
Online appendix A: proofs

The following three lemmas are useful in the proofs of our theoretical results.

Lemma 1. If α < αε, then the portfolio with minimum estimated VaR at confidence level 1− α,

denoted by wα, has an estimated VaR at this confidence level of V ε
1−α ≡ −Hε

α.

Proof. Suppose that α < αε. Using Eq. (4), portfolio wα is on the estimated MV frontier. It

follows from Eqs. (4) and (8) that Eε[rwα ] solves:

min
E∈R

zα

√
1/Cε +

(E −Aε/Cε)2
Dε/Cε

− E. (33)

A first-order condition for Eε[rwα ] to solve problem (33) is:

zα (Eε[rwα ]−Aε/Cε) / (Dε/Cε)√
1/Cε + (Eε[rwα ]−Aε/Cε)2 / (Dε/Cε)

− 1 = 0. (34)

It follows from Eq. (34) that:

Eε[rwα ] =

√
(Dε)2/ (Cε)3

z2α −Dε/Cε
+Aε/Cε. (35)

Using Eqs. (8) and (35), we have:

σε[rwα ] =

√
z2α/C

ε

z2α −Dε/Cε
. (36)

Eqs. (4), (10), (35), and (36) imply that V ε[1− α, rwα ] =

√
z2α−Dε/Cε

Cε −Aε/C = −Hε
α.

Lemma 2. Fix any account m ∈ {1, ...,M}. If αm < αε and Hm ≤ Hε
αm , then the optimal portfolio

within account m, w ε
m, is on the estimated MV frontier. Furthermore, we have E

ε[rwεm ] > Aε/Cε

and V ε[1− αm, rwεm ] = −Hm.

Proof. Fix any account m ∈ {1, ...,M}. Suppose that αm < αε and Hm ≤ Hε
αm . First, we show

that portfolio w ε
m is on the estimated MV frontier. Assume by way of a contradiction that it is

not. Then, there exists a portfolio w with Eε[rw ] = Eε[rwεm ] and σε[rw ] < σε[rwεm ]. Let w∗ ≡

ζw ε
E1

+ (1− ζ)w where ζ > 0 is arbitrarily small and E1 > Eε[rw ]. Note that Eε[rw∗ ] > Eε[rwεm ]

and σε[rw∗ ] < σε[rwεm ]. Hence, it follows from Eq. (4), that V ε[1 − αm, rw∗ ] < V ε[1 − αm, rwεm ].

Inequalities Eε[rw∗ ] > Eε[rwεm ] and V ε[1−αm, rw∗ ] < V ε[1−αm, rwεm ] contradict the fact that w ε
m

is the optimal portfolio within account m. This completes the first part of our proof.

Second, we show that Eε[rwεm ] > Aε/Cε. Letting E ≡ Eε[rwεm ], Eqs. (4) and (8) imply that:

V ε[1− αm, rwεE ] = zαm

√
1/Cε +

(
Eε[rwεE ]−Aε/Cε

)2
/ (Dε/Cε)− Eε[rwεE ]. (37)
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It follows from Eq. (37) that:

∂V ε[1− αm, rwεE ]

∂Eε[rwεE ]
=

zαm
(
Eε[rwεE ]−Aε/Cε

)
/ (Dε/Cε)√

1/Cε +
(
Eε[rwεE ]−Aε/Cε

)2
/ (Dε/Cε)

− 1. (38)

Since zαm > 0, Eq. (38) implies that if Eε[rwεm ] ≤ Aε/Cε, then ∂V ε[1 − αm, rwεE ]/∂Eε[rwεE ] < 0.

Hence, we have Eε[rwεm ] > Aε/Cε. This completes the second part of our proof.

Third, we show that V ε[1 − αm, rwεm ] = −Hm. Eq. (5) implies that V ε[1 − αm, rwεm ] ≤ −Hm.

Assume by way of a contradiction that V ε[1−αm, rwεm ] < −Hm. Let w∗∗ ≡ δw ε
E2

+(1−δ)w ε
m where

δ > 0 is arbitrarily small and E2 > Eε[rwεm ]. Note that Eε[rw∗∗ ] > Eε[rwεm ] and V ε[1−αm, rw∗∗ ] <

−Hm, which contradict the fact that w ε
m is the optimal portfolio within account m. This completes

the third part of our proof.

Lemma 3. Fix any γ > 0 and an objective function f : R× R+→ R defined by:

f(Eε[rw ], σε[rw ]) = Eε[rw ]− γ

2
(σε[rw ])2 . (39)

Letting Eγ,f denote the estimated expected return of the optimal portfolio associated with γ and f ,

we have Dε/Cε

Eγ,f−Aε/Cε = γ.

Proof of Lemma 3. Fix any γ > 0 and an objective function f : R× R+ → R defined by Eq.

(39). Note that the corresponding optimal portfolio is on the estimated MV frontier. Using Eqs.

(8) and (39), Eγ,f solves:

max
E∈R

E − γ

2

[
1/Cε +

(E −Aε/Cε)2
Dε/Cε

]
. (40)

A first-order condition for Eγ,f to solve (40) is 1− γEγ,f−A
ε/Cε

Dε/Cε = 0. Hence, Dε/Cε

Eγ,f−Aε/Cε = γ.

Proof of Theorem 1. Fix any account m ∈ {1, ...,M}. First, we show (i). Suppose that αm ≥ αε.

Using the definition of zαm and (9), we have:

0 < zαm ≤
√
Dε/Cε. (41)

Fix any level of estimated expected return E ∈ R. Note that:(
Eε[rwεE ]−Aε/Cε

)
/ (Dε/Cε)√

1/Cε +
(
Eε[rwεE ]−Aε/Cε

)2
/ (Dε/Cε)

<
1√

Dε/Cε
. (42)

Using Eqs. (38), (41), and (42), we have
∂V ε[1−αm,rwε

E
]

∂Eε[rwε
E
] < 0. It follows that the optimal portfolio

within account m does not exist.

Suppose now that αm < αε and Hm > Hε
αm . Note that −Hm < −Hε

αm = V ε
1−αm . Hence, there

exists no portfolio w that meets constraint (5). Therefore, the optimal portfolio within account m

does not exist. This completes our proof of part (i).
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Second, we show part (ii). Suppose that αm < αε and Hm ≤ Hε
αm . Lemma 2 and Eq. (8) imply

that:

Eε[rwεm ] = Aε/Cε +

√
(Dε/Cε)

[(
σε[rwεm ]

)2 − 1/Cε
]
. (43)

Using Eqs. (4) and (43) along with Lemma 2, we have:

zαmσ
ε[rwεm ]−Aε/Cε −

√
(Dε/Cε)

[(
σε[rwεm ]

)2 − 1/Cε
]

= −Hm. (44)

It follows from Eq. (44) that:

K1

(
σε[rwεm ]

)2
+K2σ

ε[rwεm ] +K3 = 0, (45)

where K1 ≡ z2αm − Dε/Cε, K2 ≡ −2zαm (Aε/Cε −Hm), and K3 ≡ (Aε/Cε −Hm)2 + Dε/ (Cε)2.

Using Eq. (45), we have:

σε[rwεm ] =

zαm (Aε/Cε −Hm)±
√

(Dε/Cε)
[
(Aε/Cε −Hm)2 −

(
z2αm −Dε/Cε

)
/Cε

]
z2αm −Dε/Cε

. (46)

It follows from Eq. (10) that Hε
αm < Aε/Cε. Noting that Hm ≤ Hε

αm < Aε/Cε, we have Aε/Cε −

Hm > 0. Using the fact that αm < αε and Eq. (9), we obtain z2αm−Dε/Cε > 0. Since Aε/Cε−Hm >

0, z2αm −Dε/Cε > 0, and w ε
m solves maximization problem (1) subject to constraints (2) and (5),

Eqs. (43) and (46) imply that:

σε[rwεm ] =

zαm (Aε/Cε −Hm) +

√
(Dε/Cε)

[
(Aε/Cε −Hm)2 −

(
z2αm −Dε/Cε

)
/Cε

]
z2αm −Dε/Cε

. (47)

Eqs. (11)—(13) follow from Lemma 2 along with Eqs. (7), (43), and (47). This completes our proof

of part (ii).�

Proof of Corollary 1. Fix any account m ∈ {1, ...,M} with αm < αε and Hm ≤ Hε
αm . Eq. (16)

follows from Theorem 1 and Lemma 3.

Proof of Theorem 2. Suppose that αm < αε and Hm ≤ Hε
αm for any account m ∈ {1, ...,M}.

Eqs. (18) and (19) follow from Theorem 1. Using Eqs. (7) and (18), the aggregate portfolio is on

the estimated MV frontier. Hence, Eq. (20) follows from Eqs. (8) and (19).

Proof of Corollary 2. Suppose that αm < αε and Hm ≤ Hε
αm for any m ∈ {1, ...,M}. Eq. (23)

follows from Theorem 2 and Lemma 3.

Proof of Theorem 3. Fix any account m ∈ {1, ...,M} and any constant γim > 0. Suppose that

α̃m and H̃m satisfy, respectively, Eqs. (25) and (26). Noting that γim > 0, Eqs. (9) and (24) imply

that αε,γ
i
m < αε. Since αε,γ

i
m < αε and α̃m ≤ αε,γ

i
m , we have α̃m < αε.
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We claim that H̃m ≤ Hε
α̃m
. In order to prove this claim, it suffi ces to show that:

H̃m −Hε
α̃m = 0 if zα̃m =

√
[Dε + (γim)2]/Cε (48)

and:
∂(H̃m −Hε

α̃m
)

∂zα̃m

∣∣∣∣∣
zα̃m=z

≤ 0 for any z ≥
√

[Dε + (γim)2]/Cε. (49)

Assume that zα̃m =

√
[Dε + (γim)2]/Cε. It follows from Eq. (26) that H̃m = Aε

Cε −
γim
Cε . Using Eq.

(10) with α = α̃m, we have Hε
α̃m

= Aε

Cε −
γim
Cε . Hence, Eq. (48) holds. Eqs. (10) and (26) imply that:

∂(H̃m −Hε
α̃m

)

∂zα̃m

∣∣∣∣∣
zα̃m=z

= −

√√√√ 1

Cε

[
1 +

Dε

(γim)2

]
+

√
1

Cε

(
z2

z2 −Dε/Cε

)
. (50)

Using Eq. (50), we have:

∂(H̃m −Hε
α̃m

)

∂zα̃m

∣∣∣∣∣
zα̃m=

√
[Dε+(γim)

2]/Cε

= 0. (51)

Note that:

∂

√
1
Cε

(
z2

z2−Dε/Cε

)
∂z

≤ 0. (52)

Eqs. (50)-(52) imply that Eq. (49) holds.

Since α̃m < αε and H̃m ≤ Hε
α̃m
, part (ii) of Theorem 1 is applicable. Using α̃m and H̃m instead

of, respectively, αm and Hm in Eq. (13), and Eq. (26), the standard deviation of portfolio w̃ ε
m is:

σ̃εm =

− zα̃mD
ε

γimC
ε + z2α̃m

√
1
Cε + Dε

(γim)
2Cε

+

√
Dε

Cε

[(
Dε

γimC
ε − zα̃m

√
1
Cε + Dε

(γim)
2Cε

)2
−

z2
α̃m
−Dε/Cε

Cε

]
z2
α̃m
− Dε

Cε

. (53)

It follows from Eq. (53) and elementary algebra that:

σ̃εm =
− zα̃mD

ε

γimC
ε + z2α̃m

√
1
Cε + Dε

(γim)
2Cε

+ Dε

Cε

√[
zα̃m
γim
−
√

1
Cε + Dε

(γim)
2Cε

]2
z2
α̃m
− Dε

Cε

. (54)

Noting that α̃m ≤ αε,γ
i
m , we have zα̃m ≥

√
[Dε + (γim)2]/Cε. Since zα̃m ≥

√
[Dε + (γim)2]/Cε and

γim > 0, we obtain zα̃m
γim
≥
√

1
Cε + Dε

(γim)
2Cε
. Hence, it follows from Eq. (54) that Eq. (29) holds.

Proof of Theorem 4. For any account m ∈ {1, ...,M}, suppose that α̃m and H̃m satisfy, respec-

tively, Eqs. (25) and (26) for some constant γim > 0. Eq. (30) follows from Eq. (27). Eqs. (7) and

(30) imply that the aggregate portfolio is on the estimated MV frontier. Using Eq. (28) and the

fact that
∑M

m=1 ym = 1, the estimated expected return of the aggregate portfolio is:

Ẽεa =
Aε

Cε
+

(
M∑
m=1

ym/γ
i
m

)
Dε

Cε
. (55)

Online appendix A - 4



Applying Lemma 3 with Eγ,f = Aε

Cε +
(∑M

m=1 ym/γ
i
m

)
Dε

Cε , the implied risk aversion coeffi cient of

the aggregate portfolio is γia =
(∑M

m=1 ym/γ
i
m

)−1
. Hence, Eq. (55) implies that Eq. (31) holds.

Since the aggregate portfolio is on the estimated MV frontier, Eq. (32) follows from Eqs. (8) and

(31).
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Online appendix B: out-of-sample performance of optimal portfolios within ac-

counts and aggregate portfolios when using larger risk aversion coeffi cients

In this section, we assess the robustness of our main results when using larger risk aversion

coeffi cients than those used in DMSS. Specifically, we consider risk aversion coeffi cients of 10, 5,

and 2 (instead of 4, 3, and 1) in determining the average CERs of optimal portfolios within accounts

1, 2, and 3, respectively. Moreover, we consider a risk aversion coeffi cient of 5 (instead of 2.4) in

determining the average CERs of aggregate portfolios.54

B1. Short selling allowed

Suppose that short selling is allowed. First, consider the use of simulated data. Panel A of Table

B1 shows the average CERs of optimal portfolios within accounts with fixed thresholds. Compared

to panel A of Table 2, average CERs are smaller, endogenous threshold returns are larger (see the

middle three rows), and endogenous threshold probabilities are smaller (see the last three rows).

Panel C of Table B1 shows the average CERs of optimal portfolios within accounts with variable

thresholds. Compared to panel C of Table 2, average CERs are smaller except with 60 draws and

exogenous implied risk aversion coeffi cients (see the first three rows), and endogenous implied risk

aversion coeffi cients are larger (see the last three rows). Importantly, average CERs with either

fixed thresholds (panel A of Table B1) or endogenous implied risk aversion coeffi cients (last three

rows of panel C) still exceed the average CERs of optimal portfolios in the MV model (first three

rows of panel C).55

Panels A and C of Table B2 report the average CERs of aggregate portfolios with, respectively,

fixed and variable thresholds. Compared to panels A and C of Table 3, average CERs are smaller

except for the case with 60 draws, exogenous implied risk aversion coeffi cients, and exogenous

fractions of wealth in the accounts (see the first row of panel C), whereas for any given account the

corresponding endogenous fraction of wealth might decrease, remain unchanged, or increase.

Second, consider the use of empirical data. Panels A and C of Table B3 present the average CERs

of optimal portfolios within accounts with, respectively, fixed and variable thresholds. Compared to

panels A and C of Table 4, average CERs are smaller except with exogenous implied risk aversion

coeffi cients (see the first three rows of panel C). However, as before, the extent to which average

CERs associated with the use of the DMSS model (in panel A of Table B3) exceed those associated

with the use of the MV model (in the first three rows of panel C of Table B3) is larger than such

54As noted earlier, in the absence of estimation risk, the risk aversion coeffi cient implied by the aggregate portfolio is
γa = 1/(

∑M
m=1 ym/γm). Recalling that (1) there are M = 3 accounts, (2) the exogenous fractions of wealth in the accounts

are given by (y1, y2, y3) = (0.6, 0.2, 0.2), and (3) average CERs of optimal portfolios within accounts are determined by using
risk aversion coeffi cients of (γ1, γ2, γ3) = (10, 5, 2), we have 1/(

∑M
m=1 ym/γm) = 1/ (0.6/10 + 0.2/5 + 0.2/2) = 5.

55 In assessing the statistical significance of the difference between the distributions of CERs for optimal portfolios within
accounts and those for optimal portfolios in the MV model, we utilize: (i) the two-sample Kolmogorov-Smirnov test and (ii)
the Wilcoxon rank sum test. We find that the difference is statistically significant (at the 1% level) in all cases.
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an extent with simulated data (compare panel A of Table B1 to the first three rows of panel C of

the same table).56

Panels A and C of Table B4 report the average CERs of aggregate portfolios with, respectively,

fixed and variable thresholds. Compared to panels A and C of Table 5, average CERs are smaller

with fixed thresholds and the majority of the cases with variable thresholds, whereas for any given

account the corresponding endogenous fraction of wealth might decrease, remain unchanged, or

increase.

B2. Short selling disallowed

Suppose that short selling is disallowed. First, consider the use of simulated data. Panels B

and D of Table B1 show the average CERs of optimal portfolios within accounts with, respectively,

fixed and variable thresholds. Compared to panels B and D of Table 2, average CERs are smaller.

Also, increases in average CERs arising from using the DMSS model with fixed thresholds instead

of the MV model (compare panel B and the first three rows of panel D of Table B1) are smaller

than those in the case where short selling is allowed (compare panel A and the first three rows of

panel C of Table B1). Panels B and D of Table B2 show the average CERs of aggregate portfolios

with, respectively, fixed and variable thresholds. Compared to panels B and D of Table 3, average

CERs are smaller.

Second, consider the use of empirical data. Panels B and D of Table B3 provide the average

CERs of optimal portfolios within accounts with, respectively, fixed and variable thresholds. Panels

B and D of Table B4 provide the average CERs of aggregate portfolios with, respectively, fixed and

variable thresholds. The results mainly differ from those reported for the simulated data in panels

B and D of Tables B1 and B2 in that average CERs are smaller.

B3. Summary

Our main results are robust to using larger risk aversion coeffi cients than those used in DMSS.

The use of the DMSS model reduces estimation risk relative to the use of the MV model with such

coeffi cients, particularly when short selling is allowed.

56When using the exogenous thresholds in the second and third rows of panel A of Table B3 and 60 months to find the
estimated optimization inputs, the average CERs of the optimal portfolios within accounts 2 and 3 are negative (−0.99% and
−1.78%). However, they still notably exceed the corresponding average CERs of the optimal portfolios in the MV model in
the second and third rows of panel C (−4.52% and −12.54%). Moreover, the average CERs of the optimal portfolios within
accounts 2 and 3 become positive when using either: (a) the exogenous threshold probabilities and endogenous threshold returns
in the fifth and sixth rows of panel A (0.92% and 1.35%); or (b) the endogenous threshold probabilities and exogenous threshold
returns in the eighth and ninth rows of such a panel (0.97% and 1.46%). Hence, there is still a wide range of thresholds for
which optimal portfolios in the DMSS model notably outperform optimal portfolios in the MV model with the risk aversion
coeffi cients used in this appendix.
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Table B1: Average CERs of optimal portfolios within accounts using simulated data

This table shows average CERs of optimal portfolios within accounts using simulated data. The number
of draws used to find the estimated optimization inputs is either 60 or 120. While panels A and B use
fixed threshold probabilities and returns, panels C and D use variable thresholds. Short selling is allowed
(disallowed) in panels A and C (B and D). In the first three rows of panels A and B, threshold probabilities
and returns are exogenous. In the next three rows, threshold probabilities are exogenous, whereas threshold
returns are endogenously set by maximizing average CERs. Similarly, in the last three rows, threshold returns
are exogenous, whereas threshold probabilities are endogenously set by maximizing average CERs. In the first
three rows of panels C and D, threshold probabilities and returns are set so that the risk aversion coefficients
implied by the optimal portfolios within accounts 1, 2, and 3 are exogenously given by, respectively, 10, 5,
and 2. In the last three rows, they are endogenously set by maximizing average CERs. In determining the
CERs for accounts 1, 2, and 3, all panels use risk aversion coefficients of, respectively, 10, 5, and 2 (except
for the first three rows of panels C and D, these coefficients generally differ from the implied risk aversion
coefficients).

Threshold Avg. Threshold Avg.
probability (%) return (%) CER (%) probability (%) return (%) CER (%)

Account Number of draws = 60 Number of draws = 120

Panel A: Fixed thresholds, short selling allowed

1 1.00 −5.00 0.78 1.00 −5.00 0.94
2 5.00 −8.00 0.67 5.00 −8.00 1.25
3 10.00 −10.00 1.56 10.00 −10.00 2.46

1 1.00 −3.94 0.81 1.00 −5.00 0.94
2 5.00 −4.06 1.12 5.00 −5.76 1.35
3 10.00 −6.45 1.87 10.00 −10.02 2.46

1 0.27 −5.00 0.81 0.99 −5.00 0.94
2 0.49 −8.00 1.13 1.91 −8.00 1.36
3 5.14 −10.00 1.91 9.84 −10.00 2.46

Panel B: Fixed thresholds, short selling disallowed

1 1.00 −5.00 0.58 1.00 −5.00 0.62
2 5.00 −8.00 0.64 5.00 −8.00 0.70
3 10.00 −10.00 1.00 10.00 −10.00 1.10

1 1.00 −4.05 0.62 1.00 −3.82 0.65
2 5.00 −3.61 0.76 5.00 −3.93 0.80
3 10.00 −5.49 1.01 10.00 −6.05 1.10

1 0.25 −5.00 0.62 0.16 −5.00 0.65
2 0.09 −8.00 0.76 0.16 −8.00 0.80
3 1.67 −10.00 1.02 2.35 −10.00 1.10

Implied risk Avg. Implied risk Avg.
aversion coefficient CER (%) aversion coefficient CER (%)

Account Number of draws = 60 Number of draws = 120
Panel C: Variable thresholds, short selling allowed

1 10.00 0.09 10.00 0.73
2 5.00 −0.33 5.00 0.94
3 2.00 −1.74 2.00 1.44

1 27.41 0.81 17.47 0.92
2 13.69 1.11 8.73 1.33
3 5.47 1.86 3.49 2.41

Panel D: Variable thresholds, short selling disallowed

1 10.00 0.54 10.00 0.61
2 5.00 0.72 5.00 0.76
3 2.00 0.99 2.00 1.06
1 23.82 0.62 17.09 0.64
2 9.77 0.73 7.56 0.77
3 0.53 1.00 0.21 1.10
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Table B3: Average CERs of optimal portfolios within accounts using empirical data

This table shows average CERs of optimal portfolios within accounts using empirical data. The number of
months in the periods used to find the estimated optimization inputs is either 60 or 120. While panels A and B
use fixed threshold probabilities and returns, panels C and D use variable thresholds. Short selling is allowed
(disallowed) in panels A and C (B and D). In the first three rows of panels A and B, threshold probabilities
and returns are exogenous. In the next three rows, threshold probabilities are exogenous, whereas threshold
returns are endogenously set by maximizing average CERs. Similarly, in the last three rows, threshold returns
are exogenous, whereas threshold probabilities are endogenously set by maximizing average CERs. In the first
three rows of panels C and D, threshold probabilities and returns are set so that the risk aversion coefficients
implied by the optimal portfolios within accounts 1, 2, and 3 are exogenously given by, respectively, 10, 5,
and 2. In the last three rows, they are endogenously set by maximizing average CERs. In determining the
CERs for accounts 1, 2, and 3, all panels use risk aversion coefficients of, respectively, 10, 5, and 2 (except
for the first three rows of panels C and D, these coefficients generally differ from the implied risk aversion
coefficients).

Threshold Avg. Threshold Avg.
probability (%) return (%) CER (%) probability (%) return (%) CER (%)

Account Number of months = 60 Number of months = 120

Panel A: Fixed thresholds, short selling allowed

1 1.00 −5.00 0.42 1.00 −5.00 0.72
2 5.00 −8.00 −0.99 5.00 −8.00 0.67
3 10.00 −10.00 −1.78 10.00 −10.00 1.77

1 1.00 −2.76 0.70 1.00 −3.83 0.77
2 5.00 −2.19 0.92 5.00 −4.16 1.10
3 10.00 −2.84 1.35 10.00 −7.11 1.96

1 0.02 −5.00 0.74 0.26 −5.00 0.82
2 0.01 −8.00 0.97 0.53 −8.00 1.18
3 0.92 −10.00 1.46 5.97 −10.00 2.13

Panel B: Fixed thresholds, short selling disallowed

1 1.00 −5.00 0.27 1.00 −5.00 0.45
2 5.00 −8.00 0.45 5.00 −8.00 0.53
3 10.00 −10.00 0.81 10.00 −10.00 0.92

1 1.00 −1.87 0.57 1.00 −3.28 0.55
2 5.00 −1.16 0.62 5.00 −2.42 0.65
3 10.00 −11.31 0.81 10.00 −6.12 0.92

1 0.96 −5.00 0.27 0.31 −5.00 0.51
2 0.76 −8.00 0.47 0.01 −8.00 0.64
3 9.85 −10.00 0.81 2.44 −10.00 0.92

Implied risk Avg. Implied risk Avg.
aversion coefficient CER (%) aversion coefficient CER (%)

Account Number of months = 60 Number of months = 120

Panel C: Variable thresholds, short selling allowed

1 10.00 −1.90 10.00 0.22
2 5.00 −4.52 5.00 −0.06
3 2.00 −12.54 2.00 −0.99

1 49.59 0.74 23.88 0.79
2 26.50 0.92 12.13 1.11
3 11.07 1.34 4.90 1.97

Panel D: Variable thresholds, short selling disallowed

1 10.00 0.21 10.00 0.43
2 5.00 0.38 5.00 0.54
3 2.00 0.60 2.00 0.86

1 91.01 0.56 34.26 0.54
2 78.29 0.61 17.88 0.59
3 0.00 0.82 0.00 1.06
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Online appendix C: out-of-sample performance of optimal portfolios within ac-

counts relative to that of estimated minimum-variance and equally-weighted

portfolios

In order to reduce estimation risk within the MV model, some researchers suggest the use of

either the estimated minimum-variance portfolio (see, e.g., Chan, Karceski, and Lakonishok (1999)

and Jagannathan and Ma (2003)) or the equally-weighted portfolio (see, e.g., DeMiguel, Garlappi,

and Uppal (2009)). While a full-scale examination of the out-of-sample performance of optimal

portfolios within accounts relative to that of estimated minimum-variance and equally-weighted

portfolios is beyond the scope of our paper, we next compare their out-of-sample performance in

our setting.

C1. Short selling allowed

Suppose that short selling is allowed. First, consider the use of simulated data. Panel A

of Table C1 reports average CERs of the estimated minimum-variance portfolio. Note that the

average CERs of optimal portfolios within accounts with fixed thresholds displayed in panel A of

Table 2 exceed those of the estimated minimum-variance portfolio.57 Similarly, the average CERs

of optimal portfolios within accounts with variable thresholds displayed in panel C of Table 2 also

exceed those of the estimated minimum-variance portfolio, except with exogenous thresholds and

60 draws.

Panel C of Table C1 reports the average CERs of the equally-weighted portfolio. By design,

this portfolio has the same CER in all simulations. Hence, its average CER does not depend on the

number of draws.58 It can be seen that the average CERs of optimal portfolios within accounts with

fixed thresholds as shown in panel A of Table 2 exceed those of the equally-weighted portfolio.59

Similarly, the average CERs of optimal portfolios within accounts with variable thresholds as shown

in panel C of Table 2 also exceed those of the equally-weighted portfolio, except with exogenous

thresholds and 60 draws.

Second, consider the use of empirical data. Panel A of Table C2 reports average CERs of the

estimated minimum-variance portfolio. Note that the average CERs of optimal portfolios within

accounts with fixed thresholds displayed in panel A of Table 4 exceed those of the estimated

minimum-variance portfolio with a single exception. This exception involves account 2 and the use

of 60 months to find the estimated optimization inputs (see the results below the column ‘Number
57 In assessing the statistical significance of the difference between the distributions of CERs for optimal portfolios within

accounts and the estimated minimum-variance portfolio, we utilize: (i) the two-sample Kolmogorov-Smirnov test and (ii) the
Wilcoxon rank sum test. We find that the difference is statistically significant (at the 1% level) in all cases.
58 However, it depends on the account since the CERs of different accounts are determined by using different risk aversion

coeffi cients as noted earlier.
59 Note that the CERs of the optimal portfolio within a given account depend on the simulation, whereas the equally-weighted

portfolio has the same CER in all simulations as noted earlier. Hence, the distribution of CERs for the former portfolio differs
(by design) from the distribution of CERs for the latter. Therefore, we do not conduct tests to assess the statistical significance
of the difference between such distributions.
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of months = 60’in the second row of Table 4A and panel A of Table C2). Also, comparing the first

three rows of Table 4C with panel A of Table C2, the average CERs of optimal portfolios within

accounts with variable exogenous thresholds are smaller than those of the estimated minimum-

variance portfolio. However, comparing the last three rows of Table 4C and panel A of Table C2,

the average CERs of optimal portfolios within accounts with variable endogenous thresholds are

larger than those of the estimated minimum-variance portfolio.

Panel C of Table C2 reports the average CERs of the equally-weighted portfolio. Using this

panel and Table 4A, the average CERs of optimal portfolios within accounts with fixed thresholds

exceed those the equally-weighted portfolio with a single exception. This exception involves account

2 and the use of 60 months to find the estimated optimization inputs; see the results below the

column ‘Number of months = 60’in the second row of Table 4A and panel C of Table C2. Also,

using the first three rows of Table 4C and panel C of Table C2, the average CERs of optimal

portfolios within accounts with variable exogenous thresholds are smaller than those of the equally-

weighted portfolio. However, using the last three rows of Table 4C and panel C of Table C2, the

average CERs of optimal portfolios within accounts with variable endogenous thresholds are larger

than those of the equally-weighted portfolio.

C2. Short selling disallowed

Suppose that short selling is disallowed. First, consider the use of simulated data. Compar-

ing the average CERs of optimal portfolios within accounts (in Tables 2B and 2D) and those of

estimated minimum-variance and equally-weighted portfolios (in panels B and C of Table C1, re-

spectively), the results differ from those presented when short selling is allowed in two respects.

First, in the case of variable exogenous thresholds and 60 draws, the average CERs of optimal

portfolios within accounts now exceed those of estimated minimum-variance and equally-weighted

portfolios; focusing on the results under the column ‘number of draws = 60,’compare the first three

rows of Table 2D to, respectively, panels B and C of Table C1. Second, in other cases, the extent to

which the average CERs of the former portfolios exceed those of the latter is smaller; for example,

focusing on the case of fixed thresholds and the estimated minimum-variance portfolio, compare

the differences between Table 2B and panel B of Table C1 to the differences between Table 2A and

panel A of Table C1.

Second, consider the use of empirical data. Comparing the average CERs of optimal portfolios

within accounts (in Tables 4B and 4D) and those of the estimated minimum-variance portfolio (in

panel B of Table C2), the results differ from those presented when short selling is allowed in that

there are fewer cases where the average CERs of the former portfolios are smaller than those of

the latter. In contrast, comparing the average CERs of optimal portfolios within accounts (again
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in Tables 4B and 4D) and those of the equally-weighted portfolio (in panel C of Table C2), the

results differ from those presented when short selling is allowed in that there are more cases where

the average CERs of the former portfolios are smaller than those of the latter.

C3. Summary

In our setting, we find that the out-of-sample performance of optimal portfolios within accounts

typically exceeds those of estimated minimum-variance and equally-weighted portfolios (with cer-

tain exceptions discussed earlier). However, a detailed analysis of the relative out-of-sample perfor-

mance of such portfolios in other settings (involving, e.g., different assets and/or sample periods)

is left for future research.
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Table C1: Average CERs of estimated minimum-variance and equally-weighted portfolios

using simulated data

This table reports average CERs of estimated minimum-variance and equally-weighted portfolios using simu-
lated data. The number of draws used to find the estimated optimization inputs is either 60 or 120. Panel A
considers the estimated minimum-variance portfolio when short selling is allowed. Panel B considers the es-
timated minimum-variance portfolio when short selling is disallowed. Panel C considers the equally-weighted
portfolio. By design, this portfolio has the same CER in all simulations. Hence, its average CER does not
depend on the number of draws.

Avg. CER (%)
Account Number of draws = 60 Number of draws = 120

Panel A: Estimated minimum-variance portfolio, short selling allowed

1 0.64 0.65
2 0.66 0.66
3 0.68 0.68

Panel B: Estimated minimum-variance portfolio, short selling disallowed

1 0.64 0.64
2 0.65 0.65
3 0.68 0.67

Panel C: Equally-weighted portfolio

1 0.77 0.77
2 0.84 0.84
3 0.98 0.98

Table C2: Average CERs of estimated minimum-variance and equally-weighted portfolios

using empirical data

This table reports average CERs of estimated minimum-variance and equally-weighted portfolios using em-
pirical data. The number of months used to find the estimated optimization inputs is either 60 or 120. Panel
A considers the estimated minimum-variance portfolio when short selling is allowed. Panel B considers the
estimated minimum-variance portfolio when short selling is disallowed. Panel C considers the equally-weighted
portfolio.

Avg. CER (%)
Account Number of months = 60 Number of months = 120

Panel A: Estimated minimum-variance portfolio, short selling allowed

1 0.64 0.55
2 0.65 0.55
3 0.68 0.57

Panel B: Estimated minimum-variance portfolio, short selling disallowed

1 0.62 0.56
2 0.62 0.57
3 0.64 0.58

Panel C: Equally-weighted portfolio

1 0.73 0.70
2 0.79 0.76
3 0.92 0.88
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Online appendix D: extension of results to the case of non-normality

Our results assume that asset returns have a multivariate normal distribution. However, we next

show that these results hold: (1) more generally when asset returns have a multivariate elliptical

distribution with finite first and second moments; and (2) at least as an approximation when the

multivariate distribution of asset returns is unknown, but has finite first and second moments.

D1. Elliptical distribution

It is well-known that the MV model is consistent with expected utility maximization when asset

returns have a multivariate elliptical distribution with finite first and second moments (see, e.g.,

Ingersoll (1987, Ch. 4, Appendix B)). Hence, suppose that asset returns have such a distribution.

For any portfolio w , its estimated VaR at confidence level 1− α is:

V ε,e[1− α, rw ] = zeασ[rw]− E[rw], (56)

where zeα denotes the quantile α of the corresponding univariate elliptical distribution standardized

to have zero mean and unit variance. As an illustration of a multivariate elliptical distribution,

consider a multivariate t-distribution with six degrees of freedom.60 For example, if α = 1%,

then ze0.01 = 2.57 (in comparison, z0.01 = 2.33 under normality). Replacing V ε[1 − α, rw ] with

V ε,e[1− α, rw ] throughout our paper, it can be seen that our results hold when asset returns have

a multivariate elliptical distribution with finite first and second moments.

D2. Unknown distribution

There is an extensive literature recognizing that the MV model is, at least as an approximation,

consistent with expected utility maximization when no distributional assumption on asset returns

is made (see, e.g., Markowitz (2000, pp. 52—70)). Hence, suppose that the multivariate distribution

of asset returns is unknown, but has finite first and second moments. Let xα denote the quantile α

of the corresponding univariate distribution with mean µx and standard deviation σx. O’Cinneide

(1990) notes that:

|xα − µx| ≤ σx max

{√
1− α
α

,

√
α

1− α

}
. (57)

Since we assume that α ∈ (0, 1/2), we have
√

1−α
α >

√
α
1−α . It follows from Eq. (57) that for any

portfolio w , we have:

V ε[1− α, rw ] ≤ zOα σε[rw ]− Eε[rw ], (58)

60 We also extend our results with simulated and empirical data to the case where asset returns have a multivariate t-
distribution with six degrees of freedom. The results are similar to those presented earlier when asset returns have a multivariate
normal distribution. Note that a t-distribution with six degrees of freedom has excess kurtosis of three, whereas the normal
distribution has excess kurtosis of zero. Hence, our use of the former distribution allows for considerable fat tails in the
distribution of asset returns.
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where zOα ≡
√

1−α
α . For example, if α = 1%, then zO0.01 =

√
1−0.01
0.01 = 9.95 (in comparison,

z0.01 = 2.33 under normality as noted earlier). Using Eq. (58), zOα σ
ε[rw ] − Eε[rw ] is an upper

bound to V ε[1 − α, rw ]. Replacing V ε[1 − α, rw ] with this upper bound throughout our paper,

it can be seen that our results also hold, at least as an approximation, when the multivariate

distribution of asset returns is unknown, but has finite first and second moments.

References
Ingersoll, J.E., 1987. Theory of Financial Decision Making, Savage, MD, Rowman & Littlefield
Publishers.

Markowitz, H.M., 2000. Mean-Variance Analysis in Portfolio Choice and Capital Markets. Wiley,
Hoboken, N.J.

O’Cinneide, C.A., 1990. The Mean Is within One Standard Deviation of any Median, The American
Statistician 44, 292—294.

Online appendix D - 2




