Online Appendix

We begin by presenting two lemmas that are useful in our proof of Theorem 1. Fix any $\left(\alpha, E, E_{s}\right) \in(0.5,1) \times \mathbb{R}^{2}$. Let $\boldsymbol{w}_{\alpha, E, E_{s}}$ denote the portfolio with minimum SCVaR at the $100 \alpha \%$ confidence level among all portfolios with an expected return of E and a stressed expected return of E_{s}.

Lemma 1. For any $\left(\alpha, E, E_{s}\right) \in(0.5,1) \times \mathbb{R}^{2}, \boldsymbol{w}_{\alpha, E, E_{s}}$ solves:

$$
\begin{gather*}
\min _{\boldsymbol{w} \in \mathbb{R}^{N}} \frac{1}{2} \boldsymbol{w}^{\prime} \boldsymbol{\Sigma}_{s} \boldsymbol{w} \tag{8}\\
\boldsymbol{w}^{\prime} \mathbf{1}=1 \tag{9}\\
\boldsymbol{w}^{\prime} \boldsymbol{\mu}=E \tag{10}\\
\boldsymbol{w}^{\prime} \boldsymbol{\mu}_{s}=E_{s} \tag{11}
\end{gather*}
$$

Proof. Fix any $\left(\alpha, E, E_{s}\right) \in(0.5,1) \times \mathbb{R}^{2}$. Suppose by way of a contradiction that $\boldsymbol{w}_{\alpha, E, E_{s}}$ does not solve minimization problem (8) subject to constraints (9)-(11). Then, there is a portfolio \boldsymbol{w}^{*} with:

$$
\begin{align*}
\sigma_{s}^{2}\left[r_{\boldsymbol{w}^{*}}\right] & <\sigma_{s}^{2}\left[r_{\boldsymbol{w}_{\alpha, E, E_{s}}}\right] \tag{12}\\
E\left[r_{\boldsymbol{w}^{*}}\right] & =E, \tag{13}\\
E_{s}\left[r_{\boldsymbol{w}^{*}}\right] & =E_{s} . \tag{14}
\end{align*}
$$

Using Eqs. (4), (12), and (14), we have:

$$
\begin{equation*}
C_{s, \alpha}\left[r_{\boldsymbol{w}^{*}}\right]<C_{s, \alpha}\left[r_{\boldsymbol{w}_{\alpha, E, E_{s}}}\right] . \tag{15}
\end{equation*}
$$

Eqs. (13)-(15) contradict the fact that $\boldsymbol{w}_{\alpha, E, E_{s}}$ has minimum SCVaR at the $100 \alpha \%$ confidence level among all portfolios with an expected return of E and a stressed expected return of E_{s}.

Fix any $\left(E, E_{s}\right) \in \mathbb{R}^{2}$. Let $\boldsymbol{w}_{E, E_{s}}$ denote the portfolio that solves minimization problem (8) subject to constraints (9)-(11).

Lemma 2. For any $\left(E, E_{s}\right) \in \mathbb{R}^{2}$, we have:

$$
\begin{equation*}
\sigma_{s}^{2}\left[r_{\boldsymbol{w}_{E, E_{s}}}\right]=h_{s}+\frac{\left(E_{s}\left[r_{\boldsymbol{w}_{E, E_{s}}}\right]-i_{s}\right)^{2}}{g_{s}} \tag{16}
\end{equation*}
$$

where g_{s} is defined in Section 2, $h_{s} \equiv \frac{c_{s} E^{2}-2 a_{s} E+b_{s}}{b_{s} c_{s}-a_{s}^{2}}$, and $i_{s} \equiv \frac{b_{s} d_{s}-a_{s} f_{s}+\left(c_{s} f_{s}-a_{s} d_{s}\right) E}{b_{s} c_{s}-a_{s}^{2}} .^{42}$ Also, $g_{s} \in \mathbb{R}_{++}$and $h_{s} \in \mathbb{R}_{++}$.

Proof. Fix any $\left(E, E_{s}\right) \in \mathbb{R}^{2}$. First, we show that Eq. (16) holds. A first-order condition for $\boldsymbol{w}_{E, E_{s}}$ to solve minimization problem (8) subject to constraints (9)-(11) is:

$$
\begin{equation*}
\boldsymbol{\Sigma}_{s} \boldsymbol{w}_{E, E_{s}}-\lambda_{1} \mathbf{1}-\lambda_{2} \boldsymbol{\mu}-\lambda_{3} \boldsymbol{\mu}_{s}=\mathbf{0} \tag{17}
\end{equation*}
$$

where λ_{1}, λ_{2}, and λ_{3} are multipliers associated with such constraints. Since $\operatorname{rank}\left(\boldsymbol{\Sigma}_{s}\right)=N$, Eq. (17) implies that:

$$
\begin{equation*}
\boldsymbol{w}_{E, E_{s}}=\lambda_{1} \boldsymbol{\Sigma}_{s}^{-1} \mathbf{1}+\lambda_{2} \boldsymbol{\Sigma}_{s}^{-1} \boldsymbol{\mu}+\lambda_{3} \boldsymbol{\Sigma}_{s}^{-1} \boldsymbol{\mu}_{s} \tag{18}
\end{equation*}
$$

Premultiplying Eq. (18) by $\mathbf{1}^{\prime}$ and using the definitions of a_{s}, c_{s}, and d_{s} as well as Eq. (9), we have:

$$
\begin{equation*}
\lambda_{1} c_{s}+\lambda_{2} a_{s}+\lambda_{3} d_{s}=1 \tag{19}
\end{equation*}
$$

Similarly, premultiplying Eq. (18) by $\boldsymbol{\mu}^{\prime}$ and using the definitions of a_{s}, b_{s}, and f_{s} as well as Eq. (10), we have:

$$
\begin{equation*}
\lambda_{1} a_{s}+\lambda_{2} b_{s}+\lambda_{3} f_{s}=E \tag{20}
\end{equation*}
$$

Also, premultiplying Eq. (18) by $\boldsymbol{\mu}_{s}^{\prime}$ and using the definitions of d_{s}, e_{s}, and f_{s} as well as Eq. (11), we have:

$$
\begin{equation*}
\lambda_{1} d_{s}+\lambda_{2} f_{s}+\lambda_{3} e_{s}=E_{s} \tag{21}
\end{equation*}
$$

Using Eqs. (19)-(21) and elementary algebra, we obtain:

$$
\begin{align*}
& \lambda_{1}=\frac{\left(b_{s} e_{s}-f_{s}^{2}\right)+\left(d_{s} f_{s}-a_{s} e_{s}\right) E+\left(a_{s} f_{s}-b_{s} d_{s}\right) E_{s}}{2 a_{s} d_{s} f_{s}-b_{s} d_{s}^{2}-c_{s} f_{s}^{2}+\left(b_{s} c_{s}-a_{s}^{2}\right) e_{s}} \tag{22}\\
& \lambda_{2}=\frac{\left(d_{s} f_{s}-a_{s} e_{s}\right)+\left(c_{s} e_{s}-d_{s}^{2}\right) E+\left(a_{s} d_{s}-c_{s} f_{s}\right) E_{s}}{2 a_{s} d_{s} f_{s}-b_{s} d_{s}^{2}-c_{s} f_{s}^{2}+\left(b_{s} c_{s}-a_{s}^{2}\right) e_{s}} \tag{23}\\
& \lambda_{3}=\frac{\left(a_{s} f_{s}-b_{s} d_{s}\right)+\left(a_{s} d_{s}-c_{s} f_{s}\right) E+\left(b_{s} c_{s}-a_{s}^{2}\right) E_{s}}{2 a_{s} d_{s} f_{s}-b_{s} d_{s}^{2}-c_{s} f_{s}^{2}+\left(b_{s} c_{s}-a_{s}^{2}\right) e_{s}} \tag{24}
\end{align*}
$$

[^0]It follows from Eq. (18) that:

$$
\begin{equation*}
\sigma_{s}^{2}\left[r_{\boldsymbol{w}_{E, E_{s}}}\right]=\left(\lambda_{1} \boldsymbol{\Sigma}_{s}^{-1} \mathbf{1}+\lambda_{2} \boldsymbol{\Sigma}_{s}^{-1} \boldsymbol{\mu}+\lambda_{3} \boldsymbol{\Sigma}_{s}^{-1} \boldsymbol{\mu}_{s}\right)^{\prime}\left(\lambda_{1} \mathbf{1}+\lambda_{2} \boldsymbol{\mu}+\lambda_{3} \boldsymbol{\mu}_{s}\right) . \tag{25}
\end{equation*}
$$

Using Eq. (25) as well as the definitions of $a_{s}, b_{s}, c_{s}, d_{s}, e_{s}$, and f_{s}, we obtain:

$$
\begin{equation*}
\sigma_{s}^{2}\left[r_{\boldsymbol{w}_{E, E_{s}}}\right]=\lambda_{1}^{2} c_{s}+\lambda_{2}^{2} b_{s}+\lambda_{3}^{2} e_{s}+2 \lambda_{1} \lambda_{2} a_{s}+2 \lambda_{1} \lambda_{3} d_{s}+2 \lambda_{2} \lambda_{3} f_{s} \tag{26}
\end{equation*}
$$

Eqs. (22)-(24) and (26) along with elementary algebra imply that:

$$
\begin{equation*}
\sigma_{s}^{2}\left[r_{w_{E, E_{s}}}\right]=\frac{c_{s} E^{2}-2 a_{s} E+b_{s}}{b_{s} c_{s}-a_{s}^{2}}+\frac{\left[E_{s}-\frac{b_{s} d_{s}-a_{s} f_{s}+\left(c_{s} f_{s}-a_{s} d_{s}\right) E}{b_{s} c_{s}-a_{s}}\right]^{2}}{\frac{2 a_{s} d_{s} f_{s}-b_{s} s_{s}^{2}-c_{s} f_{s}^{2}}{b_{s} c_{s}-a_{s}^{2}}+e_{s}} \tag{27}
\end{equation*}
$$

Eq. (16) follows from the definitions of g_{s}, h_{s}, and i_{s} along with Eq. (27).
Second, we show that $g_{s}>0$. Let $\boldsymbol{\Theta}_{2} \equiv \boldsymbol{\Psi}_{2}^{\prime} \boldsymbol{\Sigma}_{s}^{-1} \boldsymbol{\Psi}_{2}$ and $\boldsymbol{\Theta}_{3} \equiv \boldsymbol{\Psi}_{3}^{\prime} \boldsymbol{\Sigma}_{s}^{-1} \boldsymbol{\Psi}_{3}$ where $\boldsymbol{\Psi}_{2} \equiv\left[\begin{array}{ll}\mathbf{1} & \boldsymbol{\mu}\end{array}\right]$ and $\boldsymbol{\Psi}_{3} \equiv\left[\begin{array}{lll}\mathbf{1} & \boldsymbol{\mu} & \boldsymbol{\mu}_{s}\end{array}\right]$. Observe that $\operatorname{det}\left(\boldsymbol{\Theta}_{2}\right)=b_{s} c_{s}-a_{s}^{2}$ and $\operatorname{det}\left(\boldsymbol{\Theta}_{3}\right)=2 a_{s} d_{s} f_{s}-b_{s} d_{s}^{2}-c_{s} f_{s}^{2}+$ $\left(b_{s} c_{s}-a_{s}^{2}\right) e_{s}$, where $\operatorname{det}(\cdot)$ denotes determinant. Noting that $g_{s}=\frac{\operatorname{det}\left(\boldsymbol{\Theta}_{3}\right)}{\operatorname{det}\left(\boldsymbol{\Theta}_{2}\right)}$, it suffices to show that $\operatorname{det}\left(\boldsymbol{\Theta}_{2}\right)>0$ and $\operatorname{det}\left(\boldsymbol{\Theta}_{3}\right)>0$. The fact that $\boldsymbol{\Sigma}_{s}$ is positive definite implies that $\boldsymbol{\Sigma}_{s}^{-1}$ is also positive definite. Since $\operatorname{rank}\left(\boldsymbol{\Psi}_{2}\right)=2$ and $\boldsymbol{\Sigma}_{s}^{-1}$ is positive definite, $\boldsymbol{\Theta}_{2}$ is also positive definite. Hence, $\operatorname{det}\left(\boldsymbol{\Theta}_{2}\right)>0$. Similarly, since $\operatorname{rank}\left(\boldsymbol{\Psi}_{3}\right)=3$ and $\boldsymbol{\Sigma}_{s}^{-1}$ is positive definite, $\boldsymbol{\Theta}_{3}$ is also positive definite. Hence, $\operatorname{det}\left(\boldsymbol{\Theta}_{3}\right)>0$.

Third, we show that $h_{s}>0$. It suffices to show that the minimum value of h_{s} is positive. Note that $\frac{\partial h_{s}}{\partial E}=\frac{2\left(c_{s} E-a_{s}\right)}{b_{s} c_{s}-a_{s}^{2}}$. Since $\frac{\partial^{2} h_{s}}{\partial E^{2}}=\frac{2 c_{s}}{b_{s} c_{s}-a_{s}^{2}}, c_{s}>0$, and $b_{s} c_{s}-a_{s}^{2}>0$, we have $\frac{\partial^{2} h_{s}}{\partial E^{2}}>0$. Hence, the minimum value of h_{s} occurs when $\frac{\partial h_{s}}{\partial E}=0$ or $E=\frac{a_{s}}{c_{s}}$. It follows that the minimum value of h_{s} is $\frac{1}{c_{s}}$. Since $c_{s}>0$, we have $\frac{1}{c_{s}}>0$.

Next, we provide proofs of Theorem 1 and Corollary 1.

Proof of Theorem 1. Fix any expected return $E \in \mathbb{R}$. First, suppose that $\alpha \leq \alpha_{s}$. Note that:

$$
\begin{equation*}
0<y_{\alpha} \leq \sqrt{g_{s}} \tag{28}
\end{equation*}
$$

In order to prove that no portfolio is on the M-SCVaR frontier, it suffices to show that $\frac{\partial C_{s, \alpha}\left[r_{\left.w_{E, E_{s}}\right]}\right]}{\partial E_{s}\left[r_{w_{E, E}}\right]}<$ 0. Using Eqs. (4) and (16), we obtain:

$$
\begin{equation*}
\frac{\partial C_{s, \alpha}\left[r_{\boldsymbol{w}_{E, E_{s}}}\right]}{\partial E_{s}\left[r_{\boldsymbol{w}_{E, E_{s}}}\right]}=y_{\alpha} \frac{\frac{E_{s}\left[r_{w_{E, E_{s}}}\right]-i_{s}}{g_{s}}}{\sqrt{h_{s}+\frac{\left(E_{s}\left[r_{w_{E, E_{s}}}\right]-i_{s}\right)^{2}}{g_{s}}}}-1 \tag{29}
\end{equation*}
$$

Since $h_{s}>0$, Eqs. (28) and (29) imply that $\frac{\partial C_{s, \alpha}\left[r_{\left.w_{E, E_{s}}\right]}\right]}{\partial E_{s}\left[r_{w_{E, E_{s}}}\right]}<0$. This completes the first part of our proof.

Second, suppose that $\alpha>\alpha_{s}$. Note that:

$$
\begin{equation*}
y_{\alpha}>\sqrt{g_{s}} . \tag{30}
\end{equation*}
$$

Using Lemmas 1 and 2 along with Eq. (29), a first-order condition for $E_{s}^{* *}$ to solve $\min _{E_{s} \in \mathbb{R}} C_{s, \alpha}\left[r_{\boldsymbol{w}_{\alpha, E, E_{s}}}\right]$ is:

$$
\begin{equation*}
y_{\alpha} \frac{\frac{E_{s}^{* *}-i_{s}}{g_{s}}}{\sqrt{h_{s}+\frac{\left(E_{s}^{* *}-i_{s}\right)^{2}}{g_{s}}}}-1=0 \tag{31}
\end{equation*}
$$

It follows from Eq. (30) and elementary algebra that:

$$
\begin{equation*}
E_{s}^{* *}=i_{s}+\sqrt{\frac{h_{s}}{y_{\alpha}^{2}-g_{s}}} g_{s} \tag{32}
\end{equation*}
$$

Using Eq. (29) and elementary algebra, we have:

$$
\begin{equation*}
\frac{\partial^{2} C_{s, \alpha}\left[r_{\boldsymbol{w}_{E, E_{s}}}\right]}{\partial\left(E_{s}\left[r_{\boldsymbol{w}_{E, E_{s}}}\right]\right)^{2}}=\frac{\frac{y_{\alpha} h_{s}}{g_{s}}}{\left[h_{s}+\frac{\left(E_{s}\left[r_{w_{E, E_{s}}}\right]-i_{s}\right)^{2}}{g_{s}}\right]^{3 / 2}} \tag{33}
\end{equation*}
$$

Since $y_{\alpha}>0, h_{s}>0$, and $g_{s}>0$, Eq. (33) implies that $\frac{\partial^{2} C_{s, \alpha}\left[r_{w_{E, E_{s}}}\right]}{\partial\left(E_{s}\left[r_{w_{E, E_{s}}}\right]\right)^{2}}>0$. Hence, $E_{s}^{* *}$ solves $\min _{E_{s} \in \mathbb{R}}$ $C_{s, \alpha}\left[r_{\boldsymbol{w}_{\alpha, E, E_{s}}}\right]$. Using Eqs. (22)-(24) with $E_{s}=E_{s}^{* *}$ and elementary algebra, we have:

$$
\begin{align*}
\lambda_{1} & =\frac{1}{b_{s} c_{s}-a_{s}^{2}}\left[\left(b_{s}-a_{s} E\right)+\left(a_{s} f_{s}-b_{s} d_{s}\right) \sqrt{\frac{h_{s}}{y_{\alpha}^{2}-g_{s}}}\right] \tag{34}\\
\lambda_{2} & =\frac{1}{b_{s} c_{s}-a_{s}^{2}}\left[\left(c_{s} E-a_{s}\right)+\left(a_{s} d_{s}-c_{s} f_{s}\right) \sqrt{\frac{h_{s}}{y_{\alpha}^{2}-g_{s}}}\right] \tag{35}\\
\lambda_{3} & =\sqrt{\frac{h_{s}}{y_{\alpha}^{2}-g_{s}}} \tag{36}
\end{align*}
$$

Let:

$$
\begin{align*}
\theta_{0, \alpha, E} & \equiv c_{s} \lambda_{1} \tag{37}\\
\theta_{1, \alpha, E} & \equiv a_{s} \lambda_{2} \tag{38}
\end{align*}
$$

Using Eqs. (34)-(38), we obtain:

$$
\begin{equation*}
1-\theta_{0, \alpha, E}-\theta_{1, \alpha, E}=d_{s} \lambda_{3} . \tag{39}
\end{equation*}
$$

Eq. (5) follows from Eqs. (18) and (34)-(39). This completes the second part of our proof.

Proof of Corollary 1. Fix any expected return $E \in \mathbb{R}$. Since $h_{s}>0$, we have:

$$
\begin{equation*}
\sqrt{\frac{h_{s}}{y_{\alpha}^{2}-g_{s}}} \rightarrow 0 \text { as } \alpha \rightarrow 1 \tag{40}
\end{equation*}
$$

Let $\theta_{0, E} \equiv\left(\frac{b_{s}-a_{s} E}{b_{s} c_{s}-a_{s}^{2}}\right) c_{s}$ and $\theta_{1, E} \equiv\left(\frac{c_{s} E-a_{s}}{b_{s} c_{s}-a_{s}^{2}}\right) a_{s}$. Eqs. (34), (37), and (40) imply that $\theta_{0, \alpha, E} \rightarrow \theta_{0, E}$ as $\alpha \rightarrow 1$. Similarly, Eqs. (35), (38), and (40) imply that $\theta_{1, \alpha, E} \rightarrow \theta_{1, E}$ as $\alpha \rightarrow 1$. Also, Eqs. (36), (39), and (40) imply that $1-\theta_{0, \alpha, E}-\theta_{1, \alpha, E} \rightarrow 0$ as $\alpha \rightarrow 1$.

We now present two lemmas that are useful in our proof of Theorem 2. Fix any $\left(\alpha, E, E_{s}\right) \in$ $(0.5,1) \times \mathbb{R}^{2}$. Let $\overline{\boldsymbol{w}}_{\alpha, E, E_{s}}$ denote the portfolio with minimum SCVaR at the $100 \alpha \%$ confidence level among all portfolios with an expected return of E and a stressed expected return of E_{s}.

Lemma 3. For any $\left(\alpha, E, E_{s}\right) \in(0.5,1) \times \mathbb{R}^{2}, \underline{\boldsymbol{w}}_{\alpha, E, E_{s}}$ solves:

$$
\begin{gather*}
\min _{\boldsymbol{w} \in \mathbb{R}^{N}} \frac{1}{2} \boldsymbol{w}^{\prime} \boldsymbol{\Sigma}_{s} \boldsymbol{w} \tag{41}\\
\boldsymbol{w}^{\prime}\left(\boldsymbol{\mu}-\mathbf{1} r_{f}\right)=E-r_{f} \tag{42}\\
\boldsymbol{w}^{\prime}\left(\boldsymbol{\mu}_{s}-\mathbf{1} r_{f, s}\right)=E_{s}-r_{f, s} . \tag{43}
\end{gather*}
$$

Proof. Fix any $\left(\alpha, E, E_{s}\right) \in(0.5,1) \times \mathbb{R}^{2}$. Suppose by way of a contradiction that $\underline{\boldsymbol{w}}_{\alpha, E, E_{s}}$ does not solve minimization problem (41) subject to constraints (42) and (43). Then, there is a portfolio $\overline{\boldsymbol{w}}^{*}$ with:

$$
\begin{align*}
\sigma_{s}^{2}\left[r_{\overline{\boldsymbol{w}}^{*}}\right] & <\sigma_{s}^{2}\left[r_{\bar{w}_{\alpha, E, E_{s}}}\right], \tag{44}\\
E\left[r_{\overline{\boldsymbol{w}}^{*}}\right] & =E, \tag{45}\\
E_{s}\left[r_{\bar{w}^{*}}\right] & =E_{s} . \tag{46}
\end{align*}
$$

Using Eqs. (4), (44), and (46), we have:

$$
\begin{equation*}
C_{s, \alpha}\left[r_{\overline{\boldsymbol{w}}^{*}}\right]<C_{s, \alpha}\left[r_{\overline{\boldsymbol{w}}_{\alpha, E, E_{s}}}\right] . \tag{47}
\end{equation*}
$$

Eqs. (45)-(47) contradict the fact that $\overline{\boldsymbol{w}}_{\alpha, E, E_{s}}$ has minimum SCVaR at the $100 \alpha \%$ confidence level among all portfolios with an expected return of E and a stressed expected return of E_{s}.

Fix any $\left(E, E_{s}\right) \in \mathbb{R}^{2}$. Let $\overline{\boldsymbol{w}}_{E, E_{s}}$ denote the portfolio that solves minimization problem (41) subject to constraints (42) and (43).

Lemma 4. For any $\left(E, E_{s}\right) \in \mathbb{R}^{2}$, we have:

$$
\begin{equation*}
\sigma_{s}^{2}\left[r_{\overline{\boldsymbol{w}}_{E, E_{s}}}\right]=\bar{h}_{s}+\frac{\left(E_{s}\left[r_{\overline{\boldsymbol{w}}_{E, E_{s}}}\right]-\bar{i}_{s}\right)^{2}}{\bar{g}_{s}} \tag{48}
\end{equation*}
$$

where \bar{g}_{s} is defined in Section 3, $\bar{h}_{s} \equiv \frac{1}{j_{s}}\left(E-r_{f}\right)^{2}$, and $\bar{i}_{s} \equiv r_{f, s}+\frac{k_{s}}{j_{s}}\left(E-r_{f}\right){ }^{43}$ Also, $\bar{g}_{s} \in \mathbb{R}_{++}$ and $\bar{h}_{s} \in \mathbb{R}_{+}$.

Proof. Fix any $\left(E, E_{s}\right) \in \mathbb{R}^{2}$. First, we show that Eq. (48) holds. A first-order condition for $\underline{\boldsymbol{w}}_{E, E_{s}}$ to solve minimization problem (41) subject to constraints (42) and (43) is:

$$
\begin{equation*}
\boldsymbol{\Sigma}_{s} \underline{\boldsymbol{w}}_{E, E_{s}}-\lambda_{4}\left(\boldsymbol{\mu}-\mathbf{1} r_{f}\right)-\lambda_{5}\left(\boldsymbol{\mu}_{s}-\mathbf{1} r_{f, s}\right)=\mathbf{0}, \tag{49}
\end{equation*}
$$

where λ_{4} and λ_{5} are multipliers associated with such constraints. Since $\operatorname{rank}\left(\boldsymbol{\Sigma}_{s}\right)=N$, Eq. (49) implies that:

$$
\begin{equation*}
\underline{\boldsymbol{w}}_{E, E_{s}}=\lambda_{4} \boldsymbol{\Sigma}_{s}^{-1}\left(\boldsymbol{\mu}-\mathbf{1} r_{f}\right)+\lambda_{5} \boldsymbol{\Sigma}_{s}^{-1}\left(\boldsymbol{\mu}_{s}-\mathbf{1} r_{f, s}\right) . \tag{50}
\end{equation*}
$$

Premultiplying Eq. (50) by $\left(\boldsymbol{\mu}-\mathbf{1} r_{f}\right)^{\prime}$ and using the definitions of j_{s} and k_{s} as well as Eq. (42), we have:

$$
\begin{equation*}
\lambda_{4} j_{s}+\lambda_{5} k_{s}=E-r_{f} . \tag{51}
\end{equation*}
$$

Similarly, premultiplying Eq. (50) by $\left(\boldsymbol{\mu}_{s}-\mathbf{1} r_{f, s}\right)^{\prime}$ and using the definitions of k_{s} and l_{s} as well as Eq. (43), we have:

$$
\begin{equation*}
\lambda_{4} k_{s}+\lambda_{5} l_{s}=E_{s}-r_{f, s} . \tag{52}
\end{equation*}
$$

[^1]Using Eqs. (51) and (52) along with elementary algebra, we obtain:

$$
\begin{align*}
& \lambda_{4}=\frac{l_{s}\left(E-r_{f}\right)-k_{s}\left(E_{s}-r_{f, s}\right)}{j_{s} l_{s}-k_{s}^{2}} \tag{53}\\
& \lambda_{5}=\frac{j_{s}\left(E_{s}-r_{f, s}\right)-k_{s}\left(E-r_{f}\right)}{j_{s} l_{s}-k_{s}^{2}} \tag{54}
\end{align*}
$$

It follows from Eq. (50) that:

$$
\begin{equation*}
\sigma_{s}^{2}\left[r_{\overline{\boldsymbol{w}}_{E, E_{s}}}\right]=\left[\lambda_{4} \boldsymbol{\Sigma}_{s}^{-1}\left(\boldsymbol{\mu}-\mathbf{1} r_{f}\right)+\lambda_{5} \boldsymbol{\Sigma}_{s}^{-1}\left(\boldsymbol{\mu}_{s}-\mathbf{1} r_{f, s}\right)\right]^{\prime}\left[\lambda_{4}\left(\boldsymbol{\mu}-\mathbf{1} r_{f}\right)+\lambda_{5}\left(\boldsymbol{\mu}_{s}-\mathbf{1} r_{f, s}\right)\right] . \tag{55}
\end{equation*}
$$

Using Eq. (55) as well as the definitions of j_{s}, k_{s}, and l_{s}, we obtain:

$$
\begin{equation*}
\sigma_{s}^{2}\left[r_{\bar{w}_{E, E_{s}}}\right]=\lambda_{4}^{2} j_{s}+\lambda_{5}^{2} l_{s}+2 \lambda_{4} \lambda_{5} k_{s} \tag{56}
\end{equation*}
$$

Eqs. (53), (54), and (56) along with elementary algebra imply that:

$$
\begin{equation*}
\sigma_{s}^{2}\left[r_{\bar{w}_{E, E_{s}}}\right]=\frac{1}{j_{s}}\left(E-r_{f}\right)^{2}+\frac{\left(E_{s}\left[r_{\boldsymbol{w}_{E, E_{s}}}\right]-\left[r_{f, s}+\frac{k_{s}}{j_{s}}\left(E-r_{f}\right)\right]\right)^{2}}{l_{s}-k_{s}^{2} / j_{s}} . \tag{57}
\end{equation*}
$$

Eq. (48) follows from the definitions of \bar{g}_{s}, \bar{h}_{s}, and \bar{i}_{s} along with Eq. (57).
Second, we show that $\bar{g}_{s}>0$. Let $\overline{\boldsymbol{\Theta}}_{2} \equiv \overline{\boldsymbol{\Psi}}_{2}^{\prime} \boldsymbol{\Sigma}_{s}^{-1} \overline{\boldsymbol{\Psi}}_{2}$ where $\overline{\boldsymbol{\Psi}}_{2} \equiv\left[\boldsymbol{\mu}_{s}-\mathbf{1} r_{f, s} \quad \boldsymbol{\mu}-\mathbf{1 r}_{\mathbf{f}}\right]$. Observe that $\operatorname{det}\left(\overline{\boldsymbol{\Theta}}_{2}\right)=l_{s} j_{s}-k_{s}^{2}$. Noting that $\bar{g}_{s}=\frac{\operatorname{det}\left(\overline{\boldsymbol{\Theta}}_{2}\right)}{j_{s}}$, it suffices to show that $\operatorname{det}\left(\boldsymbol{\Theta}_{2}\right)>0$ and $j_{s}>0$. Since $\operatorname{rank}\left(\left[\begin{array}{lll}\mathbf{1} & \boldsymbol{\mu} & \boldsymbol{\mu}_{s}\end{array}\right]\right)=3$, we have $\operatorname{rank}\left(\overline{\mathbf{\Psi}}_{2}\right)=2$. Since $\operatorname{rank}\left(\overline{\mathbf{\Psi}}_{2}\right)=2$ and $\boldsymbol{\Sigma}_{s}^{-1}$ is positive definite, $\overline{\boldsymbol{\Theta}}_{2}$ is also positive definite. Hence, $\operatorname{det}\left(\overline{\boldsymbol{\Theta}}_{2}\right)>0$. Observe that $j_{s}=\left(\boldsymbol{\mu}-\mathbf{1} r_{f}\right)^{\prime} \boldsymbol{\Sigma}_{s}^{-1}\left(\boldsymbol{\mu}-\mathbf{1} r_{f}\right)$. Noting that $\operatorname{rank}\left(\left[\begin{array}{ll}\mathbf{1} & \boldsymbol{\mu}\end{array}\right]\right)=2$, we have $\boldsymbol{\mu}-\mathbf{1} r_{f} \neq \mathbf{0}$. Since $\boldsymbol{\Sigma}_{s}^{-1}$ is positive definite and $\boldsymbol{\mu}-\mathbf{1} r_{f} \neq \mathbf{0}$, we have $j_{s}>0$.

Third, we show that $\bar{h}_{s} \geq 0$. Since $\bar{h}_{s}=\frac{1}{j_{s}}\left(E-r_{f}\right)^{2}$ and $j_{s}>0$, we have $\bar{h}_{s} \geq 0$.

Next, we provide proofs of Theorem 2 and Corollary 2.

Proof of Theorem 2. Fix any expected return $E \in \mathbb{R}$. First, suppose that $\alpha<\bar{\alpha}_{s}$. Note that:

$$
\begin{equation*}
0<y_{\alpha}<\sqrt{\bar{g}_{s}} . \tag{58}
\end{equation*}
$$

In order to prove that no portfolio is on the M-SCVaR frontier at the $100 \alpha \%$ confidence level, it suffices to show that $\frac{\partial C_{s, \alpha}\left[r_{\overline{w_{E, E}}}\right]}{\partial E_{s}\left[r_{\overline{\bar{W}_{E, E}}, E_{s}}\right]}<0$. Using Eqs. (4) and (48), we obtain:

$$
\begin{equation*}
\frac{\partial C_{s, \alpha}\left[r_{\bar{w}_{E, E_{s}}}\right]}{\partial E_{s}\left[r_{\bar{w}_{E, E_{s}}}\right]}=y_{\alpha} \frac{\frac{E_{s}\left[r_{\bar{w}_{E, E_{s}}}\right]-\bar{i}_{s}}{\bar{g}_{s}}}{\sqrt{\bar{h}_{s}+\frac{\left(E_{s}\left[r_{\bar{w}_{E, E_{s}}}\right]-\overline{-}_{s}\right)^{2}}{\bar{g}_{s}}}}-1 . \tag{59}
\end{equation*}
$$

Since $\bar{h}_{s} \geq 0$, Eqs. (58) and (59) imply that $\frac{\partial C_{s, \alpha}\left[r_{\overline{w_{E, E}}}\right]}{\partial E_{s}\left[r_{\overline{\bar{W}_{E, E}},}\right]}<0$. This completes the first part of our proof.

Second, suppose that $\alpha=\bar{\alpha}_{s}$ and $E \neq r_{f}$. Note that:

$$
\begin{equation*}
y_{\alpha}=\sqrt{\bar{g}_{s}} . \tag{60}
\end{equation*}
$$

and:

$$
\begin{equation*}
\bar{h}_{s}>0 . \tag{61}
\end{equation*}
$$

In order to prove that no portfolio is on the M-SCVaR frontier at the $100 \alpha \%$ confidence level, it suffices to show that $\frac{\partial C_{s, \alpha}\left[r_{\overline{\bar{w}_{E, E}}}\right]}{\partial E_{s}\left[\bar{r}_{E, E_{s}}\right]}<0$. Eqs. (59)-(61) imply that $\frac{\partial C_{s, \alpha}\left[r_{\overline{\bar{w}_{E, E_{s}}}}\right]}{\partial E_{s}\left[r_{\overline{w_{E, E}}}\right]}<0$. This completes the second part of our proof.

Third, suppose that $\alpha=\bar{\alpha}_{s}$ and $E=r_{f}$. Note that Eq. (60) holds and:

$$
\begin{equation*}
\bar{h}_{s}=0 . \tag{62}
\end{equation*}
$$

Using Eqs. (48), (60), and (62), we have:

$$
\sigma_{s}\left[r_{\bar{w}_{E, E_{s}}}\right]=\left\{\begin{array}{r}
\frac{E_{s}\left[r_{\bar{w}_{E, E_{s}}}\right]-r_{f, s}}{\sqrt{\bar{g}_{s}}} \Leftarrow E_{s}\left[r_{\bar{w}_{E, E_{s}}}\right]>r_{f, s} \tag{63}\\
-\frac{E_{s}\left[r_{\bar{w}_{E, E_{s}}}\right]-r_{f, s}}{\sqrt{\bar{g}_{s}}}
\end{array} .\right.
$$

It follows from Eqs. (4), (60), and (63) that:

$$
\frac{\partial C_{s, \alpha}\left[r_{\bar{w}_{E, E_{s}}}\right]}{\partial E_{s}\left[r_{\overline{\boldsymbol{w}}_{E, E_{s}}}\right]}=\left\{\begin{array}{rl}
0 & \Leftarrow E_{s}\left[r_{\overline{\boldsymbol{w}}_{E, E_{s}}}\right]>r_{f, s} \tag{64}\\
-2 & \Leftarrow E_{s}\left[r_{\overline{\boldsymbol{w}}_{E, E_{s}}}\right]<r_{f, s}
\end{array} .\right.
$$

Lemmas 3 and 4 along with Eq. (64) imply that for any $E_{s} \geq r_{f, s}$ portfolio $\overline{\boldsymbol{w}}_{E, E_{s}}$ is on the MSCVaR frontier at the $100 \alpha \%$ confidence level. Note that $\overline{\boldsymbol{w}}_{E, E_{s}}=\overline{\boldsymbol{w}}_{0}$ if $E=r_{f}$ and $E_{s}=r_{f, s}$. This completes the third part of our proof.

Fourth, suppose that $\alpha>\bar{\alpha}_{s}$. Note that:

$$
\begin{equation*}
y_{\alpha}>\sqrt{\bar{g}_{s}} . \tag{65}
\end{equation*}
$$

Assume that $E \neq r_{f}$. Then, Eq. (61) holds. Using Lemmas 3 and 4 along with Eq. (59), a first-order condition for $\bar{E}_{s}^{* *}$ to solve $\min _{E_{s} \in \mathbb{R}} C_{s, \alpha}\left[r_{\overline{\boldsymbol{w}}_{E, E_{s}}}\right]$ is:

$$
\begin{equation*}
y_{\alpha} \frac{\frac{\bar{E}_{s}^{* *}-\bar{i}_{s}}{\bar{g}_{s}}}{\sqrt{\bar{h}_{s}+\frac{\left(\bar{E}_{s}^{* *}-\bar{i}_{s}\right)^{2}}{\bar{g}_{s}}}}-1=0 . \tag{66}
\end{equation*}
$$

It follows from Eq. (66) and elementary algebra that:

$$
\begin{equation*}
E_{s}^{* *}=\bar{i}_{s}+\sqrt{\frac{\bar{h}_{s}}{y_{\alpha}^{2}-\bar{g}_{s}}} \bar{g}_{s} . \tag{67}
\end{equation*}
$$

Using Eq. (59) and elementary algebra, we have:

$$
\begin{equation*}
\frac{\partial^{2} C_{s, \alpha}\left[r_{\bar{w}_{E, E_{s}}}\right]}{\partial\left(E_{s}\left[r_{\bar{w}_{E, E_{s}}}\right)^{2}\right.}=\frac{\frac{y_{\alpha} \bar{h}_{s}}{\bar{g}_{s}}}{\left[\bar{h}_{s}+\frac{\left(E_{s}\left[r_{\bar{w}_{E, E_{s}}}\right]-\overline{\bar{s}}_{s}\right)^{2}}{\bar{g}_{s}}\right]^{3 / 2}} . \tag{68}
\end{equation*}
$$

Since $y_{\alpha}>0, \bar{g}_{s}>0$, and $\bar{h}_{s}>0$, Eq. (68) implies that $\frac{\partial^{2} C_{s, \alpha}\left[r_{\bar{w}_{E, E_{s}}}\right]}{\partial\left(E_{s}\left[r_{\overline{w_{E, E}}}\right]\right)^{2}}>0$. Hence, $\bar{E}_{s}^{* *}$ solves $\min _{E_{s} \in \mathbb{R}} C_{s, \alpha}\left[r_{\overline{\boldsymbol{w}}_{E, E_{s}}}\right]$. Using Eqs. (53) and (54) with $E_{s}=\bar{E}_{s}^{* *}$, the definitions of \bar{g}_{s}, \bar{h}_{s}, and \bar{i}_{s}, and elementary algebra, we have:

$$
\begin{align*}
& \lambda_{4}=\frac{1}{j_{s}}\left[\left(E-r_{f}\right)-k_{s} \sqrt{\frac{\frac{1}{j_{s}}\left(E-r_{f}\right)^{2}}{y_{\alpha}^{2}-\bar{g}_{s}}}\right], \tag{69}\\
& \lambda_{5}=\sqrt{\frac{\frac{1}{j_{s}}\left(E-r_{f}\right)^{2}}{y_{\alpha}^{2}-\bar{g}_{s}}} . \tag{70}
\end{align*}
$$

Let:

$$
\begin{align*}
\bar{\theta}_{0, \alpha, E} & \equiv 1-\left(a_{s}-c_{s} r_{f}\right) \lambda_{4}-\left(d_{s}-c_{s} r_{f, s}\right) \lambda_{5}, \tag{71}\\
\bar{\theta}_{1, \alpha, E} & \equiv\left(a_{s}-c_{s} r_{f}\right) \lambda_{4} . \tag{72}
\end{align*}
$$

Using Eqs. (69)-(72), we obtain:

$$
\begin{equation*}
1-\bar{\theta}_{0, \alpha, E}-\bar{\theta}_{1, \alpha, E}=\left(d_{s}-c_{s} r_{f, s}\right) \lambda_{5} . \tag{73}
\end{equation*}
$$

Eq. (7) follows from Eqs. (50) and (69)-(73). ${ }^{44}$
Assume that $E=r_{f}$. Then, Eq. (63) holds. Using Eqs. (63) and (65), we have $\frac{\partial C_{s, \alpha}\left[\bar{w}_{E, E_{s}}\right]}{\left.\partial E_{s} r_{\bar{T}_{E, E_{s}}}\right]}<0$ if $E_{s}<r_{f, s}$ and $\frac{\partial C_{s, \alpha}\left[r_{\overline{w_{E, E}}}\right]}{\partial E_{s}\left[r_{\overline{\bar{w}_{E, E_{s}}}}\right]}>0$ if $E_{s}>r_{f, s}$. Hence, $\bar{E}_{s}^{* *}=r_{f, s}$ solves $\min _{E_{s} \in \mathbb{R}} C_{s, \alpha}\left[r_{\left.\bar{w}_{E, E_{s}}\right]}\right.$. It follows that Eq. (7) holds with $\bar{\theta}_{0, \alpha, E}=1$ and $\bar{\theta}_{1, \alpha, E}=0$. This completes the fourth part of our proof.

Proof of Corollary 2. Fix any expected return $E \in \mathbb{R}$. Let $\bar{\theta}_{0, E} \equiv 1-\frac{1}{j_{s}}\left(a_{s}-c_{s} r_{f}\right)\left(E-r_{f}\right)$ and $\bar{\theta}_{1, E} \equiv \frac{1}{j_{s}}\left(a_{s}-c_{s} r_{f}\right)\left(E-r_{f}\right)$. First, suppose that $E=r_{f}$. It follows from the proof of Theorem 2 that $\bar{\theta}_{0, \alpha, E}=1, \bar{\theta}_{1, \alpha, E}=0$, and $1-\bar{\theta}_{0, \alpha, E}-\bar{\theta}_{1, \alpha, E}=0$. The desired claims follow from the fact that $\bar{\theta}_{0, E}=1$ and $\bar{\theta}_{1, E} \equiv 0$.

Second, suppose that $E \neq r_{f}$. Note that:

$$
\begin{equation*}
\sqrt{\frac{\frac{1}{j_{s}}\left(E-r_{f}\right)^{2}}{y_{\alpha}^{2}-\bar{g}_{s}}} \rightarrow 0 \text { as } \alpha \rightarrow 1 . \tag{74}
\end{equation*}
$$

Eqs. (69), (70), and (74) imply that $\bar{\theta}_{0, \alpha, E} \rightarrow \bar{\theta}_{0, E}$ as $\alpha \rightarrow 1$. Similarly, Eqs. (69), (72), and (74) imply that $\bar{\theta}_{1, \alpha, E} \rightarrow \bar{\theta}_{1, E}$ as $\alpha \rightarrow 1$. Also, Eqs. (70), (73), and (74) imply that $1-\bar{\theta}_{0, \alpha, E}-\bar{\theta}_{1, \alpha, E} \rightarrow 0$ as $\alpha \rightarrow 1$.

[^2]
[^0]: ${ }^{42}$ While h_{s} depends on E, we write ' h_{s} ' instead of ' $h_{s, E}$ ' for brevity. A similar remark applies to i_{s}.

[^1]: ${ }^{43}$ While \bar{h}_{s} depends on E, we write ' \bar{h}_{s} ' instead of ' $\bar{h}_{s, E}$ ' for brevity. A similar remark applies to \bar{i}_{s}.

[^2]: ${ }^{44}$ If $\alpha>\bar{\alpha}_{s}$, an alternative characterization of the composition of portfolios on the M-SCVaR frontier at the $100 \alpha \%$ confidence level is as follows. Suppose that $E<r_{f}$. Then, $\overline{\boldsymbol{w}}_{\alpha, E}=\bar{\theta}_{0, \alpha, E} \overline{\boldsymbol{w}}_{0}+\left(1-\bar{\theta}_{0, \alpha, E}\right) \overline{\boldsymbol{w}}_{3, s}$ where $\overline{\boldsymbol{w}}_{3, s} \equiv \psi \overline{\boldsymbol{w}}_{1, s}+(1-\psi) \overline{\boldsymbol{w}}_{2, s}$, $\psi \equiv \frac{\left(1+k_{s} m_{s}\right)\left(a_{s}-c_{s} r_{f}\right) / j_{s}}{\left(1+k_{s} m_{s}\right)\left(a_{s}-c_{s} r_{f}\right) / j_{s}-m_{s}\left(d_{s}-c_{s} r_{f, s}\right)}$, and $m_{s} \equiv \sqrt{\frac{1 / j_{s}}{y_{\alpha}^{2}-\bar{g}_{s}}}$. Hence, portfolios on the M-SCVaR frontier at the $100 \alpha \%$ confidence level with expected returns smaller than r_{f} exhibit two-fund separation with the two funds being $\overline{\boldsymbol{w}}_{0}$ and $\bar{w}_{3, s}$. Similarly, suppose that $E \geq r_{f}$. Then, $\overline{\boldsymbol{w}}_{\alpha, E}=\bar{\theta}_{0, \alpha, E} \overline{\boldsymbol{w}}_{0}+\left(1-\bar{\theta}_{0, \alpha, E}\right) \overline{\boldsymbol{w}}_{4, s}$ where $\overline{\boldsymbol{w}}_{4, s} \equiv \varphi \overline{\boldsymbol{w}}_{1, s}+(1-\varphi) \overline{\boldsymbol{w}}_{2, s}$, and $\varphi \equiv \frac{\left(1-k_{s} m_{s}\right)\left(a_{s}-c_{s} r_{f}\right) / j_{s}}{\left(1-k_{s} m_{s}\right)\left(a_{s}-c_{s} r_{f}\right) / j_{s}+m_{s}\left(d_{s}-c_{s} r_{f, s}\right)}$. Hence, portfolios on the M-SCVaR frontier at the $100 \alpha \%$ confidence level with expected returns equal to or larger than r_{f} exhibit two-fund separation with the two funds being $\overline{\boldsymbol{w}}_{0}$ and $\overline{\boldsymbol{w}}_{4, s}$. Since $\overline{\boldsymbol{w}}_{3, s}$ generally differs from $\bar{w}_{4, s}$, portfolios on the M-SCVaR frontier at the $100 \alpha \%$ confidence level with all expected returns exhibit three-fund separation with the three funds being $\overline{\boldsymbol{w}}_{0}, \overline{\boldsymbol{w}}_{3, s}$, and $\overline{\boldsymbol{w}}_{4, s}$ (or, equivalently, $\overline{\boldsymbol{w}}_{0}, \overline{\boldsymbol{w}}_{1, s}$, and $\overline{\boldsymbol{w}}_{2, s}$).

