asset (not reported in the panels of

Fig. D.2) are very close to those of asset 1. This result follows from: (1) the risk-free asset’s payoff

(one) equals asset 1’s expected payoff (also one); and (2) the risk-free asset’s beta (zero) is very

close to asset 1’s beta (near zero).

D.4.3. Single-agent economy with a DMSS agent and three accounts

Consider a single-agent economy with a DMSS agent and three accounts. The agent’s endow-

ments of each risky asset in accounts 1, 2, and 3 are, respectively, 0.2, 0.2, and 0.6; see rows j = 1,

2, and 3 of Panel A3 of Table D.1. The agent’s endowments of the risk-free asset in accounts 1, 2,

and 3 are, respectively, −0.2, −0.2, and 0.4; see row j = 4. Panels A, B, and C of Fig. D.3 report

the equilibrium prices, expected returns, and betas of the risky assets. The results are similar to

those in Fig. 6 where a risk-free is absent. Also, the size of the thresholds affects asset prices. For

example, fixing the value of γ∗a, the prices of the risky assets in panel D of Fig. D.3 where α1 = 15%

exceed those in panel A where α1 = 10%. Note that the price, expected return, and beta of the

risk-free asset (not reported in the panels of Fig. D.3) are very close to those of asset 1. This result

follows from: (1) the risk-free asset’s payoff (one) equals asset 1’s expected payoff (also one); and

(2) the risk-free asset’s beta (zero) is very close to asset 1’s beta (near zero).

In panel A of Fig. D.4, the solid and dotted lines report the optimal holdings of, respectively,

each risky asset (the same holding for assets 1, 2, and 3) and the risk-free asset (i.e., asset 4) in

account 1. The results differ from those in panel A of Fig. 7 where a risk-free is absent in one

respect. While in Fig. D.4 the agent optimally holds the same quantity of each risky asset within

account 1 (given some value of γ∗a), that is not true in Fig. 7. This difference in the results also

holds within accounts 2 and 3; see panels B and C of Fig. D.4.

D.4.4. Two-agent economy with an MV agent and a DMSS agent with three accounts

Consider a two-agent economy with an MV agent and a DMSS agent with three accounts. For
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each risky asset, the MV agent’s endowment of 0.5 equals the DMSS agent’s aggregate endowment

of 0.5 [= 0.1 + 0.1 + 0.3]; see rows j = 1, 2, and 3 of panel A4 of Table D.1. Similarly, for the

risk-free asset, the MV agent’s endowment of 0 equals the DMSS agent’s aggregate endowment of

0 [= (−0.1) + (−0.1) + (0.2)]; see row j = 4. Panels A, B, and C of Fig. D.5 report the equilibrium

prices, expected returns, and betas of the risky assets. The results are similar to those in Fig. 8

where a risk-free is absent. Also, the size of the thresholds affects asset prices. For example, fixing

the value of γ∗a, the prices of the risky assets in panel G of Fig. D.5 where α1 = 15% exceed those

in panel A where α1 = 10%. Note that the price, expected return, and beta of the risk-free asset

(not reported in the panels of Fig. D.5) are very close to those of asset 1. This result follows from:

(1) the risk-free asset’s payoff (one) equals asset 1’s expected payoff (also one); and (2) the risk-free

asset’s beta (zero) is very close to asset 1’s beta (near zero).

In panel A of Fig. D.6, the solid and dotted lines report the MV agent’s optimal holdings of,

respectively, each risky asset (the same holding for assets 1, 2, and 3) and the risk-free asset (i.e.,

asset 4) in account 1. The results differ from those in panel A of Fig. 9 where a risk-free is absent

in one respect. While in Fig. D.6 the agent optimally holds the same quantity of each risky asset

(given some value of γ∗a), that is not true in Fig. 9. This difference in the results also holds for the

DMSS agent’s optimal portfolios within accounts; see panels B—D.
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D.5. Proofs of theoretical results in Appendix D

Proof that portfolios on the MV frontier satisfy Eq. (D.1). Fix any (d, p) ∈ R× R++.
Note that portfolio qd,p solves:

min
q∈RJ+1

1

2
q̂ ′Sq̂ (D.15)

s.t. q̂ ′d + qJ+1 = d (D.16)

q̂ ′p̂ + qJ+1 × pJ+1 = p. (D.17)

It follows from Eq. (D.17) that:

qJ+1 =
p− q̂ ′p̂
pJ+1

. (D.18)

Using Eqs. (D.16) and (D.18), we have:

q̂ ′(d − p̂/pJ+1)=d− p/pJ+1. (D.19)

Hence, q̂d,p solves problem (D.15) subject to constraint (D.19). First-order conditions for q̂d,p to
solve this problem are:

Sq̂d,p − δ(d − p̂/pJ+1) = 0 (D.20)

q̂ ′d,p(d − p̂/pJ+1) = d− p/pJ+1 (D.21)

where δ is a Lagrange multiplier associated with such a constraint. Eq. (D.20) implies that:

q̂d,p = δS−1(d − p̂/pJ+1). (D.22)

Premultiplying Eq. (D.22) by (d−p̂/pJ+1)′ and using Eq. (D.21) along with the definition of G,
we have:

d− p/pJ+1 = δG. (D.23)

It follows from Eq. (D.23) that:

δ =
d− p/pJ+1

G
. (D.24)

The definitions of qf,1, q t,1, and φd,p along with Eqs. (D.18), (D.22), and (D.24) imply that Eq.
(D.1) holds.

Proof that portfolios on the MV frontier satisfy Eq. (D.3). Using Eqs. (D.22) and (D.24),
we have:

q̂d,p =

(
d− p/pJ+1

G

)
S−1(d − p̂/pJ+1). (D.25)

Since G = (d−p̂/ pJ+1)′S−1(d−p̂/ pJ+1), Eq. (D.25) implies that:

q̂ ′d,pSq̂d,p =
(d− p/pJ+1)2

G
. (D.26)

The desired result follows from Eq. (D.26).

Proof of Theorem D.1. The MV agent’s budget constraint is:

q̂ ′p̂ + qJ+1pJ+1 = q̂ ′0p̂ + q0,J+1pJ+1. (D.27)
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Using Eq. (D.27), we have:

qJ+1 = (q̂0 − q̂)′p̂/pJ+1 + q0,J+1. (D.28)

Hence, q̂∗0 solves:

max
q̂∈RJ

q̂ ′(d − p̂/pJ+1) + (q0
′p/pJ+1 + q0,J+1)−

γ0
2

(q̂ ′Sq̂). (D.29)

A first-order condition for q̂∗0 to solve (D.29) is:

(d − p̂/pJ+1)− γ0Sq̂∗0 = 0. (D.30)

It follows from Eq. (D.30) that:

q̂∗0 =
S−1(d − p̂/pJ+1)

γ0
. (D.31)

Using Eq. (D.31) and the definition of q t,1, we have:

q̂∗0 = (F/γ0)q̂ t,1. (D.32)

Eq. (D.27) implies that:
q∗0,J+1 = (q̂0 − q̂∗0)′p̂/pJ+1 + q0,J+1. (D.33)

Using the right-hand side of Eq. (D.32) in the right-hand side of Eq. (D.33), we have:

q∗0,J+1 = q̂ ′0p̂/pJ+1 − (F/γ0)/pJ+1 + q0,J+1. (D.34)

It follows from Eq. (D.34) that:

q∗0,J+1 = (pq0 − F/γ0)/pJ+1. (D.35)

Eq. (D.4) follows from the definition of qf,1 along with Eqs. (D.32) and (D.35).

Proof of Theorem D.2. Fix any account m ∈ M. First, we show (i). Suppose that αm ≥ α.
Fix any portfolio q on the MV frontier with a payoff of d > p/pJ+1 and a price of p = pqm . Since
d > p/pJ+1, we have rq > rf . Using Eq. (D.3), we obtain:

rq = rf +
√
Gσq . (D.36)

It follows from Eqs. (7) and (D.36) that:

V1−αm,q = (zαm −
√
G)σq − rf . (D.37)

Assume that αm > α. Then, the definition of zαm and Eq. (D.5) imply that:

zαm <
√
G. (D.38)

Using Eqs. (D.37) and (D.38), one can increase a portfolio’s expected return and decrease a
portfolio’s return VaR at confidence level 1−αm by moving up along the MV frontier of portfolios
with a price of pqm . It follows that the optimal portfolio within account m does not exist.

Assume that αm = α. Then, the definition of zαm and Eq. (D.5) imply that:

zαm =
√
G. (D.39)
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Eqs. (D.37) and (D.39) imply that:
V1−αm,q = −rf . (D.40)

Note that the portfolio with minimum return VaR at confidence level 1−αm among portfolios with
a positive price has a return VaR at this confidence level of −rf . If Hm > rf , then there is no
portfolio with a return VaR at confidence level 1− αm less than −Hm < −rf . Hence, the optimal
portfolio within account m does not exist. If Hm ≤ rf , then one can increase a portfolio’s expected
return while keeping the portfolio’s return VaR at confidence level 1− αm fixed at −rf by moving
up along the MV frontier of portfolios with a price of pqm . Hence, the optimal portfolio within
account m does not exist.

Suppose now that αm < α and Hm > rf . Using the definition of zαm and Eq. (D.5), we have:

zαm >
√
G. (D.41)

Again, the portfolio with minimum return VaR at confidence level 1−αm among portfolios with a
positive price has a return VaR at this confidence level of −rf . It follows that there is no portfolio
with a return VaR at confidence level 1− αm less than −Hm < −rf . Hence, the optimal portfolio
within account m does not exist. This completes the first part of our proof.

Second, we show (ii). Suppose that αm < α and Hm ≤ rf . The optimal portfolio within account
m lies in (rq , σq ) space at the point where the line corresponding to the constraint:

V1−αm,q ≤ −Hm. (D.42)

intersects the top half-line representing the MV frontier. It follows that:

rq∗m = rf +
√
Gσq∗m . (D.43)

and:
rq∗m = Hm + zαmσq∗m . (D.44)

Using Eqs. (D.43) and (D.44), we have:

σq∗m =
rf −Hm

zαm −
√
G

(D.45)

and:

rq∗m = rf +
√
G

(
rf −Hm

zαm −
√
G

)
. (D.46)

Assume that Hm = rf . Then, Eq. (D.46) implies that σq∗m = 0. Hence, Eq. (D.6) holds with
γ∗m =∞.

Assume now that Hm < rf . Using the definition of φd,p with d = pqm(1 + rq∗m) and p = pqm ,
we have:

φd,p =
F

(zαm
√
G−G)/[(rf −Hm)pqm ]

. (D.47)

It follows from Eqs. (D.1) and (D.47) that Eq. (D.6) holds with γ∗m = zαm
√
G−G

(rf−Hm)pqm
. This completes

the second part of our proof.

Proof of Theorem D.3. Suppose that αm < α and Hm ≤ rf for any account m ∈M. Using (ii)
of Theorem D.2, Eq. (D.6) holds for any account m ∈ M. Summing Eq. (D.6) across all elements
of M, we have Eq. (D.8) where γ∗a is given by Eq. (D.9).
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Proof of Theorem D.4. Fix any economy [(d ,S),(q0, γ0)] where γ0 ∈ Γ0. Also, fix any θ0 ∈ Θ0.
Suppose that p = pθ0,γ0 . Using the definitions of A, C, and pθ0,γ0 , we have:

A = θ0(B−γ0d1) (D.48)

and:
C = θ20(γ

2
0s
2
1 − 2γ0d1 +B). (D.49)

Using Eqs. (D.48) and (D.49) as well as the definition of F , we have:

F = θ0γ0(d1 − γ0s21). (D.50)

The definitions of p and pq0 as well as the fact that q0 = [1′ 0]′ imply that:

pq0 = θ0(d1 − γ0s21). (D.51)

Using Eqs. (D.50) and (D.51), we have:

pq0 = F/γ0. (D.52)

It follows from the definitions of q t,1 and pq0 that:

q̂ t,1 = (γ0/F )1. (D.53)

Using Eqs. (D.4), (D.52), and (D.53), we obtain:

q∗0 = [1′ 0]′. (D.54)

Hence, (p∗,q∗0) = (pγ0 ,q
∗
θ0,γ0

) is an equilibrium for [(d ,S),(q0, γ0)].

Proof of Theorem D.5. Fix any economy [(d ,S), (q1, H1, α1)] where H1 > −1 and α1 > α.
Suppose that γ1 ∈ Γ1. Let p = pγ1 . Using the definitions of A, C, and pγ1 , we have:

A = θγ1(B−γ1d1) (D.55)

and:
C = θ2γ1(γ

2
1s
2
1 − 2γ1d1 +B). (D.56)

It follows from Eqs. (D.55) and (D.56) as well as the definition of F that:

F = θγ1γ1(d1 − γ1s
2
1). (D.57)

Eqs. (D.55) and (D.57) as well as the definition of G imply that:

G = γ21s
2
1. (D.58)

Since γ1 ∈ Γ1, we obtain γ1 < zα1/s1. It follows that:

zα1 > γ1s1. (D.59)

It follows from Eqs. (D.58) and (D.59) that:

zα1 >
√
G. (D.60)

The definition of zα1 along with Eqs. (D.5) and (D.60) imply that α1 < α.
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Since θγ1 =
d1−zα1s1

(H1+1)(d1−γ1s21)
, it follows from the definition of pγ1 that:

rf =
(H1 + 1) (d1 − γ1s21)

d1 − zα1s1
− 1. (D.61)

Using Eq. (D.59), we obtain zα1s1 > γ1s
2
1. It follows that:

d1 − γ1s21
d1 − zα1s1

> 1. (D.62)

It follows from Eqs. (D.61) and (D.62) that H1 < rf .
Since α1 < α and H1 < rf , part (ii) of Theorem D.2 holds with m = 1. Using Eq. (D.7) with

m = 1, we have:

γ∗1 =
zα1
√
G−G

(rf −H1)pq1
. (D.63)

Eq. (D.58) implies that:
zα1
√
G−G = γ1(zα1s1 − γ1s21). (D.64)

Using the definitions of pγ1 and pq1 as well as the fact that q1 = [1′ 0]′, we obtain:

pq1 = θγ1(d1 − γ1s
2
1). (D.65)

Using Eqs. (D.61) and (D.65), the definition of θγ1 , and elementary algebra, we have:

(rf −H1)pq1 = zα1s1 − γ1s21. (D.66)

It follows from Eqs. (D.63), (D.64), and (D.66) that:

γ∗1 = γ1. (D.67)

Eqs. (D.57), (D.65), and (D.67) imply that:

pq1 = F/γ∗1. (D.68)

Using the definitions of q t,1 and pγ1 , we have:

q t,1 = (γ1/F ) [1′ 0]′. (D.69)

It follows from Eqs. (D.67) and (D.69) that:

(F/γ∗1)q t,1 = [1′ 0]′. (D.70)

Using Eq. (D.6) with m = 1 as well as Eqs. (D.68) and (D.70), we have:

q∗1 = [1′ 0]′. (D.71)

Hence, (p∗,q∗1) = (pγ1 ,q
∗
1,γ1

) is an equilibrium for economy [(d ,S), (q1, H1, α1)].

Proof of Theorem D.6. Fix any economy [(d ,S), {(qm, Hm, αm)}m∈M] with Hm > −1 and
αm > α for any account m ∈ M. Also, fix any γa ∈ Γa. Let p = pγa . Using the definitions of A,
C, and pγa , we have:

A = θγa(B−γad1). (D.72)
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and:
C = θ2γa(γ2as

2
1 − 2γad1 +B). (D.73)

It follows from Eqs. (D.72) and (D.73) as well as the definition of F that:

F = θγaγa(d1 − γas
2
1). (D.74)

Eqs. (D.72) and (D.74) as well as the definition of G imply that:

G = γ2as
2
1. (D.75)

Using the arguments in the proof of Theorem D.5, we have αm < α for any account m ∈M. Since
γa ∈ Γa, we have Hm < rf for any account m ∈ M. Hence, Theorem D.3 holds. It follows from
Eqs. (D.7) and (D.9) that:

γ∗a =

[∑
m∈M

(rf −Hm)pqm
zαm
√
G−G

]−1
. (D.76)

Using (D.10) and the definition of pγa , we have:

rf =

∑
m∈M [(Hm + 1)κm,γa ](∑

m∈M κm,γa
)
− 1

− 1. (D.77)

Fix any account m ∈M. Using the definitions of pqm and κm,γa , we have:

pqm = κm,γa(zαms1 − γas21)

{ (∑
m∈M κm,γa

)
− 1∑

m∈M [(Hm + 1)κm,γa ]

}
. (D.78)

Eqs. (D.77) and (D.78) imply that:

(rf −Hm)pqm =

(
1− (Hm + 1)

{ (∑
m∈M κm,γa

)
− 1∑

m∈M [(Hm + 1)κm,γa ]

})
κm,γa(zαms1 − γas21). (D.79)

Eq. (D.75) implies that:
zαm
√
G−G = γa(zαms1 − γas21). (D.80)

It follows from Eqs. (D.79) and (D.80) that:

(rf −Hm)pqm
zαm
√
G−G

=
1

γa

(
1− (Hm + 1)

{ (∑
m∈M κm,γa

)
− 1∑

m∈M [(Hm + 1)κm,γa ]

})
κm,γa . (D.81)

Using Eqs. (D.76) and (D.81), we have:
γ∗a = γa. (D.82)

Using the definitions of pγa and pqa as well as the fact that qa = [1′ 0]′, we obtain:

pqa = θγa(d1 − γas21). (D.83)

Eqs. (D.74), (D.82), and (D.83) imply that:

pqa = F/γ∗a. (D.84)

Using the definitions of q t,1 and pγa , we have:

q t,1 = (γa/F ) [1′ 0]′. (D.85)
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It follows from Eqs. (D.82) and (D.85) that:

(F/γ∗a)q t,1 = [1′ 0]′. (D.86)

Using Eqs. (D.8), (D.84), (D.86), we have:

q∗a = [1′ 0]′. (D.87)

Hence, (p∗, {q∗m}m∈M) = (pγa , {q∗m,γa}m∈M) is an equilibrium for economy [(d ,S), {(qm, Hm, αm)}m∈M]

and γ∗a = γa is the implied risk aversion coeffi cient of the DMSS agent’s aggregate portfolio.

Proof of Theorem D.7. Fix any economy [(d ,S), (q0, γ0), {(qm, Hm, αm)}m∈M] with γ0 > 0 as
well as Hm > −1 and αm > α for all m ∈ M. Also, fix any γ0,a ∈ Γ0,a. Let p = pγ0,a . Using the
definitions of A, C, and pγ0,a , we have:

A = θγ0,a(B−ϕ0,ad1) (D.88)

and:
C = θ2γ0,a(ϕ20,as

2
1 − 2ϕ0,ad1 +B). (D.89)

It follows from Eqs. (D.88) and (D.89) as well as the definition of F that:

F = θγ0,aϕ0,a(d1 − ϕ0,as
2
1). (D.90)

Eqs. (D.88) and (D.90) as well as the definition of G imply that:

G = ϕ20,as
2
1. (D.91)

Using the arguments in the proof of Theorem D.5, we have αm < α for any account m ∈M. Since
γa ∈ Γ0,a, we have Hm < rf for any account m ∈ M. Hence, Theorem D.3 holds. It follows from
Eqs. (D.7) and (D.9) that:

γ∗a =

[∑
m∈M

(rf −Hm)pqm
zαm
√
G−G

]−1
. (D.92)

Using Eq. (D.12) and the definition of pγ0,a , we have:

rf =

∑
m∈M [(Hm + 1)κm,γa ](∑

m∈M κm,γ0,a

)
− 1 + ϕ0,a/γ0

− 1. (D.93)

Fix any given account m ∈M. Using the definitions of pγ0,a and κm,γ0,a , we have:

pqm = κm,γ0,a(zαms1 − ϕ0,as21)


(∑

m∈M κm,γ0,a

)
− 1 + ϕ0,a/γ0∑

m∈M [(Hm + 1)κm,γ0,a ]

 . (D.94)

Eqs. (D.93) and (D.94) imply that:

(rf −Hm)pqm =

1− (Hm + 1)


(∑

m∈M κm,γ0,a

)
− 1 + ϕ0,a/γ0∑

m∈M [(Hm + 1)κm,γ0,a ]


κm,γ0,a(zαms1 − ϕ0,as21).

(D.95)
Eq. (D.91) implies that:

zαm
√
G−G = ϕ0,a(zαms1 − ϕ0,as21). (D.96)
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It follows from Eqs. (D.95) and (D.96) that:

(rf −Hm)pqm
zαm
√
G−G

=
1

ϕ0,a

1− (Hm + 1)


(∑

m∈M κm,γ0,a

)
− 1 + ϕ0,a/γ0∑

m∈M [(Hm + 1)κm,γ0,a ]


κm,γ0,a . (D.97)

Using Eqs. (D.92) and (D.97), we have:

γ∗a = γ0,a. (D.98)

Using the definitions of pγ0,a , pq0 , and pqa as well as the fact that q0+qa = [1′ 0]′, we obtain:

pq0 + pqa = θγ0,a(d1 − ϕ0,as21). (D.99)

Eqs. (D.90) and (D.99) imply that:

pq0 + pqa = F/ϕ0,a. (D.100)

Using the definitions of q t,1 and pγ0,a , we have:

q t,1 = (ϕ0,a/F )[1′ 0]′. (D.101)

Eqs. (D.4), (D.8), and (D.98) imply that:

q∗0 = (pq0)(qf,1) + (F/γ0)(q t,1 − qf,1) (D.102)

and:
q∗a = (pqa)(qf,1) + (F/γ0,a)(q t,1 − qf,1). (D.103)

It follows from Eq. (D.100) that:

[pq0 − (F/γ0)] + [pqa − (F/γ0,a)] = F/ϕ0,a − F/γ0 − F/γ0,a. (D.104)

Since 1/ϕ0,a = 1/γ0 + 1/γ0,a, Eq. (D.104) implies that:

[pq0 − (F/γ0)] + [pqa − (F/γ0,a)] = 0. (D.105)

It follows from Eq. (D.101) that:
(F/ϕ0,a)q t,1 = [1′ 0]′. (D.106)

Since 1/ϕ0,a = 1/γ0 + 1/γ0,a, we have:

F/γ0 + F/γ0,a = F/ϕ0,a. (D.107)

It follows from Eqs. (D.102), (D.103), and (D.107) that:

q∗0 + q∗a = {[pq0 − (F/γ0)] + [pqa − (F/γ0,a)]}qf,1 + (F/ϕ0,a)q t,1. (D.108)

Using Eqs. (D.105), (D.106), and (D.108), we have:

q∗0 + q∗a = [1′ 0]′. (D.109)

It follows that [p∗, (q∗0, {q∗m}m∈M)] = [pγ0,a , (q
∗
0,γ0,a

{q∗m,γ0,a}m∈M)] is an equilibrium for economy
[(d ,S), (q0, γ0), {(qm, Hm, αm)}m∈M] and γ∗a = γ0,a is the implied risk aversion coeffi cient of the
DMSS agent’s aggregate portfolio.
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Proof of Theorem D.8. Asset market clearing implies that in equilibrium market portfolio 1 is
on the MV frontier. Hence, using Eq. (D.1) and the definition of q̂ t,1, we obtain:

p∗1

[
S−1(d − p̂∗/pJ+1)

F

]
= 1. (D.110)

Premultiplying Eq. (D.110) by d ′ and using the definitions of A and B, we have:

d1 = p∗1

[
B −A(1 + r∗f )

F

]
. (D.111)

It follows from Eq. (D.111) that:

r∗1 − r∗f =
B −A(1 + r∗f )− F (1 + r∗f )

F
. (D.112)

Eq. (D.112) and the definition of G imply that:

r∗1 − r∗f =
G

F
. (D.113)

Using Eq. (D.110), the definition of σ∗j,1, and elementary algebra, we have:

σ∗j,1 =
r∗j − r∗f
F

. (D.114)

Eq. (D.3) implies that:

(σ∗1)2 =
(r∗1 − r∗f )2

G
. (D.115)

It follows from Eqs. (D.114) and (D.115) that:

β∗j =

r∗j−r∗f
F

(r∗1−r∗f )2
G

. (D.116)

Using Eqs. (D.113) and (D.116), we have β∗j =
r∗j−r∗f
r∗1−r∗f

, which implies Eq. (D.14).
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Table D.1. Asset endowments when a risk-free asset is present

In the economies examined in Appendix D, there are three risky assets (j = 1, 2, 3) with each
having one share outstanding and a risk-free asset (j = 4) in zero net supply. Panel A of Table 1
shows the expected payoff vector and the variance-covariance matrix for risky asset payoffs. The
risk-free asset has a payoffof one. Panel A of Table D.1 provides the asset endowments in four cases.
Case A1 shows the endowments in a single-agent economy with an MV agent (q0,j , j = 1, 2, 3, 4).
Case A2 shows the endowments a single-agent economy with a DMSS agent and one account (q1,j ,
j = 1, 2, 3, 4). Case A3 shows the endowments in a single-agent economy with a DMSS agent and
three accounts (qm,j , m = 1, 2, 3, j = 1, 2, 3, 4). Case A4 shows the endowments in a two-agent
economy with an MV agent and a DMSS agent with three accounts.

Panel A. Asset endowments
A1. Single-agent economy with

an MV agent
j q0,j
1 1.0

2 1.0

3 1.0

4 0.0

A2. Single-agent economy with
a DMSS agent and one account

j q1,j
1 1.0

2 1.0

3 1.0

4 0.0

A3. Single-agent economy with a DMSS agent and three accounts
j q1,j q2,j q3,j
1 0.2 0.2 0.6

2 0.2 0.2 0.6

3 0.2 0.2 0.6

4 −0.2 −0.2 0.4

A4. Two-agent economy with an MV agent and a DMSS agent with three accounts
j q0,j q1,j q2,j q3,j
1 0.5 0.1 0.1 0.3

2 0.5 0.1 0.1 0.3

3 0.5 0.1 0.1 0.3

4 0.0 −0.1 −0.1 0.2
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Fig. D.1. Asset prices, expected returns, and betas in a single-agent economy with
an MV agent when a risk-free asset is present

Panel A plots equilibrium asset prices (p∗j , j = 1, 2, 3) as a function of the MV agent’s risk aversion
coeffi cient (γ0) while setting the risk-free equilibrium asset price θ0 to 0.95 (see Theorem D.4).
Panels B and C plot, respectively, the corresponding expected asset returns (r∗j , j = 1, 2, 3) and
asset betas (β∗j , j = 1, 2, 3). In all panels, the solid, dashed, and dotted lines refer to, respectively,
assets 1, 2, and 3. In each panel, economy parameters other than γ0 take the values in panel A of
Table 1 and panel A1 of Table D.1. The price, expected return, and beta of the risk-free asset (not
reported in the panels of Fig. D.1) are, respectively, 0.95, 5.26% [= 1/0.95−1], and zero. Expected
returns are reported in percentage points.
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Fig. D.2. Asset prices, expected returns, and betas in a single-agent economy with a
DMSS agent and one account when a risk-free asset is present

Given a threshold probability (α1) and a threshold return (H1) for account 1, panels A, D, G, and
J plot equilibrium asset prices (p∗j , j = 1, 2, 3) as a function of the implied risk aversion coeffi cient
of the DMSS agent’s optimal portfolio within account 1 (γ∗1). Panels B, E, H, and K plot the
corresponding expected asset returns (r∗j , j = 1, 2, 3). Panels C, F, I, and L plot the corresponding
asset betas (β∗j , j = 1, 2, 3). In all panels, the solid, dashed, and dotted, lines refer to, respectively,
assets 1, 2, and 3. In each panel, parameters other than α1 and H1 (shown in the title of the
corresponding part of the figure) take the values in panel A of Table 1 and panel A2 of Table D.1.
The price, expected return, and beta of the risk-free asset (not reported in the panels of Fig. D.2)
are very close to those of asset 1. The beta of the risk-free asset is zero. Expected returns are
reported in percentage points.
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Fig. D.3. Asset prices, expected returns, and betas in a single-agent economy with a
DMSS agent and three accounts when a risk-free asset is present

Given the threshold probabilities (αm,m = 1, 2, 3) and threshold returns (Hm,m = 1, 2, 3) for the
accounts, panels A, D, and G plot equilibrium asset prices (p∗j , j = 1, 2, 3) as a function of the
implied risk aversion coeffi cient of the DMSS agent’s aggregate portfolio (γ∗a). Panels B, E, and
H plot the corresponding expected asset returns (r∗j , j = 1, 2, 3). Panels C, F, and I plot the
corresponding asset betas (β∗j , j = 1, 2, 3). In all panels, the solid, dashed, and dotted lines refer
to, respectively, assets 1, 2, and 3. In each panel, parameters other than thresholds (shown in the
title of the corresponding part of the figure) take the values in panel A of Table 1 and panel A3 of
Table D.1. The price, expected return, and beta of the risk-free asset (not reported in the panels
of Fig. D.3) are close to those of asset 1. The beta of the risk-free asset is zero. Expected returns
are reported in percentage points.
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Part II: (α1, α2, α3) = (15%, 5%, 1%) and (H1, H2, H3) = (−30%,−25%,−10%)
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Part III: (α1, α2, α3) = (10%, 5%, 1%) and (H1, H2, H3) = (−25%,−25%,−10%)
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Fig. D.4. Optimal portfolios in a single-agent economy with a DMSS agent and three
accounts when a risk-free asset is present

Given the threshold probabilities (αm,m = 1, 2, 3) and threshold returns (Hm,m = 1, 2, 3) for
the accounts, each panel plots the DMSS agent’s optimal portfolio within a given account (q∗m,j ,
m = 1, 2, 3, j = 1, 2, 3, 4) as a function of the implied risk aversion coeffi cient of his or her aggregate
portfolio (γ∗a). Panels A, D, and G consider account 1. While panels B, E, and H consider account
2, panels C, F, and I consider account 3. In all panels, the solid and dotted lines report the
optimal holding of each risky asset (the same holding for assets 1, 2, and 3) and that of the risk-free
asset (i.e., asset 4). In each panel, parameters other than thresholds (shown in the title of the
corresponding part of the figure) take the values in panel A of Table 1 and panel A3 of Table D.1.
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Part III: (α1, α2, α3) = (10%, 5%, 1%) and (H1, H2, H3) = (−25%,−25%,−10%)
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Fig. D.5. Asset prices, expected returns, and betas in a two-agent economy with an
MV agent and a DMSS agent with three accounts when a risk-free asset is present
Given the MV agent’s risk aversion coeffi cient (γ0) as well as the threshold probabilities (αm, m =

1, 2, 3) and threshold returns (Hm, m = 1, 2, 3) for the DMSS agent’s accounts, panels A, D, G, and
J plot equilibrium asset prices (p∗j , j = 1, 2, 3) as a function of the implied risk aversion coeffi cient
of the DMSS agent’s aggregate portfolio (γ∗a). Panels B, E, H, and K plot the corresponding
expected asset returns (r∗j , j = 1, 2, 3). Panels C, F, I, and L plot the corresponding asset betas
(β∗j , j = 1, 2, 3). In all panels, the solid, dashed, and dotted lines refer to, respectively, assets 1, 2,
and 3. In each panel, parameters other than the MV agent’s risk aversion coeffi cient and thresholds
(shown in the title of the corresponding part of the figure) take the values in panel A of Table 1 and
panel A4 of Table D.1. The price, expected return, and beta of the risk-free asset (not reported
in the panels of Fig. D.5) are close to those of asset 1. The beta of the risk-free asset is zero.
Expected returns are reported in percentage points.
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Fig. D.6. Optimal portfolios in a two-agent economy with an MV agent and a DMSS
agent with three accounts when a risk-free asset is present

Given the MV agent’s risk aversion coeffi cient (γ0) as well as the threshold probabilities (αm,
m = 1, 2, 3) and threshold returns (Hm, m = 1, 2, 3) for the DMSS agent’s accounts, panels A, E, I,
and M show the MV agent’s optimal portfolio (q∗0,j , j = 1, 2, 3, 4) as a function of the implied risk
aversion coeffi cient of the DMSS agent’s aggregate portfolio (γ∗a). Similarly, panels B—D, F—H, J—L,
and N—P show the DMSS agent’s optimal portfolios within accounts (q∗m,j , m = 1, 2, 3, j = 1, 2, 3, 4)
as a function of γ∗a. In all panels, the solid and dotted lines report the optimal holding of each risky
asset (the same holding for assets 1, 2, and 3) and that of the risk-free asset (i.e., asset 4). In each
panel, parameters other than the MV agent’s risk aversion coeffi cient and thresholds (shown in the
title of the corresponding part of the figure) take the values in panel A of Table 1 and panel A4 of
Table D.1.
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Part III: γ0 = 1, (α1, α2, α3) = (15%, 5%, 1%), and (H1, H2, H3) = (−30%,−25%,−10%)
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Part IV : γ0 = 1, (α1, α2, α3) = (10%, 5%, 1%) and (H1, H2, H3) = (−25%,−25%,−10%)
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