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We begin by presenting two lemmas that are useful in our proof of Theorem 1. Fix any

(α,E,Es) ∈ (0.5, 1) × R2. Let wα,E,Es denote the portfolio with minimum SCVaR at the 100α%

confidence level among all portfolios with an expected return of E and a stressed expected return

of Es.

Lemma 1. For any (α,E,Es) ∈ (0.5, 1)× R2, wα,E,Es solves:

min
w∈RN

1

2
w ′Σsw (8)

w ′1 = 1 (9)

w ′µ = E (10)

w ′µs = Es. (11)

Proof. Fix any (α,E,Es) ∈ (0.5, 1) × R2. Suppose by way of a contradiction that wα,E,Es does

not solve minimization problem (8) subject to constraints (9)—(11). Then, there is a portfolio w∗

with:

σ2s[rw∗ ] < σ2s[rwα,E,Es ], (12)

E[rw∗ ] = E, (13)

Es[rw∗ ] = Es. (14)

Using Eqs. (4), (12), and (14), we have:

Cs,α[rw∗ ] < Cs,α[rwα,E,Es ]. (15)

Eqs. (13)—(15) contradict the fact that wα,E,Es has minimum SCVaR at the 100α% confidence

level among all portfolios with an expected return of E and a stressed expected return of Es.

Fix any (E,Es) ∈ R2. Let wE,Es denote the portfolio that solves minimization problem (8)

subject to constraints (9)—(11).
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Lemma 2. For any (E,Es) ∈ R2, we have:

σ2s[rwE,Es ] = hs +
(Es[rwE,Es ]− is)2

gs
, (16)

where gs is defined in Section 2, hs ≡ csE2−2asE+bs
bscs−a2s

, and is ≡ bsds−asfs+(csfs−asds)E
bscs−a2s

.42 Also,

gs ∈ R++ and hs ∈ R++.

Proof. Fix any (E,Es) ∈ R2. First, we show that Eq. (16) holds. A first-order condition for

wE,Es to solve minimization problem (8) subject to constraints (9)—(11) is:

ΣswE,Es − λ11−λ2µ−λ3µs = 0, (17)

where λ1, λ2, and λ3 are multipliers associated with such constraints. Since rank(Σs) = N , Eq.

(17) implies that:

wE,Es = λ1Σ
−1
s 1+λ2Σ

−1
s µ+λ3Σ

−1
s µs. (18)

Premultiplying Eq. (18) by 1′ and using the definitions of as, cs, and ds as well as Eq. (9), we

have:

λ1cs+λ2as+λ3ds = 1. (19)

Similarly, premultiplying Eq. (18) by µ′ and using the definitions of as, bs, and fs as well as Eq.

(10), we have:

λ1as+λ2bs+λ3fs = E. (20)

Also, premultiplying Eq. (18) by µ′s and using the definitions of ds, es, and fs as well as Eq. (11),

we have:

λ1ds+λ2fs+λ3es = Es. (21)

Using Eqs. (19)—(21) and elementary algebra, we obtain:

λ1 =

(
bses − f2s

)
+ (dsfs − ases)E + (asfs − bsds)Es

2asdsfs − bsd2s − csf2s + (bscs − a2s) es
, (22)

λ2 =
(dsfs − ases) +

(
cses − d2s

)
E + (asds − csfs)Es

2asdsfs − bsd2s − csf2s + (bscs − a2s) es
, (23)

λ3 =
(asfs − bsds) + (asds − csfs)E +

(
bscs − a2s

)
Es

2asdsfs − bsd2s − csf2s + (bscs − a2s) es
. (24)

42 While hs depends on E, we write ‘hs’instead of ‘hs,E’for brevity. A similar remark applies to is.
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It follows from Eq. (18) that:

σ2s[rwE,Es ] =
(
λ1Σ

−1
s 1+λ2Σ

−1
s µ+λ3Σ

−1
s µs

)′
(λ11+λ2µ+λ3µs) . (25)

Using Eq. (25) as well as the definitions of as, bs, cs, ds, es, and fs, we obtain:

σ2s[rwE,Es ] = λ21cs + λ22bs + λ23es + 2λ1λ2as + 2λ1λ3ds + 2λ2λ3fs. (26)

Eqs. (22)—(24) and (26) along with elementary algebra imply that:

σ2s[rwE,Es ] =
csE

2 − 2asE + bs
bscs − a2s

+

[
Es − bsds−asfs+(csfs−asds)E

bscs−a2s

]2
2asdsfs−bsd2s−csf2s

bscs−a2s
+ es

. (27)

Eq. (16) follows from the definitions of gs, hs, and is along with Eq. (27).

Second, we show that gs > 0. Let Θ2≡ Ψ′2Σ
−1
s Ψ2 and Θ3≡ Ψ′3Σ

−1
s Ψ3 where Ψ2 ≡ [1 µ]

and Ψ3 ≡ [1 µ µs]. Observe that det(Θ2) = bscs − a2s and det(Θ3) = 2asdsfs − bsd2s − csf2s +(
bscs − a2s

)
es, where det(·) denotes determinant. Noting that gs = det(Θ3)

det(Θ2)
, it suffi ces to show that

det(Θ2) > 0 and det(Θ3) > 0. The fact that Σs is positive definite implies that Σ−1s is also

positive definite. Since rank(Ψ2) = 2 and Σ−1s is positive definite, Θ2 is also positive definite.

Hence, det(Θ2) > 0. Similarly, since rank(Ψ3) = 3 and Σ−1s is positive definite, Θ3 is also positive

definite. Hence, det(Θ3) > 0.

Third, we show that hs > 0. It suffi ces to show that the minimum value of hs is positive. Note

that ∂hs
∂E = 2(csE−as)

bscs−a2s
. Since ∂2hs

∂E2 = 2cs
bscs−a2s

, cs > 0, and bscs − a2s > 0, we have ∂2hs
∂E2 > 0. Hence, the

minimum value of hs occurs when ∂hs
∂E = 0 or E = as

cs
. It follows that the minimum value of hs is

1
cs
. Since cs > 0, we have 1

cs
> 0.

Next, we provide proofs of Theorem 1 and Corollary 1.

Proof of Theorem 1. Fix any expected return E ∈ R. First, suppose that α ≤ αs. Note that:

0 < yα ≤
√
gs. (28)

Online Appendix - 3



In order to prove that no portfolio is on the M-SCVaR frontier, it suffi ces to show that
∂Cs,α[rwE,Es ]

∂Es[rwE,Es ]
<

0. Using Eqs. (4) and (16), we obtain:

∂Cs,α[rwE,Es ]

∂Es[rwE,Es ]
= yα

Es[rwE,Es ]−is
gs√

hs +
(Es[rwE,Es ]−is)

2

gs

− 1. (29)

Since hs > 0, Eqs. (28) and (29) imply that
∂Cs,α[rwE,Es ]

∂Es[rwE,Es ]
< 0. This completes the first part of our

proof.

Second, suppose that α > αs. Note that:

yα >
√
gs. (30)

Using Lemmas 1 and 2 along with Eq. (29), a first-order condition for E∗∗s to solve min
Es∈R

Cs,α[rwα,E,Es ]

is:

yα

E∗∗
s −is
gs√

hs + (E∗∗
s −is)2
gs

− 1 = 0. (31)

It follows from Eq. (30) and elementary algebra that:

E∗∗s = is +

√
hs

y2α − gs
gs. (32)

Using Eq. (29) and elementary algebra, we have:

∂2Cs,α[rwE,Es ]

∂(Es[rwE,Es ])
2

=

yαhs
gs[

hs +
(Es[rwE,Es ]−is)

2

gs

]3/2 . (33)

Since yα > 0, hs > 0, and gs > 0, Eq. (33) implies that
∂2Cs,α[rwE,Es ]

∂(Es[rwE,Es ])
2 > 0. Hence, E∗∗s solves min

Es∈R

Cs,α[rwα,E,Es ]. Using Eqs. (22)—(24) with Es = E∗∗s and elementary algebra, we have:

λ1 =
1

bscs − a2s

[
(bs − asE) + (asfs − bsds)

√
hs

y2α − gs

]
, (34)

λ2 =
1

bscs − a2s

[
(csE − as) + (asds − csfs)

√
hs

y2α − gs

]
, (35)

λ3 =

√
hs

y2α − gs
. (36)

Let:

θ0,α,E ≡ csλ1, (37)

θ1,α,E ≡ asλ2. (38)
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Using Eqs. (34)—(38), we obtain:

1− θ0,α,E − θ1,α,E = dsλ3. (39)

Eq. (5) follows from Eqs. (18) and (34)—(39). This completes the second part of our proof.

Proof of Corollary 1. Fix any expected return E ∈ R. Since hs > 0, we have:√
hs

y2α − gs
→ 0 as α→ 1. (40)

Let θ0,E ≡
(
bs−asE
bscs−a2s

)
cs and θ1,E ≡

(
csE−as
bscs−a2s

)
as. Eqs. (34), (37), and (40) imply that θ0,α,E → θ0,E

as α→ 1. Similarly, Eqs. (35), (38), and (40) imply that θ1,α,E → θ1,E as α→ 1. Also, Eqs. (36),

(39), and (40) imply that 1− θ0,α,E − θ1,α,E → 0 as α→ 1.

We now present two lemmas that are useful in our proof of Theorem 2. Fix any (α,E,Es) ∈

(0.5, 1) × R2. Let wα,E,Es denote the portfolio with minimum SCVaR at the 100α% confidence

level among all portfolios with an expected return of E and a stressed expected return of Es.

Lemma 3. For any (α,E,Es) ∈ (0.5, 1)× R2, wα,E,Es solves:

min
w∈RN

1

2
w ′Σsw (41)

w ′ (µ− 1rf ) = E − rf (42)

w ′ (µs−1rf,s) = Es − rf,s. (43)

Proof. Fix any (α,E,Es) ∈ (0.5, 1) × R2. Suppose by way of a contradiction that wα,E,Es does

not solve minimization problem (41) subject to constraints (42) and (43). Then, there is a portfolio

w∗ with:

σ2s[rw∗ ] < σ2s[rwα,E,Es ], (44)

E[rw∗ ] = E, (45)

Es[rw∗ ] = Es. (46)
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Using Eqs. (4), (44), and (46), we have:

Cs,α[rw∗ ] < Cs,α[rwα,E,Es ]. (47)

Eqs. (45)—(47) contradict the fact that wα,E,Es has minimum SCVaR at the 100α% confidence

level among all portfolios with an expected return of E and a stressed expected return of Es.

Fix any (E,Es) ∈ R2. Let wE,Es denote the portfolio that solves minimization problem (41)

subject to constraints (42) and (43).

Lemma 4. For any (E,Es) ∈ R2, we have:

σ2s[rwE,Es ] = hs +

(
Es[rwE,Es ]− is

)2
gs

, (48)

where gs is defined in Section 3, hs ≡ 1
js

(E − rf )2, and is ≡ rf,s + ks
js

(E − rf ).43 Also, gs ∈ R++

and hs ∈ R+.

Proof. Fix any (E,Es) ∈ R2. First, we show that Eq. (48) holds. A first-order condition for

wE,Es to solve minimization problem (41) subject to constraints (42) and (43) is:

ΣswE,Es − λ4 (µ− 1rf )−λ5 (µs−1rf,s) = 0, (49)

where λ4 and λ5 are multipliers associated with such constraints. Since rank(Σs) = N , Eq. (49)

implies that:

wE,Es = λ4Σ
−1
s (µ− 1rf ) +λ5Σ

−1
s (µs−1rf,s) . (50)

Premultiplying Eq. (50) by (µ− 1rf )′ and using the definitions of js and ks as well as Eq. (42),

we have:

λ4js+λ5ks = E − rf . (51)

Similarly, premultiplying Eq. (50) by (µs−1rf,s)
′ and using the definitions of ks and ls as well as

Eq. (43), we have:

λ4ks+λ5ls = Es − rf,s. (52)

43 While hs depends on E, we write ‘hs’instead of ‘hs,E’for brevity. A similar remark applies to is.
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Using Eqs. (51) and (52) along with elementary algebra, we obtain:

λ4 =
ls (E − rf )− ks (Es − rf,s)

jsls − k2s
, (53)

λ5 =
js (Es − rf,s)− ks (E − rf )

jsls − k2s
. (54)

It follows from Eq. (50) that:

σ2s[rwE,Es ] =
[
λ4Σ

−1
s (µ− 1rf ) +λ5Σ

−1
s (µs−1rf,s)

]′
[λ4 (µ− 1rf ) +λ5 (µs−1rf,s)] . (55)

Using Eq. (55) as well as the definitions of js, ks, and ls, we obtain:

σ2s[rwE,Es ] = λ24js + λ25ls + 2λ4λ5ks. (56)

Eqs. (53), (54), and (56) along with elementary algebra imply that:

σ2s[rwE,Es ] =
1

js
(E − rf )2 +

(
Es[rwE,Es ]−

[
rf,s + ks

js
(E − rf )

])2
ls − k2s/js

. (57)

Eq. (48) follows from the definitions of gs, hs, and is along with Eq. (57).

Second, we show that gs > 0. Let Θ2 ≡ Ψ
′
2Σ
−1
s Ψ2 where Ψ2 ≡ [µs−1rf,s µ− 1rf ]. Observe

that det(Θ2) = lsjs−k2s . Noting that gs = det(Θ2)
js

, it suffi ces to show that det(Θ2) > 0 and js > 0.

Since rank([1 µ µs])= 3, we have rank(Ψ2) = 2. Since rank(Ψ2) = 2 and Σ−1s is positive defi-

nite, Θ2 is also positive definite. Hence, det(Θ2) > 0. Observe that js = (µ− 1rf )′Σ−1s (µ− 1rf ).

Noting that rank([1 µ])= 2, we have µ− 1rf 6= 0. SinceΣ−1s is positive definite and µ− 1rf 6= 0,

we have js > 0.

Third, we show that hs ≥ 0. Since hs = 1
js

(E − rf )2 and js > 0, we have hs ≥ 0.

Next, we provide proofs of Theorem 2 and Corollary 2.

Proof of Theorem 2. Fix any expected return E ∈ R. First, suppose that α < αs. Note that:

0 < yα <
√
gs. (58)
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In order to prove that no portfolio is on the M-SCVaR frontier at the 100α% confidence level, it

suffi ces to show that
∂Cs,α[rwE,Es ]

∂Es[rwE,Es ]
< 0. Using Eqs. (4) and (48), we obtain:

∂Cs,α[rwE,Es ]

∂Es[rwE,Es ]
= yα

Es[rwE,Es ]−is
gs√

hs +
(Es[rwE,Es ]−is)

2

gs

− 1. (59)

Since hs ≥ 0, Eqs. (58) and (59) imply that
∂Cs,α[rwE,Es ]

∂Es[rwE,Es ]
< 0. This completes the first part of our

proof.

Second, suppose that α = αs and E 6= rf . Note that:

yα =
√
gs. (60)

and:

hs > 0. (61)

In order to prove that no portfolio is on the M-SCVaR frontier at the 100α% confidence level, it

suffi ces to show that
∂Cs,α[rwE,Es ]

∂Es[rwE,Es ]
< 0. Eqs. (59)—(61) imply that

∂Cs,α[rwE,Es ]

∂Es[rwE,Es ]
< 0. This completes

the second part of our proof.

Third, suppose that α = αs and E = rf . Note that Eq. (60) holds and:

hs = 0. (62)

Using Eqs. (48), (60), and (62), we have:

σs[rwE,Es ] =


Es[rwE,Es ]−rf,s√

gs
⇐ Es[rwE,Es ] > rf,s

−Es[rwE,Es ]−rf,s√
gs

⇐ Es[rwE,Es ] < rf,s

. (63)

It follows from Eqs. (4), (60), and (63) that:

∂Cs,α[rwE,Es ]

∂Es[rwE,Es ]
=


0 ⇐ Es[rwE,Es ] > rf,s

−2 ⇐ Es[rwE,Es ] < rf,s

. (64)

Lemmas 3 and 4 along with Eq. (64) imply that for any Es ≥ rf,s portfolio wE,Es is on the M-

SCVaR frontier at the 100α% confidence level. Note that wE,Es = w0 if E = rf and Es = rf,s.

This completes the third part of our proof.
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Fourth, suppose that α > αs. Note that:

yα >
√
gs. (65)

Assume that E 6= rf . Then, Eq. (61) holds. Using Lemmas 3 and 4 along with Eq. (59), a

first-order condition for E
∗∗
s to solve min

Es∈R
Cs,α[rwE,Es ] is:

yα

E
∗∗
s −is
gs√

hs + (E
∗∗
s −is)2
gs

− 1 = 0. (66)

It follows from Eq. (66) and elementary algebra that:

E∗∗s = is +

√
hs

y2α − gs
gs. (67)

Using Eq. (59) and elementary algebra, we have:

∂2Cs,α[rwE,Es ]

∂(Es[rwE,Es ])
2

=

yαhs
gs[

hs +
(Es[rwE,Es ]−is)

2

gs

]3/2 . (68)

Since yα > 0, gs > 0, and hs > 0, Eq. (68) implies that
∂2Cs,α[rwE,Es ]

∂(Es[rwE,Es ])
2 > 0. Hence, E

∗∗
s solves

min
Es∈R

Cs,α[rwE,Es ]. Using Eqs. (53) and (54) with Es = E
∗∗
s , the definitions of gs, hs, and is, and

elementary algebra, we have:

λ4 =
1

js

(E − rf )− ks

√
1
js

(E − rf )2

y2α − gs

 , (69)

λ5 =

√
1
js

(E − rf )2

y2α − gs
. (70)

Let:

θ0,α,E ≡ 1− (as − csrf )λ4 − (ds − csrf,s)λ5, (71)

θ1,α,E ≡ (as − csrf )λ4. (72)

Using Eqs. (69)—(72), we obtain:

1− θ0,α,E − θ1,α,E = (ds − csrf,s)λ5. (73)
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Eq. (7) follows from Eqs. (50) and (69)—(73).44

Assume that E = rf . Then, Eq. (63) holds. Using Eqs. (63) and (65), we have
∂Cs,α[rwE,Es ]

∂Es[rwE,Es ]
< 0

if Es < rf,s and
∂Cs,α[rwE,Es ]

∂Es[rwE,Es ]
> 0 if Es > rf,s. Hence, E

∗∗
s = rf,s solves min

Es∈R
Cs,α[rwE,Es ]. It follows

that Eq. (7) holds with θ0,α,E = 1 and θ1,α,E = 0. This completes the fourth part of our proof.

Proof of Corollary 2. Fix any expected return E ∈ R. Let θ0,E ≡ 1− 1
js

(as − csrf ) (E − rf ) and

θ1,E ≡ 1
js

(as − csrf ) (E − rf ). First, suppose that E = rf . It follows from the proof of Theorem

2 that θ0,α,E = 1, θ1,α,E = 0, and 1 − θ0,α,E − θ1,α,E = 0. The desired claims follow from the fact

that θ0,E = 1 and θ1,E ≡ 0.

Second, suppose that E 6= rf . Note that:√
1
js

(E − rf )2

y2α − gs
→ 0 as α→ 1. (74)

Eqs. (69), (70), and (74) imply that θ0,α,E → θ0,E as α → 1. Similarly, Eqs. (69), (72), and (74)

imply that θ1,α,E → θ1,E as α→ 1. Also, Eqs. (70), (73), and (74) imply that 1−θ0,α,E−θ1,α,E → 0

as α→ 1.

44 If α > αs, an alternative characterization of the composition of portfolios on the M-SCVaR frontier at the 100α% confidence
level is as follows. Suppose that E < rf . Then, wα,E = θ0,α,Ew0 + (1 − θ0,α,E)w3,s where w3,s ≡ ψw1,s + (1 − ψ)w2,s,

ψ ≡ (1+ksms)(as−csrf )/js
(1+ksms)(as−csrf )/js−ms(ds−csrf,s)

, and ms ≡
√

1/js
y2α−gs

. Hence, portfolios on the M-SCVaR frontier at the 100α%

confidence level with expected returns smaller than rf exhibit two-fund separation with the two funds being w0 and w3,s.
Similarly, suppose that E ≥ rf . Then, wα,E = θ0,α,Ew0 + (1 − θ0,α,E)w4,s where w4,s ≡ ϕw1,s + (1 − ϕ)w2,s, and

ϕ ≡ (1−ksms)(as−csrf )/js
(1−ksms)(as−csrf )/js+ms(ds−csrf,s)

. Hence, portfolios on the M-SCVaR frontier at the 100α% confidence level with

expected returns equal to or larger than rf exhibit two-fund separation with the two funds being w0 and w4,s. Since w3,s
generally differs from w4,s, portfolios on the M-SCVaR frontier at the 100α% confidence level with all expected returns exhibit
three-fund separation with the three funds being w0, w3,s, and w4,s (or, equivalently, w0, w1,s, and w2,s).
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