Appendix

Below we describe the derivation of a split population model for a standard parametric distribution and continuous-time duration data, and in doing so, we draw extensively on work by Schmidt and Witte (1989; see also Box-Steffensmeier and Zorn 2003). First, the density function is defined as \(f(t, \theta) \), where \(t \) is the duration of interest and \(\theta \) is a parameter vector to be estimated. The cumulative density is defined as \(F(t, \theta) = \Pr(T \leq t) \), where \(t > 0 \) and \(T \) represents the duration defined by the end of the observation period. The survival function can be written simply as \(S(t, \theta) = 1 - F(t, \theta) \). From this, we can define the hazard rate as:

\[
 h(t, \theta) = \frac{f(t, \theta)}{S(t, \theta)}
\]

The hazard rate is the conditional probability of the event of interest occurring at time \(t \) given that the event has not yet occurred.

The split population model for the duration \(t \) splits the sample into two groups: (1) a group that will eventually experience the event of interest and (2) a group that will never experience the event. Thus, define a latent variable \(Y_i \), where \(Y_i = 1 \) for those cases eventually experiencing the event of interest, and \(Y_i = 0 \) for those observations that will never experience the event. Define \(\Pr(Y_i = 1) = \delta_i \). The conditional density and distribution functions can now be defined as:

\[
 f(t \mid Y_i = 1) = g(t, \theta) \\
 F(t \mid Y_i = 1) = G(t, \theta)
\]

Note that both \(f(t \mid Y_i = 0) \) and \(F(t \mid Y_i = 1) \) are undefined since when \(Y_i = 0 \), the observation will never experience the event and the duration cannot be observed.

Next, define \(R_i \) as an observable indicator that an observation has experienced the event of interest, i.e., \(R_i = 1 \) when failure is observed, \(R_i = 0 \) otherwise. For the cases that experience the event of interest, \(R_i = 1 \), which implies that \(Y_i = 1 \). For these observations, the unconditional density is:

\[
 \Pr(Y_i = 1) \Pr(t_i \leq T_i \mid Y_i = 1) = \delta_i g(t_i, \theta)
\]

where \(T_i \) indicates censoring time. Next, we do not observe cases that experience the event of interest when \(R_i = 0 \), and this occurs for one of two reasons: (1) \(Y_i = 0 \), i.e., the observation will never fail or (2) \(t_i > T_i \), i.e., the observation is censored. For these cases, the unconditional density is:

\[
 \Pr(Y_i = 0) + \Pr(Y_i = 1) \Pr(t_i > T_i \mid Y_i = 1) = (1 - \delta_i) + \delta_i G(t_i, \theta)
\]

Combining these values for each of the two types of observation yields the following likelihood function:

\[
 L = \prod_{i=1}^{N} \delta_i g(t_i, \theta)^{R_i} [1 - \delta_i + \delta_i G(t_i, \theta)]^{(1 - R_i)}
\]
The log-likelihood is:

$$\ln L = \sum_{i=1}^{N} R_i \left[\ln \delta_i + \ln g(t_i, \theta) \right] + (1 - R_i) \ln \left[1 - \delta_i + 1 - g(t_i, \theta) \right]$$

The probability δ_i is typically modeled as a logit (which we do in this paper) and can include a set of covariates either identical or not identical to those in the duration model. Thus:

$$\delta_i = \frac{\exp(Z_i \gamma)}{1 + \exp(Z_i \gamma)}$$

When $\delta_i = 1$ for all observations, i.e., when all observations will eventually experience the event of interest, the likelihood reduces to a standard duration model with censoring.